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We show that there are informationally complete joint measurements of two conjugated observ-
ables on a finite quantum system, meaning that they enable to identify all quantum states from
their measurement outcome statistics. We further demonstrate that it is possible to implement a
joint observable as a sequential measurement. If we require minimal noise in the joint measurement,
then the joint observable is unique. If d is odd, then this observable is informationally complete.
But if d is even, then the joint observable is not informationally complete and one has to allow more
noise in order to obtain informational completeness.
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I. INTRODUCTION

The general aim in quantum tomography is to iden-
tify quantum states from measurement outcome statis-
tics. A collection of observables with this property is
called informationally complete [1]. Even a single observ-
able can be informationally complete, but then it must
be a noncommutative positive operator valued measure
(POVM) [2, 3]. We will study a class of information-
ally complete POVMs in dimension d with the minimal
number of d2 outcomes and we will explain how they
can be implemented as sequential measurements of two
d-outcome measurements. One can interpret the gener-
ated joint observable as a phase space measurement in
the discrete phase space Zd × Zd [4, 5].

There are some particularly interesting approaches to
finite dimensional quantum tomography, and one of them
is based on complete collections of mutually unbiased
bases (MUBs) [6–8]. In a d-dimensional Hilbert space
one needs d+ 1 MUBs in order to be able to identify all
quantum states, but it is not known if a complete set of
MUBs exists in all dimensions. In fact, there is evidence
that for d = 6 there is no complete set of MUBs [9, 10].

In our scheme we start from two mutually unbiased
bases connected by the finite Fourier transform. They
define a pair of complementary observables, which can-
not be measured jointly. However, it is possible to real-
ize their joint measurement if some additional noise is al-
lowed. We show that their joint measurement can be cho-
sen to be informationally complete, and that this can be
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realized as a sequential measurement where we first per-
form a ‘weak measurement’ in one basis and then another
successive measurement in the other basis. Compared to
the fact that one would need d + 1 complementary ob-
servables in order to reach informational completeness
in separate measurements, it is remarkable that in the
sequential scheme only two observables suffice.

The price to have a joint measurement is that the
marginal observables are not the original complementary
observables but their unsharp versions. We will analyze
the required additional noise and characterize the opti-
mal joint observable from this point of view. The qubit
case has been first studied in [11], and our work general-
izes those results to arbitrary finite dimension.

The covariant phase space observables, i.e., POVMs
covariant under the finite Weyl-Heisenberg group, play a
special role in our investigation. We prove that if a pair
of conjugate observables have a joint measurement, then
they also have a joint measurement which is a covari-
ant phase space observable. Since every covariant phase
space observable arises from a sequential measurement
of two conjugate observables [12], the covariant phase
space observables are an outstanding choice for finite di-
mensional quantum tomography.

The Weyl-Heisenberg group has also a pivotal role in
the investigations of symmetric informationally complete
(SIC) observables [13, 14]. It is generally believed that a
Weyl-Heisenberg covariant SIC observable exists in every
finite dimension and their existence is numerically tested
in all dimensions up to 67 [15]. Our results show that any
such observable has a neat sequential realization scheme.

There is an interesting difference between the even and
odd dimensional Hilbert spaces. If we require minimal
noise in both marginal observables, then their joint ob-
servable is unique. If d is odd, then this observable is
informationally complete. But if d is even, then the joint
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observable is not informationally complete. This result
gives an additional aspect to the common observation
that quantum tomography is different in even and odd
dimensions [16].

II. PRELIMINARIES

In this section we fix some notations and introduce the
basic concepts.

States and Observables

Let H be a finite dimensional Hilbert space, with
dimH = d ≥ 2. We denote by L(H) the vector space of
all linear operators on H. A positive operator % ∈ L(H)
having trace one is a state, and we denote by S(H) the
set of all states.

Observables are generally described by positive opera-
tor valued measures (POVMs) [17, 18]. In this work we
only consider observables with finite number of outcomes.
Therefore, an observable can be defined as a function
A : x 7→ A(x), where each A(x) is a positive operator and∑
x A(x) = 1. Here the sum runs over all x ∈ ΩA, where

the set ΩA is the collection of all possible measurement
outcomes.

If a system is prepared in a state %, then a measurement
of an observable A will lead to an outcome x with the
probability tr [%A(x)].

Informational completeness

An observable A is informationally complete if its mea-
surement outcome probability distribution is sufficient to
identify a unique state [1]. In other words, two different
states must give rise to different probability distributions:
for all pairs of states %1, %2,

tr [%1A(j)] = tr [%2A(j)] ∀j ∈ ΩA ⇒ %1 = %2 .

The informational completeness of an observable A is
equivalent to the property that the linear span of the set
{A(j) : j ∈ ΩA} is L(H) [3, 19].

Joint measurability

Given two observables A and B, we say that they are
jointly measurable if there exists a third observable C
with ΩC = ΩA × ΩB and satisfying∑
x∈ΩA

C(x, y) = B(y) ∀y ,
∑
y∈ΩB

C(x, y) = A(x) ∀x .

In other words, A and B correspond to the ‘marginals’
of C. Any observable having A and B as its marginals is
called a joint observable of A and B [20].

We recall that joint measurability is equivalent to the
following [21]: there exists an observable G and stochastic
matrices [Mxz], [M ′yz] such that∑
z

MxzG(z) = A(x) ∀x ,
∑
z

M ′yzG(z) = B(y) ∀y .

Hence, two observables are jointly measurable iff they
can be ‘post-processed’ from a single observable.

We will use several times the following simple fact: if
C and C′ are joint observables of A and B, then also all
their convex combinations tC + (1 − t)C′, 0 < t < 1,
are joint observables of A and B. It follows that two
jointly measurable observables have either a unique joint
observable or infinitely many of them.

Another useful fact is related to unitary transforma-
tions. Let U be a unitary operator on H. Two observ-
ables A and B are jointly measurable if and only if the
observables UAU∗ and UBU∗ are jointly measurable. In-
deed, it is easy to see that C is a joint observable of A
and B if and only if UCU∗ is a joint observable of UAU∗

and UBU∗.

Instruments

An observable describes the statistics of the outcomes
of a measurement but leaves open how the measurement
disturbs the input state. In order to discuss this we need
the concept of an instrument [22]. An instrument with
finitely many outcomes is a mapping I : x 7→ Ix such
that each Ix is a completely positive linear map on L(H)
and

∑
x tr [Ix(%)] = 1 for all states %.

The adjoint map I∗x of Ix is defined via the usual trace
duality

tr [SIx(T )] = tr [I∗x(S)T ] ∀S, T ∈ L(H) .

In other words, I∗x and Ix correspond to the Heisenberg
and Schrödinger pictures, respectively.

Suppose that A is an observable. Then we say that an
instrument I is A-compatible if I∗x(1) = A(x) for every x.
Every A-compatible instrument describes some particular
kind of measurement of A [23].

An example of an A-compatible instrument is the
Lüders instrument IL, defined by

ILx (%) =
√
A(x)%

√
A(x) .

Any other A-compatible instrument I is of the form

Ix(%) = Ex
(
ILx (%)

)
for some collection {Ex} of completely positive trace pre-
serving maps on L(H) [24].

Sequential measurements

By a sequential measurement we mean a setting where
two measurements are combined into a third measure-



3

ment by performing them one after the other [25]. Gener-
ally, the order in which the measurements are performed
is crucial [26].

Suppose we have two N -outcome observables A,B and
we measure them subsequently; first A and then B. As
a result, we have in total N2 possible measurement out-
comes. Generally, we do not obtain a joint measurement
of A and B since the first measurement distrubs the input
state. In fact, the overall measurement depends on the
way we measure A. If the first measurement is described
by an A-compatible instrument I, then the overall ob-
servable C is given by

tr [%C(j, k)] = tr [B(k)Ij(%)]

for all input states %, or equivalently,

C(j, k) = I∗j (B(k)) .

Let us notice that first marginal of C is always A, while
the second marginal is a perturbed version of B and de-
pends on the instrument I.

III. EXAMPLE: SEQUENTIAL
MEASUREMENTS OF σx AND σy

We start with a preliminary example, which is mainly
a collection of well known facts. It hints the forthcoming
developments and clarifies the aims of the later sections.
We refer to [27] for more details and further references.

Fix H = C2, and let A and B be the two observables
corresponding to the measurements of spin- 1

2 components
in the directions x and y, respectively. Thus,

A(±1) = 1
2 (1± σx) , B(±1) = 1

2 (1± σy) ,

where σx, σy are the Pauli spin matrices.
Since A and B consist of projections and they do not

mutually commute, it is not possible to measure them
jointly. Moreover, if we measure them separately on two
similarly prepared ensembles, we still cannot infer the
unknown state.

An alternative way is to perform a sequential measure-
ment. The first measurement has to be a weak measure-
ment, meaning that we do not measure A but its unsharp
version. We define an unsharp version Aλ of A by

Aλ(j) := λA(j) + (1− λ)
1

2
1 , j = ±1 .

Here λ ∈ [0, 1] is a parameter quantifying the noise or
imprecision. We can write Aλ in the form

Aλ(±1) = 1
2

(
1± λσx

)
.

In a similar way we define an unsharp version Bγ of B by

Bγ(±1) = 1
2

(
1± γσy

)
.

We want to study the disturbance of the first mea-
surement on the system, and for this reason we define

an instrument related to Aλ. A class of Aλ-compatible
instruments can be defined by

J±1(%) = L±1

√
Aλ(±1)%

√
Aλ(±1)L∗±1 ,

where L1, L−1 are arbitrary unitary operators. If the
subsequent measurement is a B-measurement, then the
overall statistics of the sequential measurement is given
by the observable

C(j, k) = J ∗j (B(k)) =
√

Aλ(j)L∗jB(k)Lj
√

Aλ(j) ,

where j, k = ±1. The properties of C obviously depend
on L1 and L−1. In the following we consider two different
choices of L±1.

Optimal joint measurement

If we choose L±1 = 1, then we obtain

C(j, k) =
1

4

(
1 + j λσx + k

√
1− λ2σy

)
, j, k = ±1 .

In particular, the marginals are

C(j,+1) + C(j,−1) = Aλ(j) ,

C(+1, k) + C(−1, k) = B√1−λ2(k) .

The joint observable C is an optimal approximate joint
measurement of σx and σy. This means that the unsharp

parameters λ and γ =
√

1− λ2 saturate the inequality

λ2 + γ2 ≤ 1 . (1)

Indeed, it is known that this inequality is a necessary and
sufficient criterion for two observables Aλ and Bγ to be
jointly measurable [11]. Let us also notice that the joint
observable of Aλ and Bγ is unique if λ2 + γ2 = 1 [11].

Informationally complete joint measurement

Another interesting option is to choose

L±1 = cos
θ

2
1∓ i sin

θ

2
σx

for some fixed angle 0 < θ < π/2. In this case we obtain

C(j, k) =
1

4

(
1 + j λσx + k cos θ

√
1− λ2σy+

+jk sin θ
√

1− λ2σz
)
, j, k = ±1 .

and the marginals are

C(j,+1) + C(j,−1) = Aλ(j) ,

C(+1, k) + C(−1, k) = Bcos θ
√

1−λ2(k) .

It is easy to see that the linear span of the four oper-
ators C(j, k), j, k = ±1, is the set of all 2 × 2 - complex
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matrices. It follows that the joint observable C is infor-
mationally complete.

The unsharpness parameters λ and γ = cos θ
√

1− λ2

do not saturate the inequality (1). Altering the param-
eter θ we can make the sum λ2 + γ2 as close to 1 as
we want, hence we conclude that Aλ and Bγ admit an
informationally complete joint observable if and only if

λ2 + γ2 < 1 .

Finally, we remark that with the choices λ = 1/
√

3 and
θ = π/4 the joint observable C is a symmetric informa-
tionally complete (SIC) observable.

IV. CONJUGATE OBSERVABLES

A. Mutually unbiased bases and complementary
observables

We start by recalling the usual definition of comple-
mentary observables in a finite d-dimensional Hilbert
space and some related basic facts [28], [29]. We denote
Zd ≡ {0, . . . , d− 1}. Let {ϕj}j∈Zd and {ψk}k∈Zd be mu-
tually unbiased bases (MUBs), i.e., they are orthonormal
bases in H and

|〈ϕj |ψk 〉|2 = 1/d ∀j, k ∈ Zd . (2)

We define two d-outcome observables A and B corre-
sponding to {ϕj}j∈Zd and {ψk}k∈Zd , respectively. Hence,

A(j) = |ϕj〉〈ϕj | , B(k) = |ψk〉〈ψk| .

Obviously, two orthonormal bases {ϕj}j∈Zd and
{ϕ′j}j∈Zd define the same observable A iff ϕ′j = αjϕj
for some complex numbers αj of modulus one.

The mutual unbiasedness condition (2) can be
rephrased by saying that A and B are complementary
observables, meaning that in any state % where the out-
come of A is predictable, the B-distribution is uniform
(and vice versa). This entails that the following implica-
tions are valid for any state % and all outcomes j, k ∈ Zd,

tr [%A(j)] = 1 ⇒ tr [%B(k)] = 1/d

tr [%B(k)] = 1 ⇒ tr [%A(j)] = 1/d .

Since tr [%A(j)] = 1 iff % = |ϕj〉〈ϕj |, it is easy to see
that the complementarity of A and B is indeed equivalent
to the mutual unbiasedness of the bases {ϕj}j∈Zd and
{ψk}k∈Zd .

There is a canonical way to produce two mutually un-
biased bases. In the following, suppose an orthonormal
basis {ϕk}k∈Zd of H is fixed. Denoting ω ≡ e2πi/d, we
define the following unitary representations U and V of
the cyclic group Zd in H:

Uxϕk := ϕk+x

Vyϕk := ωykϕk

for all x, y, k ∈ Zd. In the above formulas and in the rest
of the paper, addition and multiplication of elements in
Zd are understood modulo d. (For instance, we will often
use −j = d− j). It is easy to verify that

VyUx = ωxy UxVy ∀x, y ∈ Zd . (3)

The Fourier transform (with respect to the basis
{ϕk}k∈Zd) is the unitary operator F : H → H defined
by

Fϕk :=
1√
d

∑
h∈Zd

ω−hkϕh . (4)

The adjoint operator F∗ of F is given by

F∗ϕk =
1√
d

∑
h∈Zd

ωhkϕh = Fϕ−k ,

and we have F2ϕk = F∗ 2ϕk = ϕ−k. We denote

ψk ≡ F∗ϕk = Fϕ−k ,

and it is immediate to check that {ϕj}j∈Zd and {ψk}k∈Zd
are MUBs, with 〈ϕj |ψk 〉 = (1/

√
d)ωjk.

The Fourier transform has the intertwining properties

FUx = V ∗x F , FVy = UyF ,

from which it follows that

Uxψk = ω−xkψk

Vyψk = ψk+y .

The observables A and B related to {ϕj}j∈Zd and
{ψk}k∈Zd , respectively, satisfy the following conditions
for all j, k, x, y ∈ Zd:

UxA(j)U∗x = A(j + x) , VyA(j)V ∗y = A(j) (5)

and

UxB(k)U∗x = B(k) , VyB(k)V ∗y = B(k + y) . (6)

In other words, A is U -covariant and V -invariant, while
B is U -invariant and V -covariant. We also note that A
and B are conjugated by F , i.e.,

B(k) = F∗A(k)F

for all k ∈ Zd. It is customary to say that A and B are
canonically conjugated observables.

The conditions (5) – (6) are analogous to the symmetry
properties of the usual position and momentum observ-
ables on the real line R (see e.g. [30]). In some situations
the covariance properties may have some physical mean-
ing or motivation. However, for our purposes they are
just useful features that can be utilized later in our cal-
culations.
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B. Unsharp observables

Measurements of two complementary observables are
incompatible and therefore have to be performed sepa-
rately. This means that their measurements require dif-
ferent settings. However, it is possible to perform a simul-
taneous measurement of two complementary observables
if we allow some additional imprecision or noise. In other
words, we can measure jointly unsharp versions of A and
B.

We define an unsharp version Aλ of A by

Aλ(j) := λA(j) + (1− λ)
1

d
1 .

Here λ ∈ [0, 1] is a parameter quantifying the noise. This
type of noise is equivalent to the situation where an input
state % is first depolarized into a state λ% + (1 − λ)/d1
and then a measurement of A is performed.

More generally, if Λ is a probability distribution on Zd,
then we define an unsharp version AΛ of A by

AΛ(j) :=
∑
i∈Zd

Λ(j − i)A(i) .

The special case AΛ = Aλ corresponds to the probability
distribution Λ defined as

Λ(0) = λ+ (1− λ)/d , Λ(j) = (1− λ)/d if j 6= 0 .

We can also write this probability distribution in the form

Λ(j) = λδ(j) + (1− λ)µ(j)

where δ is the point distribution at 0 and µ is the uniform
distribution on Zd, i.e.,

δ(j) =

{
1 if j = 0
0 if j 6= 0

, µ(j) =
1

d
∀j . (7)

In a similar way a probability distribution Γ on Zd
defines an unsharp version BΓ of B by

BΓ(k) :=
∑
i∈Zd

Γ(k − i)B(i) .

A special class is, again, characterized by noise parame-
ters γ ∈ [0, 1] and we denote

Bγ(k) := γB(k) + (1− γ)
1

d
1 .

Naturally, there are also other type of approximations
of A and B than the previously defined AΛ and BΓ. The
usefulness of AΛ and BΓ is that they satisfy the same
covariance and invariance relations than A and B, re-
spectively. Namely, the observables AΛ and BΓ satisfy
the following conditions:

UxAΛ(j)U∗x = AΛ(j + x) , VyAΛ(j)V ∗y = AΛ(j) (8)

and

UxBΓ(k)U∗x = BΓ(k) , VyBΓ(k)V ∗y = BΓ(k + y) . (9)

Thus, AΛ and BΓ are conjugated observables although
they need not be complementary anymore [12]. As we
will see, two observables AΛ and BΓ can have a joint
observable even if they do not commute.

Remark 1. Suppose that Ã is a d-outcome observable
satisfying

UxÃ(j)U∗x = Ã(j + x) , VyÃ(j)V ∗y = Ã(j) (10)

for all j, x, y ∈ Zd. Then Ã = AΛ for some proba-
bility distribution Λ. Namely, it follows from the sec-

ond condition in (10) that Ã commutes with A (since

A(j) = (1/d)
∑
y ω
−jyVy) and hence Ã(j) =

∑
k pj,kA(k)

for some real numbers 0 ≤ pj,k ≤ 1. The first condition
in (10) then implies that pj,k = p0,k−j .

V. JOINT MEASUREMENTS

A. Covariant observables

We recall that two observables AΛ and BΓ are jointly
measurable if they have a joint observable, i.e., an ob-
servable C on Zd × Zd such that∑

k∈Zd

C(j, k) = AΛ(j) ,
∑
j∈Zd

C(j, k) = BΓ(k)

for all j, k ∈ Zd. A special class of joint observables
turns out to be crucial for our developments. We say
that an observable C on Zd × Zd is a covariant phase
space observable if

UxVyC(j, k)V ∗y U
∗
x = C(j + x, k + y)

for all j, k, x, y ∈ Zd. The covariant phase space observ-
ables have a simple form [22]. Namely, if C is a covariant
phase space observable, then there is unique operator
T ∈ S(H) such that C = CT , where we have denoted

CT (j, k) :=
1

d
UjVkTV

∗
k U
∗
j , j, k ∈ Zd .

Also, each T ∈ S(H) defines a covariant phase space
observable by this formula. The correspondence T ↔
CT is therefore one-to-one and the elements in S(H)
parametrize the covariant phase space observables.

The marginals of a covariant phase space observable
CT are conjugated observables on Zd. Indeed, a direct
calculation shows that CT has marginals AΛ and BΓ, with

Λ(j) = tr [A(−j)T ] , Γ(k) = tr [B(−k)T ] . (11)

(This calculation can be found in [12]).
The essential role of covariant phase space observables

in our discussion becomes clear in the following observa-
tion.
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Proposition 1. If AΛ and BΓ are jointly measurable,
then they have a joint observable which is a covariant
phase space observable.

Proof. Suppose that C is a joint observable of AΛ and BΓ.
For each x, y ∈ Zd, we define an observable Cx,y by

Cx,y(j, k) := U∗xV
∗
y C(j + x, k + y)VyUx . (12)

Using the covariance and invariance properties (8) – (9) it
is straightforward to verify that Cx,y is a joint observable
of AΛ and BΓ.

We then define C̃ to be the uniform mixture of all Cx,y,
i.e.,

C̃(j, k) :=
1

d2

∑
x,y∈Zd

Cx,y(j, k) . (13)

Since every Cx,y is a joint observable of AΛ and BΓ, also C̃
is their joint observable. A direct calculation, using (3),

shows that C̃ is a covariant phase space observable.

We conclude from Proposition 1 that two observables
AΛ and BΓ are jointly measurable iff their related prob-
ability distributions Λ and Γ are of the form (11) for
some T ∈ S(H). Equations (11) can also be rewrit-
ten in a slightly different form. Namely, observe that,
if T ∈ S(H), then there exists a unit vector φ ∈ H ⊗ H
such that T = tr2[|φ〉〈φ|], where tr2 is the partial trace
with respect to the second factor. (A vector state giving
T via the partial trace is often called a purification of T ).

Conversely, if φ ∈ H ⊗ H is a unit vector, then T =
tr2[|φ〉〈φ|] is a state. Inserting this form into (11) we
obtain

Λ(j) = 〈φ | (A(−j)⊗ 1)φ 〉 ,
Γ(k) = 〈φ | (B(−k)⊗ 1)φ 〉 .

(14)

Note that if a vector φ ∈ H ⊗H satisfies the above two
equations for some probability densities Λ and Γ, then
the normalization ‖φ‖ = 1 is automatic. We thus have
the following characterization of jointly measurable ob-
servables.

Proposition 2. Let Λ, Γ be probability densities on Zd.
The following facts are equivalent:

(i) The observables AΛ and BΓ are jointly measurable.

(ii) There exists a state T ∈ S(H) such that the proba-
bility densities Λ and Γ satisfy (11).

(iii) There exists a vector φ ∈ H⊗H such that the prob-
ability densities Λ and Γ satisfy (14).

Let us note that any AΛ is jointly measurable with
some BΓ. Namely, for each Λ we can define a state TΛ as

TΛ :=
∑
j∈Zd

Λ(−j)|ϕj〉〈ϕj | .

Then Λ(j) = tr [A(−j)TΛ] and AΛ is thus jointly measur-
able with BΓ, where Γ is defined as Γ(k) = tr [B(−k)TΛ].

Proposition 2 can be seen as a trade-off relation be-
tween the probability distributions Λ and Γ that describe
the deviations of AΛ and BΓ from A and B, respectively.
For instance, if Λ = δ, then necessarily Γ = µ. Hence, we
recover the fact that A is jointly measurable only with
the trivial observable and no other BΓ.

We end this subsection with some additional observa-
tions.

Remark 2. If two observables AΛ and BΓ are jointly
measurable, they can have several different covariant
phase space observables as their joint observables.

For instance, let {ζi}i∈Zd be an orthonormal basis
which is mutually unbiased with respect to both or-
thonormal bases {ϕj}j∈Zd and {ψk}k∈Zd . Then, for each
i ∈ Zd, we have

〈 ζi |A(−j)ζi 〉 = 〈 ζi |B(−k)ζi 〉 = 1/d .

Therefore, the marginals of the covariant phase space
observables C|ζi〉〈ζi| are the same although C|ζi〉〈ζi| 6=
C|ζi′ 〉〈ζi′ | whenever i 6= i′.

Remark 3. If two observables AΛ and BΓ are jointly
measurable, they can have a joint observable which is not
a covariant phase space observable.

For instance, let p : Zd × Zd → [0, 1] be a bivariate
probability distribution with uniform margins. Then the
observable C(j, k) := p(j, k)1 is a joint observable of A0

and B0. It is clear that C is a covariant phase space
observable only if p is a uniform distribution. However,
a bivariate probability distribution with uniform margins
need not be uniform. For instance, if we set

p(i, j) =
1

d2

(
1− sin

(
2π
ij

d

))
, i, j ∈ Zd ,

then
∑
i p(i, j) =

∑
j p(i, j) = 1/d, but p is not uniform.

The existence of non-covariant joint observables is not
limited to the trivial observables A0 and B0. Namely,
suppose that C is a joint observable of A0 and B0 and
C′ is a joint observable of Aλ and Bγ . Then the convex
combination tC′+(1−t)C, 0 < t < 1, is a joint observable
of Atλ and Btγ . It is easy to see that if C′ is a covariant
phase space observable but C is not, then their convex
combination tC′ + (1 − t)C cannot be a covariant phase
space observable.

Remark 4. Suppose that Aλ and Bγ have a unique joint
observable CT among the covariant phase space observ-
ables and that T 2 = T . Then CT is a unique joint ob-
servable of Aλ and Bγ .

To prove this claim, let C be a joint observable of Aλ
and Bγ . We need to show that C = CT . We define Cx,y
and C̃ as in (12) – (13). Since C̃ is by its construction a

covariant phase space observable, we must have C̃ = CT
by the assumption on uniqueness. In particular, each

operator C̃(j, k) = (1/d)UjVkTV
∗
k U
∗
j is rank-1. Since
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0 ≤ Cx,y(0, 0) ≤ d2 C̃(0, 0) = d T by (13), it follows that
there exists a real constant 0 ≤ c(x, y) ≤ d such that
Cx,y(0, 0) = c(x, y)T , hence

C(x, y) = c(x, y)UxVyTV
∗
y U
∗
x

by (12). Suppose λ 6= 1. Since C has Aλ as its first
marginal, then for all x ∈ Zd we obtain∑

y∈Zd

c(x, y)UxVyTV
∗
y U
∗
x = λA(x) + (1− λ)

1

d
1 .

The right hand side of this equation is a rank-d op-
erator, while on the left hand side we have the sum
of d operators with rank-1. It then follows that the
set {UxVyTV ∗y U∗x}y∈Zd is linearly independent in L(H).

Since C and C̃ have the same marginals,∑
y∈Zd

c(x, y)UxVyTV
∗
y U
∗
x =

1

d

∑
y∈Zd

UxVyTV
∗
y U
∗
x

for all x, hence c(x, y) = 1/d for all x, y by linear inde-
pendence. The case λ = 1 is treated in a similar way,
by taking the marginal Bγ in the place of Aλ (and now
necessarily γ 6= 1). Therefore, CT is the unique joint
observable of Aλ and Bγ .

B. Unsharpness inequality

In this subsection we apply Proposition 2 to the cases
where AΛ = Aλ and BΓ = Bγ . These special type of
marginal observables are interesting as we can quantify
their unsharpnesses by single numbers λ and γ. In par-
ticular, we can ask how small λ and γ must be in order
for Aλ and Bγ to become jointly measurable. We first
notice that this question is, indeed, meaningful.

Proposition 3. Let λ, γ ∈ (0, 1]. The following condi-
tions are equivalent:

(i) Aλ and Bγ are jointly measurable.

(ii) Aλ′ and Bγ′ are jointly measurable for all 0 ≤ λ′ ≤
λ and 0 ≤ γ′ ≤ γ.

(iii) Aλ′ and Bγ′ are jointly measurable for all 0 ≤ λ′ <
λ and 0 ≤ γ′ < γ.

Proof. Suppose that (i) holds and 0 < γ′ < γ. We denote
t := γ′/γ and hence 0 < t < 1. We have

Bγ′(k) = tBγ(k) + (1− t)1

d
1 ,

meaning that Bγ′ is a convex combination of Bγ and the
trivial observable B0. By the assumption Aλ is jointly
measurable with Bγ and Aλ is also jointly measurable
with the trivial observable B0 (since they commute). If
C1 is a joint observable of Aλ and Bγ and C2 is a joint
observable of Aλ and B0, then the convex combination

tC1 +(1−t)C2 is a joint observable of Aλ and Bγ′ . There-
fore, Aλ and Bγ′ are jointly measurable. We can inter-
change the roles of Aλ and Bγ and run the same argu-
ment, hence we obtain (ii).

It is clear that (ii) implies (iii). Hence, to complete the
proof we need to show that (iii) implies (i).

Suppose that (iii) holds. We choose sequences (λn) and
(γn) such that 0 < λn < λ, 0 < γn < γ and limn λn = λ,
limn γn = γ. For each n, we fix a state Tn such that the
corresponding covariant phase space observable CTn is a
joint observable of Aλn and Bγn . The set of states S(H)
is compact in the operator norm topology, hence the se-
quence (Tn)n has a convergent subsequence. We denote
by T the limit of this convergent subsequence. Using (11)
we see that the covariant phase space observable CT is a
joint observable of Aλ and Bγ . Thus, (i) holds.

We conclude from Proposition 3 that for every λ ∈
[0, 1], there is a number γmax(λ) ≥ 0 such that Aλ and Bγ
are jointly measurable iff 0 ≤ γ ≤ γmax(λ). Similarly, for
every γ ∈ [0, 1], there is a number λmax(γ) ≥ 0 such that
Aλ and Bγ are jointly measurable iff 0 ≤ λ ≤ λmax(γ).

We also know that γmax(0) = λmax(0) = 1 (since a
trivial observable is jointly measurable with any other
observable) and that γmax(1) = λmax(1) = 0 (see the
discussion after Proposition 2).

Proposition 4. The equality λmax(x) = γmax(x) holds
for all x ∈ [0, 1].

Proof. It is enough to show that Aλ and Bγ are jointly
measurable if and only if Aγ and Bλ are such. Joint
measurability of Aλ and Bγ means that there exists an
observable C on Zd × Zd having marginals Aλ and Bγ ,

respectively. We set Ĉ(j, k) := F∗C(k,−j)F for every
j, k ∈ Zd. Then∑

k∈Zd

Ĉ(j, k) =
∑
k∈Zd

F∗C(k,−j)F = F∗Bγ(−j)F

= F∗ 2Aγ(−j)F2 = Aγ(j) ,∑
j∈Zd

Ĉ(j, k) =
∑
j∈Zd

F∗C(k,−j)F = F∗Aλ(k)F

= Bλ(k) .

We conclude that Ĉ is a joint observable of Aγ and Bλ,
hence the latter two are jointly measurable.

We will now find out the function γmax(λ), or, equiva-
lently, λmax(γ). Suppose that λ, γ ∈ [0, 1] are such that
Aλ and Bγ are jointly measurable. By Proposition 2 this
is equivalent to the existence of a vector φ ∈ H ⊗ H
satisfying

〈φ | (A(j)⊗ 1)φ 〉 = λδ(j) + (1− λ)µ(j) , (15)

〈φ | (B(k)⊗ 1)φ 〉 = γδ(k) + (1− γ)µ(k) , (16)

for all j, k ∈ Zd (see (7) for the definition of δ and µ).
We now give a condition on the parameters λ, γ which
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is necessary and sufficient for the existence of a vector
φ ∈ H⊗H satisfying the above two equations. Moreover,
we show that, for the extreme values of λ, γ, the vector
φ is essentially unique.

Lemma 1. Let λ, γ ∈ [0, 1]. Suppose there exists a vector
φ ∈ H ⊗H satisfying (15) – (16). Then

γ ≤
(d− 2)(1− λ) + 2

√
(1− d)λ2 + (d− 2)λ+ 1

d
.

(17)
For any choice of a unit vector η ∈ H, the vector

φ = (αλϕ0 + βλψ0)⊗ η , (18)

with

αλ =
1√
d

[√
(d− 1)λ+ 1−

√
1− λ

]
, βλ =

√
1− λ ,

satisfies (15) – (16) with equality in (17). Hence, the
right hand side in (17) is equal to γmax(λ).

If φ′ is a vector satisfying (15) – (16) with γ =
γmax(λ), then φ′ = (αλϕ0 + βλψ0) ⊗ η′ for some unit
vector η′ ∈ H.

Proof. Suppose φ ∈ H⊗H satisfies (15) – (16). We write
φ in the form

φ =
∑
i∈Zd

ϕi ⊗ ξi ,

where {ξi}i∈Zd are vectors in H. From (15) it follows
that

‖ξi‖2 = λδ(i) + (1− λ)µ(i) ,

hence there exist unit vectors {ηi}i∈Zd such that

ξ0 =

√
(d− 1)λ+ 1

d
η0 , ξi =

√
1− λ
d

ηi ∀i 6= 0 .

On the other hand, we have

〈φ | (B(k)⊗ 1)φ 〉 =
∑
i,j∈Zd

〈ϕj ⊗ ξj | (|ψk〉〈ψk| ⊗ 1)ϕi ⊗ ξi 〉

=
1

d

∑
i,j∈Zd

ωjkω−ik 〈 ξj | ξi 〉 ,

so, by (16), we must have

1

d

∑
i,j∈Zd

ωjkω−ik 〈 ξj | ξi 〉 = γδ(k) + (1− γ)µ(k) .

This equation, evaluated at k = 0, gives(
1− 1

d

)
γ +

1

d
=

1

d

∥∥∥∥∥∑
i∈Zd

ξi

∥∥∥∥∥
2

=
1

d2

∥∥∥∥∥∥√(d− 1)λ+ 1 η0 +
∑

i∈Zd, i 6=0

√
1− λ ηi

∥∥∥∥∥∥
2

.

0 1
0

1

Λ

Γ

FIG. 1: (Color online) The boundary curve λ 7→ γmax(λ)
for d = 2, 3, 4, 5 (red solid curves) and for d = 10, 100, 1000
(orange dashed curves).

The maximum value of γ is then achieved when the right
hand side of this equation is maximal, i.e., when there
exists a unit vector η ∈ H such that ηi = η ∀i ∈ Zd. The
corresponding maximum value γmax of γ is given by

d(d− 1)γmax + d =
(√

(d− 1)λ+ 1 + (d− 1)
√

1− λ
)2

,

i.e.,

γmax =
(d− 2)(1− λ) + 2

√
(1− d)λ2 + (d− 2)λ+ 1

d
.

In order to show that, if the sequence {ξi}i∈Zd is chosen
as above, then the corresponding vector

φ =

√ (d− 1)λ+ 1

d
ϕ0 +

√
1− λ
d

∑
i∈Zd, i 6=0

ϕi

⊗ η
= (αλϕ0 + βλψ0)⊗ η

satisfies also (16) with γ = γmax (and thus the maximum
is indeed achieved by φ), we evaluate

〈φ | (B(k)⊗ 1)φ 〉 = 〈φ | (|ψk〉〈ψk| ⊗ 1)φ 〉
= |〈ψk |αλϕ0 + βλψ0 〉|2

=

(
αλ√
d

+ βλδ(k)

)2

=
α2
λ

d
+

(
β2
λ + 2

αλβλ√
d

)
δ(k)

= (1− γmax)µ(k) + γmaxδ(k) ,

which is (16).

As a consequence of the above discussion, we obtain
an inequality for the unsharpnesses of two jointly mea-
surable observables Aλ and Bγ .
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Proposition 5. Two observables Aλ and Bγ are jointly
measurable if and only if

γ ≤ γmax(λ) (19)

=
1

d

[
(d− 2)(1− λ) + 2

√
(1− d)λ2 + (d− 2)λ+ 1

]
,

(or, equivalently, its modified form under the exchange
γ ↔ λ).

If γ = γmax(λ), then Aλ and Bγ have a unique joint
observable. This unique joint observable is the covariant
phase space observable CT defined by the state

T = |χλ〉〈χλ| , χλ = αλϕ0 + βλψ0 ,

with

αλ =
1√
d

[√
(d− 1)λ+ 1−

√
1− λ

]
,

βλ =
√

1− λ .
(20)

Proof. If Aλ and Bγ are jointly measurable, then the in-
equality follows from Proposition 2 and Lemma 1. Con-
versely, if γmax is given by (19), then the pair Aλ and
Bγmax

are jointly measurable again by an application of
Proposition 2 and Lemma 1. Then, Aλ and Bγ are jointly
measurable by Proposition 3.

Now suppose λ and γ achieve the bound (19), and let
CT be a covariant joint observable of Aλ and Bγ . Pick
φ ∈ H ⊗ H such that T = tr2[|φ〉〈φ|]. As φ satisfies
(15) – (16) with γ = γmax, by Lemma 1 it must be given
by (18) for some choice of a unit vector η ∈ H, and
T = tr2[|φ〉〈φ|] = |χλ〉〈χλ|, with χλ as in the statement
of the proposition.

Finally, we need to prove that CT is the unique joint
observable (and not only unique among covariant phase
space observables). We notice that T 2 = T , and the
claim thus follows from Remark 4.

The graph of the function λ 7→ γmax(λ) is a part
of an ellipse. In Fig. 1 we have depicted it for d =
2, 3, 4, 5, 10, 100, 1000.

Example 1. Suppose that two jointly measurable ob-
servables Aλ and Bγ are ‘equally unsharp’ but as close to
A and B as possible, i.e.,

γ = λ = λmax(γ) .

In this case Proposition 5 gives

γ = λ =
d+
√
d− 2

2(d− 1)
= 1

2

(
1 +

1

1 +
√
d

)
.

The observables Aλ and Bγ then have a unique joint ob-
servable, which is the covariant phase space observable
CT associated to the state T = |χ〉〈χ|, with

χ =

√ √
d

2(1 +
√
d)

(ϕ0 + ψ0) .

The vector state χ is hence an equal superposition of the
vector states ϕ0 and ψ0.

0 1
0

1

Λ

Γ

FIG. 2: (Color online) In this picture d = 8. The line (dashed
blue) and the ellipse (solid red) that define the boundaries of
(21) and (22), respectively. Only the upper side of the ellipse
is relevant for the joint measurability.

By a direct calculation one can verify that the inequal-
ity (19) can be rewritten in the following equivalent form
which is symmetric in λ and γ.

Proposition 6. Two observables Aλ and Bγ are jointly
measurable iff

either γ + λ ≤ 1 (21)

or γ2 + λ2 +
2(d− 2)

d
(1− γ)(1− λ) ≤ 1 . (22)

The latter inequality describes a full ellipse. Therefore,
the first condition is needed to ignore the lower part of
the ellipse, which is not a correct boundary for joint mea-
surability. This is depicted in Fig. 2.

Let us notice that for d = 2 the inequality (22) becomes
γ2 + λ2 ≤ 1, and then the first condition is redundant.
We thus recover the single condition stated in (1) and
first proved in [11]. Also, for d = 3 and d = 4 a direct
calculation shows that the linear inequality (21) is redun-
dant and the quadratic inequality (22) is necessary and
sufficient for the joint measurability. For d ≥ 5 we need
both conditions (21) and (22).

By inspecting the function λ 7→ γmax(λ) we see that
for every ε > 0, there is a pair of observables Aλ and
Bγ such that they are not jointly measurable and λ +
γ < 1 + ε. Thus, the criterion γ + λ ≤ 1 is the best
sufficient condition for joint measurability which is linear
and symmetric in λ and γ.

The best linear and symmetric necessary condition for
joint measurablity is achived by taking the tangent of
the boundary curve in the point where it crosses the line
γ = λ. In this way, we obtain the following conclusion.

Proposition 7. If Aλ and Bγ are jointly measurable,
then

γ + λ ≤ 1 +

√
d− 1

d− 1
.
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0 1
0

1

Λ

Γ

FIG. 3: (Color online) In this picture d = 10. The gray re-
gions represent the necessary and sufficient linear conditions.
In the white stripe one has to invoke the quadratic ellipse cri-
terion (red curve), whereas otherwise the joint measurability
can be deduced from the simple linear criteria.

One can also see Proposition 7 in the opposite order;

if γ+λ > 1 +
√
d−1
d−1 , then Aλ and Bγ are not jointly mea-

surable. In Fig. 3 we have depicted the linear necessary
and sufficient conditions in the case d = 10.

C. Non-covariant observables

So far, we have concentrated on covariant observables
AΛ and BΓ. Let us have a short look on a class of non-
covariant observables.

Let p and r be two probability distributions on Zd. We
define

Aλ;p(j) := λA(j) + (1− λ)p(j)1

and

Bγ;r(k) := γB(k) + (1− γ)r(k)1 .

It is straightforward to verify that Aλ;p is U -covariant
and V -invariant iff p is the uniform distribution on Zd,
in which case Aλ;p = Aλ. (Analogous statement holds for
Bγ;r). The following result is a generalization of Propo-
sition 5 in [27].

Proposition 8. If Aλ;p and Bγ;r are jointly measurable,
then Aλ and Bγ are jointly measurable.

Proof. Suppose that Aλ;p and Bγ;r are jointly measurable
and let C be their joint observable. As in the proof of

Proposition 1, we define the observable C̃, given by

C̃(j, k) :=
1

d2

∑
x,y∈Zd

U∗xV
∗
y C(j + x, k + y)VyUx .

For each j, we have∑
k∈Zd

C̃(j, k) =
1

d2

∑
x,y∈Zd

U∗xV
∗
y

∑
k∈Zd

C(j + x, k + y)VyUx

=
1

d2

∑
x,y∈Zd

U∗xV
∗
y Aλ;p(j + x)VyUx

= λA(j) + (1− λ)
1

d2

∑
x,y∈Zd

p(j + x)1

= Aλ(j) .

In a similar way we obtain
∑
j∈Zd C̃(j, k) = Bγ(k) for

every k. Therefore, C̃ is a joint observable for Aλ and
Bγ .

As a consequence of Propositions 5 and 8 we conclude
the following necessary criterion for joint measurability.

Corollary 1. If two observables Aλ;p and Bγ;r are jointly
measurable, then

γ ≤ 1

d

[
(d− 2)(1− λ) + 2

√
(1− d)λ2 + (d− 2)λ+ 1

]
.

A necessary and sufficient inequality for the joint mea-
surability of Aλ;p and Bγ;r must contain also p and r in a
form or in another. It is thus clear that Corollary 1 does
not give a sufficient condition. A necessary and sufficient
condition in the case d = 2 has been obtained in [31–33].

We remark that a general necessary condition for the
joint measurability of two observables on a finite dimen-
sional system has been presented in [34]. A comparison
to Proposition 5 shows that this condition is not suffi-
cient. We leave it as an open problem to find a necessary
and sufficient condition for the joint measurability of Aλ;p

and Bγ;r.

VI. INFORMATIONAL COMPLETENESS

We will now study the informational completeness of
joint observables of Aλ and Bγ . Let us first recall that
the informational completeness of a covariant phase space
observable CT is equivalent to the criterion

tr [TUxVy] 6= 0 ∀x, y ∈ Zd . (23)

This result has been discussed e.g. in [35–37]. For com-
pleteness, we provide a proof in Appendix.

Proposition 9. Suppose Aλ and Bγ are two observables
with λ /∈ {0, 1} and γ = γmax(λ). Then Aλ and Bγ have
a unique joint observable C. The observable C is infor-
mationally complete if and only if d is odd.

Proof. From Proposition 5 we know Aλ and Bγ have a
unique joint observable CT , generated by the state T =
|χλ〉〈χλ|, with χλ = αλϕ0 + βλψ0. The informational
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completeness of CT is equivalent to the condition (23),
and a straightforward calculation gives

tr [TUxVy] = 〈χλ |UxVyχλ 〉

= α2
λδx,0 + β2

λδy,0 +
αλβλ√
d

(
ω−xy + 1

)
.

Let us first notice that αλ > 0 and βλ > 0 since both
λ and γ are nonzero (see (20)). Hence, tr [TUxVy] = 0
exactly when ω−xy = −1. The latter condition is equiva-
lent to 2xy ≡ d mod 2d. We conclude that the informa-
tional completeness of CT is equivalent to the fact that
the equation 2x = d mod 2d has no solution x ∈ Zd, and
this holds if and only if d is odd.

In Proposition 9 the crucial assumption is that γ =
γmax(λ). This guarantees that Aλ and Bγ have a unique
joint observable. If we have 0 < γ < γmax(λ), then Aλ
and Bγ have infinitely many joint observables. In this
case it is always possible to choose an informationally
complete joint observable, as we prove in the following.

Proposition 10. Suppose Aλ and Bγ are two observables
with λ /∈ {0, 1} and 0 < γ < γmax(λ). Then they have an
informationally complete covariant joint observable.

Proof. Let (γ0, λ0) be the intersection of the half line
R+(γ, λ) with the boundary of the domain (22) in R2

+,
and let t0 > 1 such that t0(γ, λ) = (γ0, λ0). Let
τ = 1 − 1/t0 ∈ (0, 1). We treat separately the cases
of odd and even d.

1) Suppose that d = 2n is even. For all k ∈ Zd, we
denote

Xk :=
i

2
(|ϕ−k〉〈ϕ0| − |ϕ0〉〈ϕ−k|+ |ϕk〉〈ϕ0| − |ϕ0〉〈ϕk|) .

The linear maps Xk are selfadjoint trace zero operators
for every k, and it is easy to check that∑
x∈Zd

UxVyXkV
∗
y U
∗
x = 0 ,

∑
y∈Zd

UxVyXkV
∗
y U
∗
x = 0 .

We introduce the selfadjoint operators

X =
∑
k∈Zd

Xk ,

and, for κ > 0,

Sκ =
1

d
1 + κX .

If κ < 1/(d ‖X‖), then Sκ ∈ S(H). Moreover, the as-
sociated covariant phase space observable CSκ has trivial
marginals A0 and B0. A straightforward calculation gives

tr [SκUxVy] = δx,0δy,0 + iκ(ω−xy − 1) .

The covariant phase space observable CTκ associated to
the state Tκ = (1 − τ)|χλ0

〉〈χλ0
| + τSκ, with χλ0

=
αλ0

ϕ0 + βλ0
ψ0, has margins Aλ and Bγ . Moreover,

tr [TκUxVy] = (1− τ)
(
α2
λ0
δx,0 + β2

λ0
δy,0
)

+ τδx,0δy,0

+ (1− τ)
αλ0βλ0√

d
(ω−xy + 1) + iκτ(ω−xy − 1) .

Let

ε = min
{k∈Zd , k 6=n}

|ωk + 1| , δ = max
{k∈Zd}

|ωk + 1| .

For κ < min
{
αλ0βλ0(1− τ)ε/(τδ

√
d) , 1/(d ‖X‖)

}
, the

right hand side of (24) is nonzero for all x, y ∈ Zd, which
proves informational completeness of CTκ by the criterion
(23).

2) Suppose that d is odd. Then, for

T = (1− τ)|χλ0〉〈χλ0 |+ (τ/d)1 ,

the associated covariant phase space observable CT has
margins Aλ and Bγ , and

tr [TUxVy] = (1− τ)
[
α2
λ0
δx,0 + β2

λ0
δy,0
]

+ (1− τ)

[
αλ0βλ0√

d

(
ω−xy + 1

)]
+ τδx,0δy,0 ,

which is nonzero for all x, y ∈ Zd. The informational
completeness of CT then follows from the criterion (23).

The two trivial cases λ = 0 or γ = 0 are not very
interesting, but for completeness we make the following
observation.

Proposition 11. Suppose Aλ and Bγ are two observables
with λ = 0 or γ = 0. Then they have no informationally
complete joint observable.

Proof. We consider only the case λ = 0, the case γ = 0
being similar. Suppose that C is a joint observable of
A0 = µ1 and Bλ. We have

∑
k∈Zd

C(j, k) = A0(j) =
1

d
1 ∀j ∈ Zd ,

hence, the linear span of the set {C(j, k) | j, k ∈ Zd}
is the same as the linear span of the set
{1 , C(j, k) | j ∈ Zd , k ∈ Zd \ {0}} and then, for d ≥ 2,

dim span {C(j, k) | j, k ∈ Zd} ≤ 1 + d(d− 1) < d2 .

Thus, C is not informationally complete.

VII. SEQUENTIAL IMPLEMENTATION OF
JOINT OBSERVABLES

In this section we discuss the sequential implementa-
tion of joint observables of AΛ and BΓ in the light of the
recent results obtained in [12] and [38]. For illustrative
purposes, we point out that two naive methods do not
work.
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A. Nondisturbing measurement

Suppose that AΛ and BΓ are jointly measurable, i.e.,
they satisfy the condition stated in Proposition 2. The
most uncomplicated way to realize their joint measure-
ment would be to perform an AΛ-measurement without
disturbing the subsequent BΓ-measurement. In terms
of instruments, this would mean that we choose an AΛ-
compatible instrument I such that∑

j

I∗j (BΓ(k)) = BΓ(k)

for all k. However, this type of measurement is typically
not possible since a quantum measurement necessarily
disturbs the input state.

Let us first notice that Aλ and Bγ commute if and only
if λγ = 0, meaning that one of them is a trivial observ-
able. Generally, a non-disturbing measurement can be
possible even if two observables do not commute. But
applying Proposition 3 from [38] we see that this possi-
bility is excluded whenever Bγ is informationally equiv-
alent with B in the sense that the linear spans of the
sets {Bγ(k) : k ∈ Zd} and {B(k) : k ∈ Zd} are equal.
This property is satisfied by any Bγ with γ 6= 0. There-
fore, whenever both observables are nontrivial, then Aλ-
measurement disturbs the subsequent Bγ-measurement
and the resulting observable is not a joint measurement
of Aλ and Bγ .

B. Measuring only part of the ensemble

Suppose we have a measurement setup for A and that
the corresponding instrument is I. We can implement an
unsharp observable Aλ by performing the A-measurement
in a randomly chosen λ-part of the ensemble and doing
nothing for the rest (1−λ)-part. The corresponding Aλ-
compatible instrument I ′ is then

I ′j(%) = λIj(%) +
1− λ
d

% . (24)

This is clearly a very direct way to decrease the distur-
bance that an A-measurement would cause. By measur-
ing the observable B after the first measurement, one
could expect to have a useful joint measurement of Aλ
and some approximate version of B. However, this type
of method does not yield an informationally complete
joint measurement.

The observable A consists of rank-1 operators, and any
A-compatible instrument I is of the form

Ij(%) = tr [%A(j)] ξj

for some set of states {ξj : j ∈ Zd} [38]. If we insert this
form into (24), we see that a sequential measurement
consisting of I ′ followed by a B-measurement leads to
the joint observable

C(j, k) = λ tr [ξjB(k)]A(j) +
1− λ
d

B(k) , j, k ∈ Zd .

The linear span of the set {C(j, k) : j, k ∈ Zd} is
contained in the linear span of the union {A(j) : j ∈
Zd}∪ {B(k) : k ∈ Zd}. The latter is strictly smaller than
L(H), hence C is not informationally complete. We also
see that this kind of approach cannot give more infor-
mation than separate measurements of A and B would
give.

C. General joint observables

We recall from [38] that every joint observable of AΛ

and BΓ can be implemented as a sequential measurement
of AΛ followed by a measurement of B. Namely, suppose
that C is a joint observable of AΛ and BΓ. We define an
instrument I by

Ij(%) =
∑
k∈Zd

tr [%C(j, k)]B(k) . (25)

This is an AΛ-compatible instrument, and from
B(k)B(k′) = δk,k′B(k) it follows that

tr [B(k)Ij(%)] = tr [%C(j, k)] .

Hence, C(j, k) = I∗j (B(k)), and we conclude that C is
implemented as a sequential measurement of AΛ followed
by a measurement of B, as claimed.

D. Covariant phase space observables

The instrument defined in (25) may look quite artificial
and before we know the structure of C, the formula does
not give us any hint on the structure of I. In contrast,
every covariant phase space observable can implemented
as sequential measurement of AΛ and B in a very specific
form.

As explained in [12], every covariant AΛ-compatible in-
strument gives rise to a covariant phase space observable.
Covariance of an instrument I here means that

UxVyIj(V ∗y U∗x%UxVy)V ∗y U
∗
x = Ij+x(%) (26)

for all x, y, j ∈ Zd and % ∈ S(H). It is straightforward to
verify that the joint observable C(j, k) := I∗j (B(k)) is a
covariant phase space observable.

We demonstrate this method by choosing the Aλ-
compatible Lüders instrument IL, defined as

ILj (%) =
√
Aλ(j)%

√
Aλ(j) .

It is straightforward to see that IL satisfies (26). The
covariant joint observable is then

C(j, k) =
√
Aλ(j)B(k)

√
Aλ(j) ,

and its associated state is

T = dC(0, 0) = d
√

Aλ(0)|ψ0〉〈ψ0|
√
Aλ(0) .
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Since √
Aλ(j) =

βλ√
d
1 + αλ|ϕj〉〈ϕj |

and √
Aλ(0)ψ0 =

1√
d

(βλψ0 + αλϕ0) =
1√
d
χλ ,

we see that T = |χλ〉〈χλ|, hence by Proposition 5 the
marginal Bγ is such that γ = γmax(λ).

In conclusion, this type of sequential measurement of
Aλ and B is effectively a joint measurement of Aλ and Bγ
with minimal unsharpnesses.

VIII. DISCUSSION

In our investigation we have concentrated on canoni-
cally conjugated pairs of observables, i.e., the orthonor-
mal bases {ϕj}j∈Zd and {ψk}k∈Zd have been assumed to
be Fourier connected with respect to the Fourier trans-
form of the cyclic group Zd; see (4). Equivalently, we
have assumed that the two bases satisfy 〈ϕj |ψk 〉 =

(1/
√
d)ωjk for all j, k ∈ Zd. As a consequence the ob-

servables A and B, both defined on ΩA = ΩB = Zd as
A(j) = |ϕj〉〈ϕj | and B(k) = |ψk〉〈ψk|, satisfy the covari-
ance and invariance conditions (5) – (6), which turn out
to be very useful in our calculations.

Our approach covers more cases than it may seem at
the first sight. Namely, we recall that two orthonor-
mal bases {ϕj}j and {ϕ′j}j define the same observable
iff there are complex numbers αj with |αj | = 1 such that
ϕ′j = αjϕj . To illustrate an application of this many-to-
one correspondence, suppose that the dimension d is an
odd prime number, say d = p (the generalization to the
case d = pr, with r positive integer, is straightforward).
In this case it is easy to give a full set of p + 1 MUBs
[8]; fix an orthonormal basis {ϕj}j∈Zp and define p or-
thonormal bases {ψak}k∈Zp , each one labeled by a ∈ Zp,
by

ψak =
1
√
p

∑
x∈Zp

ωax
2+kxϕx .

The fact that these are MUBs follows from the Gauss
summation formula

1
√
p

∑
x∈Zp

ωax
2

=

(
a

p

)
×
{

1 if p ∈ 4N + 1
i if p ∈ 4N− 1

, (27)

where
(
a
p

)
is the Legendre symbol (see e.g. [39]).

It is immediate to see that the orthonormal basis
{ψak}k∈Zp is Fourier connected to the orthonormal basis
{ϕ′j}j∈Zp given by

ϕ′j = ωaj
2

ϕj ∀j ,

i.e.,
〈
ϕ′j |ψak

〉
= (1/

√
p)ωjk. Moreover, for a, b ∈ Zp \

{0}, with a 6= b, define the rescaled orthonormal bases
{ψa′j }j∈Zp and {ψb′k }k∈Zp , given by

ψa′j = ω−4−1j2(b−a)−1

ψaj

ψb′k = ωk
2(b−a)

(
b− a
p

)
ψb2k(b−a) ×

{
1 if p ∈ 4N + 1
−i if p ∈ 4N− 1

(Here ωx
−1

means ‘ω to the inverse of x in the field Zp’
and should not be confused with e

2πi
px ). Then, an easy

computation using the Gauss formula (27) yelds

〈
ψb′h |ψa′k

〉
=

1
√
p
ω−hk ,

which shows that also {ψa′j }j∈Zp and {ψb′k }k∈Zp are
Fourier connected.

More generally, one can start from a complementary
pair of observables, which means that {ϕj}j and {ψk}k
are mutually unbiased but not necessarily Fourier con-
nected. Obviously, we can still ask similar questions on
joint measurements. Especially, it would be interesting
to know whether Proposition 6 is still valid under this
more general setting. In other words, the question is
whether all complementary pairs are essentially similar
with respect to joint measurability

Even if we leave this question open in the general
case, we can see that our approach generalizes to a
larger domain than we have explicitly used it for. In-
deed, all our results are still valid (and with only very
slight modifications in some of the proofs) if we con-
sider Fourier transform with respect to a generic abelian
group G with order d, i.e., G = Zd1 × . . . × Zdk for
d1 + · · ·+dn = d and di = prii , with pi prime and ri inte-
ger for all i = 1, . . . , n. In this case, H = H1 ⊗ . . .⊗Hn
with dimHi = di, a basis {ϕij}j∈Zdi is chosen in each
factor Hilbert space Hi, and the G-Fourier transform
of H is just the tensor product F = F1 ⊗ . . . ⊗ Fn,
where each Fi is the Zdi-Fourier transform in Hi with
respect to the basis {ϕij}j∈Zdi , as defined in (4). The

mutually unbiased bases {ϕj}j∈Zd and {ψk}k∈Zd are
replaced by the bases {ϕj1 ,..., jn}j1∈Zd1 ,..., jn∈Zdn and

{ψk1 ,..., kn}k1∈Zd1 ,..., kn∈Zdn of H, given by

ϕj1 ,..., jn = ϕ1
j1 ⊗ . . .⊗ ϕ

n
jn

ψk1 ,..., kn = F∗(ϕj1 ,...jn) = ψ1
k1 ⊗ . . .⊗ ψ

n
kn .

Their associated complementary observables A and B are
now both defined on G, and given by A(j1 , . . . , jn) =
A(j1) ⊗ . . . ⊗ A(jn) and B(k1 , . . . , kn) = B(k1) ⊗ . . . ⊗
B(kn). They still satisfy the analogues of the covariance
and invariance conditions (5) – (6), if the representations
U and V are replaced by suitable tensor products.

To demonstrate that we can now handle larger class
of complementary observables, let H = C4, choose an
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orthonormal basis {ϕj}j∈{0,...,3} of C4 and set

ψ0 = 1
2 (ϕ0 + ϕ1 + ϕ2 + ϕ3) ,

ψ1 = 1
2 (ϕ0 − ϕ1 + ϕ2 − ϕ3) ,

ψ2 = 1
2 (ϕ0 + ϕ1 − ϕ2 − ϕ3) ,

ψ3 = 1
2 (ϕ0 − ϕ1 − ϕ2 + ϕ3) .

Then the observables A(j) = |ϕj〉〈ϕj | and B(k) =
|ψk〉〈ψk| are complementary. They are equally de-
fined by any two orthonormal bases {αjϕj}j∈{0,...,3} and
{βkψk}k∈{0,...,3}, where αj , βk are complex numbers with
unit modulus. If some pair of these orthonormal bases
were connected by the Z4-Fourier transform, then the
matrix of their scalar products [αjβk 〈ϕj |ψk 〉] should
be equal to the Z4-Fourier matrix

1

2

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


or to a matrix obtained from the above by some permu-
tations of its rows and columns. It is straightforward to
verify that the deriving set of equations for αj and βk
has no solution. However, the matrix of scalar products
[〈ϕj |ψk 〉] is just the Fourier matrix of G = Z2×Z2, i.e.,

1

2

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

In other words, the two orthonormal bases are connected
by the Fourier transform of Z2 × Z2.

Appendix: criterion for informational completeness

Theorem 1. Let CT be a covariant phase space observ-
able. Then CT is informationally complete if and only
if

tr [TUxVy] 6= 0 ∀x, y ∈ Zd . (28)

Our proof of the above theorem relies on the follow-
ing well known reconstruction formula for the Weyl-
Heisenberg group, which is just a special case of orthogo-
nality relations for irreducible representations of compact
groups.

Proposition 12. The following reconstruction formula
holds for every A ∈ L(H):

1

d

∑
x,y∈Zd

tr
[
AV ∗y U

∗
x

]
UxVy = A . (29)

Proof. For all h, k ∈ Zd, we have 〈ϕk |UxVyϕh 〉 =
ωhy δh+x,k. Thus, for all h, k,m, n ∈ Zd, we obtain

〈
ϕk |

 ∑
x,y∈Zd

tr
[
|ϕm〉〈ϕn|V ∗y U∗x

]
UxVy

ϕh〉 =

=
∑

x,y∈Zd

〈UxVyϕn |ϕm 〉 〈ϕk |UxVyϕh 〉

=
∑

x,y∈Zd

ω(h−n)y δh+x,k δn+x,m

=
∑
y∈Zd

ω(h−n)y δh−n,k−m

= d δh,n δh−n,k−m = d δh,n δk,m

= d 〈ϕk |ϕm 〉 〈ϕn |ϕh 〉 ,

which proves (29) for A = |ϕm〉〈ϕn|. Since every A ∈
L(H) is a linear combination of this type of operators,
the claim follows.

Proof of Theorem 1. Let `(Z2
d) be the linear space of

complex functions on Z2
d ≡ Zd × Zd. We recall that, by

Proposition 5.1 in [40], CT is informationally complete if
and only if the linear map

VT : L(H)→ `(Z2
d) , [VT (A)](x, y) = tr [CT (x, y)A]

is injective. Since the dimensions of L(H) and `(Z2
d) are

both d2, we conclude that CT is informationally complete
if and only if VT is an isomorphism.

We define the following three linear maps

Φ : L(H)→ H⊗H ,

Φ(A) =
1

d

∑
x,y∈Zd

tr
[
AV ∗y U

∗
x

]
ϕx ⊗ ϕy ,

MT : H⊗H → H⊗H ,
MT (ϕx ⊗ ϕy) = tr [TUxVy] ϕx ⊗ ϕy ,
R : H⊗H → `(Z2

d) ,

Rφ(x, y) = 〈ϕy ⊗ ϕx |φ 〉 .

The map R is clearly a linear isomorphism, Φ is a linear
isomorphism by Proposition 12, and MT is a linear iso-
morphism if and only if (28) holds. We now evaluate the
composition map R(F ⊗F∗)MTΦ. For all A ∈ L(H), we
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obtain

[R(F ⊗ F∗)MTΦ(A)](h, k) =

=
1

d

∑
x,y∈Zd

tr [TUxVy] tr
[
AV ∗y U

∗
x

]
·

· 〈ϕk ⊗ ϕh | (F ⊗ F∗)(ϕx ⊗ ϕy) 〉

=
1

d2

∑
x,y∈Zd

tr [TUxVy] tr
[
AV ∗y U

∗
x

]
ωyh−xk

=
1

d2

∑
x′,y′∈Zd

ωy
′h−x′ktr [TU∗hUx′V

∗
k Vy′ ] tr

[
AVkV

∗
y′UhU

∗
x′
]

=
1

d2

∑
x′,y′∈Zd

tr [TU∗hV
∗
k Ux′Vy′ ] tr

[
AVkUhV

∗
y′U
∗
x′
]

=
1

d
tr [TU∗hV

∗
k AVkUh]

= [VT (A)](h, k)

(in the third equality we set x = x′ − h, y = y′ − k, in
the fourth we used the commutation relation for U and
V , and in the fifth we applied the reconstruction formula
(29)). As the map R(F ⊗F∗)MTΦ is an isomorphism if
and only if (28) holds, the same is true for the map VT ,
and the theorem follows.
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sities in discrete phase spaces: Q function of a state in a
finite-dimensional Hilbert space. Phys. Rev. A, 52:2419–
2428, 1995.

[5] A. Vourdas. Phase space methods for finite quantum
systems. Rep. Math. Phys., 40:367–371, 1997.
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