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Generalized fixation invariant nuclei detection
through domain adaptation based deep learning
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Abstract—Nucleus detection is a fundamental task in histologi-
cal image analysis and an important tool for many follow up anal-
yses. It is known that sample preparation and scanning procedure
of histological slides introduce a great amount of variability
to the histological images and poses challenges for automated
nucleus detection. Here, we studied the effect of histopathological
sample fixation on the accuracy of a deep learning based nuclei
detection model trained with hematoxylin and eosin stained
images. We experimented with training data that includes three
methods of fixation; PAXgene, formalin and frozen, and studied
the detection accuracy results of various convolutional neural
networks. Our results indicate that the variability introduced
during sample preparation affects the generalization of a model
and should be considered when building accurate and robust
nuclei detection algorithms. Our dataset includes over 67 000
annotated nuclei locations from 16 patients and three different
sample fixation types. The dataset provides excellent basis for
building an accurate and robust nuclei detection model, and
combined with unsupervised domain adaptation, the workflow
allows generalization to images from unseen domains, including
different tissues and images from different labs.

Index Terms—Deep learning, nuclei detection, digital pathol-
ogy, domain adaptation, tissue fixation, frozen section, formalin-
fixed, PAXgene-fixed.

I. INTRODUCTION

H ISTOPATHOLOGICAL examination is an important
step in diagnosis of many diseases. Examination usually

includes analysis of nuclei morphology, thus, nucleus detection
is a fundamental step for many follow up analyses, such as
phenotyping on a single-cell level [1], or cancer grading [2].
Machine learning based image analysis provides an efficient,
quantitative, and objective way to perform histopathological
examination and nuclei detection in a fully automated manner
[3]. Nevertheless, building a robust and generalizable nuclei
detection model is a challenging task due to the high amount
of variability present in histological images. This variability is
caused by the underlying biological variation, such as variation
in nuclei shape, size, and texture of different tissue types
and also by the technical variation introduced during the
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tissue preparation, such as in fixation process, and scanning
procedure [4].

Preparation of tissue depends largely on the type of analysis
the tissue is intended for, and for tissue fixation there exists
alternatives which have effect on the appearance of tissue
components, such as nuclei [5]. While freezing tissue typically
provides excellent preservation of biomolecules, freezing also
disrupts the structure of the tissue and is therefore not used
for routine morphologic analysis. Tissue fixation with formalin
is the standard in surgical pathology laboratories due to its
low cost and excellent preservation of tissue morphology.
Formalin preserves tissue structure by forming crosslinks
between molecules [6] and is routinely used for almost all
tissue types. PAXgene is an alcohol-based fixative that, in
contrast to formalin, simultaneously preserves both tissue
morphology and biomolecule integrity. PAXgene has been
shown to be suitable for many tissues [7], although artefacts
such as increased nuclear staining and tissue shrinkage have
been reported. PAXgene-fixed tissue also stains more avidly
with eosin, giving H&E (hematoxylin & eosin) stained sec-
tions a more intense pink hue compared to formalin fixed
specimens. In our earlier study, we studied the feasibility of
PAXgene fixation for molecular and diagnostic studies [5], but
the fixation effect on modern deep learning based analytics
remains unknown.

Deep learning methods, particularly convolutional networks
combined with transfer learning [9], [10], have an outstanding
ability to learn task specific feature representations and have
rapidly become the main approach for microscopy image
analysis tasks, including nuclei detection [11], [12]. However,
most of the existing methods have been optimised for a specific
problem domain using a narrow dataset and fail to generalize
to new domains, such as images from different labs or different
tissues due to the high variability present in the histological
images. A lot of work has been done in order to address
the generalization challenge using techniques such as staining
normalization [13]–[15], extensive data augmentation [16],
[17], or utilization of datasets containing high variability such
as multi-tissue datasets [8]. Although these approaches have
achieved prominent results, they have still left room for further
research, and some variability sources are yet to be studied,
such as different tissue preparation techniques. To eventually
generalize extensively to diverse patient populations and real
world clinical environments, the effects of wider range of
variability sources need to be covered.

In digital pathology, labeled training data is not largely
available due to the time-consuming manual annotation pro-
cess performed by an expert. Nuclei detection as an annotation
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Fig. 1. The materials used in this study include prostate tissue (PT) dataset [5],
a holdout test set (5-tissue) and a publicly available MoNuSeg [8] dataset. The
PT dataset shown in panel A was collected from radical prostatectomy prostate
tissue samples from 16 men, and fixed using three different tissue preparation
methods, fresh frozen, formalin-fixed paraffin-embedded, and PAXgene-fixed
paraffin-embedded. The 5-tissue validation dataset shown in panel B consists
of images collected from five different patients and present 5 different tissue
types.

task is particularly laborious due to the large amount of
target objects. Consequently, in digital pathology, collecting
a vast amount of labeled training data adds to the challenges
posed by the heterogeneous nature of histological image data.
However, in order to train a deep convolutional neural network
in a supervised manner, labeled training data is an absolute
requirement. Therefore, in order to build an accurate and
robust nuclei detection algorithm that can generalize from one
problem domain to another, alternative data labeling methods
are needed.

Domain adaptation provides tools for overcoming the re-
quirement of labeled data. In domain adaptation, the repre-
sentations learned from labeled source data are utilized in a
classification problem in an unlabeled target domain [18]. As
the goal in domain adaptation is to enable domain shift from
the problem domain of the original training data into a new
domain from which no labeled data for re-training exists, it is
a potential solution for generalizing histopathological image
analysis methods from one tissue domain to another. Domain
adaptation can be utilised in histopathological classification
problems to address the requirement of labeled data in unsu-
pervised [19], [20] or weakly supervised [21] manner. We have
also shown in our previous studies how domain adaptation can
be successfully utilised in model generalization to unseen cell
lines from brightfield images in an unsupervised manner [22].

Deep learning methods have shown great success in many
machine vision tasks, however their lack of transparency has
attracted an increasing amount of attention and research [23]–
[25]. Especially in medical domain applications, interpretabil-
ity and transparency are seen as a necessity, since these can
provide insights into the functioning of a deep learning model

and can be used to verify and comprehend the predictions
by a human expert. One aspect particularly of interest in
classifier interpretability is the contribution of patterns in
specific spatial locations in input data to classifier decision or
outcome. For deep neural networks, methods such as Layer-
wise Relevance Propagation (LRP) [26] have recently enabled
such analysis, and their availability as tools for explainable
AI [27] help giving insight in the classifier decision process.
Interpretability tools can also enable verifying that a model
learns relevant and similar information from training data even
with subtle differences present in the data, caused for example
by differences in staining or fixation.

In this study, we trained a convolutional neural network
baseline model for nuclei detection using supervised transfer
learning. As the second step of the workflow, we applied
unsupervised domain adaptation to allow generalization to
images from unseen domains, including different tissues and
images from different laboratories, without the need for la-
beled data. Our main contributions are, 1) to study the effect
of sample fixation on the accuracy of nuclei detection by
using hematoxylin and eosin (H&E) stained training images
prepared with three fixation methods; PAXgene, formalin and
frozen, and 2) to provide the presented extensive multi-fixation
dataset with manually obtained annotations for cell locations
that allows further method development. The code and data are
available at https://github.com/BioimageInformaticsTampere/
NucleiDetection. The implemented workflow allows generali-
sation and adaptation to external unlabeled datasets in the field
of digital pathology utilising unsupervised domain adaptation
based on pseudo-labels and hard positive mining.

II. MATERIALS AND METHODS

A. Data

The materials used in this study included prostate tissue
(PT) dataset [5], a holdout test set (5-tissue), and a publicly
available Multi-Organ Nuclei Segmentation (MoNuSeg) [8]
dataset. Examples from the PT dataset and 5-tissue test set
are shown in the Figure 1. In addition, number of annotated
nuclei, number of different tissue types and number of patients
in each dataset are shown in the Table I. The following sections
will describe the used materials in more detail.

Dataset N patients N tissue types N annotated
nuclei

PT 16 1 67070
5-tissue 5 5 9011
MoNuSeg 30 7 16966

TABLE I
NUMBER OF ANNOTATED NUCLEI, NUMBER OF DIFFERENT TISSUE TYPES

AND NUMBER OF PATIENTS IN EACH DATASET.

Prostate tissue (PT) dataset

The image data was collected from radical prostatectomy
prostate tissue samples from 16 men. The samples were col-
lected and studied under Tampere University Hospital Ethical
Committee Approval R03203. From each patient, three cores

https://github.com/BioimageInformaticsTampere/NucleiDetection
https://github.com/BioimageInformaticsTampere/NucleiDetection
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Fig. 2. The nuclei detection workflow. Upper half presents the baseline model training step which is followed by an option to utilise unsupervised domain
adaptation to detect nuclei from an external dataset (new domain) without annotations. The convolutional neural network consists of four convolutional base
layers from a pre-trained VGG-16 network appended with four additional convolutional layers.

were collected from posterior side of the prostate. Each of
the three cores was fixed using one of three different tissue
preparation methods: fresh frozen, formalin-fixed paraffin-
embedded, and PAXgene-fixed paraffin-embedded. The tis-
sue sections were stained with H&E and scanned with a
Hamamatsu Photonics Nano Zoomer XR C12000 automated
scanner, using pixel resolution 0.23m. More detailed data
acquisition is presented in a study by Högnäs et al. [5].
From every H&E stained core whole-slide image (WSI) one
550x550 µm image was randomly selected and nuclei were
manually annotated, resulting in a total of 67 070 nuclei in
48 images. Compared to the original study where 50 images
were used, two images were excluded in order to balance the
number of nuclei in each dataset with respect to number of

patients and fixations.

Manual annotation was carried out by an experienced
histology expert using the Cell Counter plugin in ImageJ
software [28] by visually inspecting the images and by man-
ually clicking coordinates of every nucleus in the image.
The coordinates for each nucleus in were saved in xml
files, one file per image. Further, we validated the accuracy
of the manual annotation for a randomly chosen image by
reproducing coordinate markings by two independent persons,
yielding very high agreement both in terms of number of
nuclei and numerical accuracy (F-score 0.9 for both annotators
with the ground truth). The detailed validation results as well
as visual representation of the validation image are provided
as Supplementary Figure 1 and Supplementary Table I. This
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dataset, along with the annotations, is available at: https:
//github.com/BioimageInformaticsTampere/NucleiDetection/

5-tissue dataset

The 5-tissue dataset included formalin-fixed paraffin-
embedded H&E stained metastatic tissue images from 5 differ-
ent tissue types. The tissue types included periurethral tissue,
bone tissue from rib, axillary lymphatic tissue, adrenal gland
tissue, and pelvic lymphatic tissue. The samples were collected
from 5 patients and from each WSI a 500x500 µm image was
randomly selected. All nuclei were annotated from the images
using Multi-point Tool in ImageJ software [28] in a similar,
fully manual fashion as described for the prostate dataset. In
total, the test set included 5 images and 9011 annotated nuclei
coordinates.

Multi-organ nuclei dataset

Publicly available multi-organ dataset (MoNuSeg) [8] in-
cluded 30 images captured from 30 different H&E stained
WSIs. These images were collected from The Cancer Genome
Atlas and originally prepared in 18 different hospitals. The
manually annotated nuclei represent a diversity of nuclear
appearances from several patients, disease states, and organs.
The dataset consisted of seven different tissue types, including
breast, liver, kidney, prostate, bladder, colon, and stomach
tissue. In total, the dataset included 16 966 nuclei mask
annotations. As the images are publicly available from https://
monuseg.grand-challenge.org, this dataset enables benchmark-
ing and provides further insight about generalization of the
methods.

B. Nuclei detection model

A convolutional neural network model was built to detect
cell nuclei locations from histopathological images. To achieve
better detection accuracy and to reduce the computational costs
of optimisation, transfer learning approach was used. Transfer
learning allows the utilisation of a pre-trained network that is
already optimised to classify images from some other domain
[9]. The lower level features of a pre-trained network tend to be
more generic and the later layer features become more specific
to the details of the original classification task in the training
data domain. Therefore, we utilised four base layers from
VGG-16 architecture pre-trained on the ImageNet dataset [29].
These base layer weights were fixed during training, and four
additional convolutional layers were added on top of them.
Each convolutional layer was followed by Rectified Linear
Unit (ReLu) activation and every two convolutional layers
were followed by dropout in order to avoid overfitting of the
model [30]. Sigmoid activation function was used at the model
output layer to provide a nuclei location confidence map.
The nuclei detection model was implemented using Python
programming language and Keras [31] module with Tensor-
flow [32] backend. The model workflow and architecture are
visualized in the Figure 2.

Our choice of the base deep neural network architecture was
motivated by the relatively simple adaptability of the VGG-
16 architecture, which can be done simply by adding problem

domain spedific layers into a generic VGG-16 network. We
have successfully used similar transfer learning strategy of
extending the generic VGG-16 network into a specific problem
domain in histopathology earlier in a study where image-
to-image transform from immunohistochemichal staining to
cytokeratin staning mask was done using VGG-16 based
architecture [33]. In the current study, the use of a generic, well
tested architecture underlines the applicability of the proposed
domain adaptation approach. The use of other, more developed
implementations or different architectures, is possible in a
similar manner, but optimizing their accuracy for the nuclei
detection task is out of the scope of this study.

Model training specifications

A convolutional neural network (CNN) consists of a se-
quence of layers that maps an input vector x to an output
vector y.

y = f(x,w), (1)

where w is the weight and bias vector that define the network
layers. During the training phase, the network variables are
estimated by solving an optimization problem. In supervised
learning, where labeled training data is a prerequisite, a set
of input vectors xn have corresponding target vectors tn
(n = 1, .., N ). In which case, the optimization problem can
be defined as

argmin
w

1

N

N∑
i=1

L(f(xi,w), ti) (2)

where, L is a task-fitting loss function. Here, we used binary
crossentropy as a loss function.

L(y, t) = − 1

N

N∑
i=1

(tilog(yi) + (1− ti)log(1− yi)) (3)

The optimization was performed by using an Adam opti-
mizer [34] which is a stochastic gradient descent method. For
Adam algorithm, learning rate was initialized to 0.0001, the
exponential decay rates for the moment estimates (β1, β2)
were set to 0.9 and 0.999, respectively, and the fuzz factor
was set to 1× 10−8 to prevent null division.

A set of model hyperparameters was optimised by using
grid-search to maximize the nuclei detection accuracy in the
training phase using pixel size of 0.5 µm. Test data was never
used in hyperparameter optimization. These hyperparameters
included number of epochs (nepochs = 2), learning rate (lr =
0.0001), batch size (bs = 16) and dropout for regularization
(drop−rate = 0.5). Also optimal input image size (64x64
pixels) and nuclei location mask structuring element shape
and size (round, R = 4) were searched to maximize the nuclei
detection accuracy on the PT dataset.

In order to reduce variation caused by the different staining
procedures and to focus on the morphological differences in
the tissue caused by the different fixations, a data augmentation
step was included. The step included color augmentation on
HSV space and adding Gaussian noise (µ = 0, σ = 0.01).

https://github.com/BioimageInformaticsTampere/NucleiDetection/
https://github.com/BioimageInformaticsTampere/NucleiDetection/
https://monuseg.grand-challenge.org
https://monuseg.grand-challenge.org
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Fig. 3. Examples (A-D) of predicted nuclei locations using three different values for radius R (R1-R3). The ground truth annotation is marked with a light
blue circular marker and the predictions are marked with a star shaped marker. The color coding for true positive (TP), false negative (FN) and false positive
(FP) cases are shown in the upper left subfigure. Light green circle around a predicted nucleus (magenta star) visualises the different R values; R1=6 , R2=10,
R3=14. In addition, a light line is drawn between each ground truth coordinate annotation and the corresponding true positive prediction. The problems that
originate from having coordinate annotations as ground truth detections and defining true predictions are also visible in the figure, such as having a seemingly
conflicting annotations with FN and FP in a single nucleus (column E). These problems are addressed in the discussion chapter.

Color augmentation was implemented by first converting the
RGB image into HSV space and then adding a constant value
the hue channel. The constant value was randomly drawn
from normal distribution with mean of µ = 0.1 and standard
deviation of σ = 0.01. After the hue shift, the sample image
was converted back to RGB space. Every third input image
block was left in the original form and the other samples were
augmented using either HSV shift or by adding noise.

Prediction
The trained nuclei detection model can be used to predict the

nuclei locations of an input image with pixel size of 0.5 µm.
The model takes an arbitrary sized RGB image as an input and
predicts a confidence map as an output, where values close to
1 denote a high probability for a nucleus location and values
close to 0 indicate a background pixel in the corresponding
location of the input image.

The confidence map is post-processed in order to find single
pixel locations for each detected nucleus. The confidence map
is first converted into a binary image using threshold value of
0.5. Different objects in the binary image are labeled and the
connectivity of the objects is defined by a centrosymmetric
3x3 structuring element. Finally, the center of mass from each
object is selected as the coordinate for a detected nucleus.

Ground truth generation from annotations

The ground truth nuclei location masks were generated from
nucleus coordinates annotated manually by an expert. The
coordinates were read from a csv file and first scaled to match
the operating resolution of the model. A binary mask image
was generated with a single pixel representing the coordinates
of one annotated nucleus. This mask image was then dilated
using a circular structuring element with radius R=4 in order
to expand each nuclei location area. This process corresponds
to adding computationally a small level of uncertainty in the
annotation coordinates, as the manual marking is practically
impossible to be done on a pixel level accuracy for thousands
of objects. The value of R was defined experimentally to be
small enough such that the whole ground truth marker would
remain inside the nuclei and that no overlap between ground
truth objects occur. Examples of ground truth nuclei location
masks can be seen from the workflow Figure 2.

Unsupervised domain adaptation using pseudo-labels

The ground truth nuclei location masks for an external
dataset without any annotations can be generated by using the
trained baseline model. Any dataset can be run through the
trained baseline model and from the predicted nuclei location
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confidence maps a set of positive examples can be extracted
based on a thresholding rule. These hard positive examples
can be then used as new training examples to adapt the nuclei
detection model to a new data domain.

The thresholding rule includes two different thresholds;
higher for determining hard positives, which are confident
detections, and lower for detecting other nuclei around the
hard positives. To generate new training samples, an image
block of the size 64× 64 pixels is extracted around each hard
positive example. In order to generate the ground truth nucleus
location mask for the whole training sample block and not to
miss any nuclei within the image, the second threshold (the
lower one) is applied. The detection controlled by the two
thresholds is an elemental part of the pseudo-label domain
adaptation step. Thus, we examined the effect of the threshold
values on detection accuracy in a grid search (Supplementary
Table II), and chose the threshold values (0.8 higher, 0.5 lower)
based on this experiment. From the generated binary image,
the nuclei locations are generated similarly as in the prediction
step and the final mask image is generated similarly as in the
ground truth generation from the annotation step as explained
in previous paragraphs.

R mean
F1-score

mean
precision

mean recall

6 0,800 0,823 0,780
8 0,861 0,885 0,839
10 0,879 0,904 0,857
12 0,886 0,911 0,864
14 0,891 0,917 0,869
16 0,895 0,921 0,873
18 0,898 0,924 0,876
20 0,902 0,928 0,880
22 0,905 0,931 0,883

TABLE II
THE ACCURACY METRICS FOR PT DATASET USING DIFFERENT VALUE FOR

RADIUS R. THE R SPECIFIES A DISTANCE BETWEEN A GROUND TRUTH
COORDINATE AND A PREDICTED NUCLEUS LOCATION THAT IS

CONSIDERED AS A TRUE POSITIVE.

C. Evaluation

Accuracy metrics

For numerical evaluation of the nuclei detection model
accuracy, F1-score was used that rely on precision and recall.
Precision measures the fraction of correctly classified positive
instances among all retrieved positive instances. Precision is
also referred to as the positive predictive value and it can be
defined using true positive (TP) and false positive (FP) counts.

Precision =
TP

TP + FP
(4)

Recall measures the fraction of correctly classified positive
instances among the actual positive instances, and it is defined
using true positive (TP) and false negative (FN) counts.

Recall =
TP

TP + FN
(5)

The F1-score is defined as the harmonic mean of precision
and recall.

F1− score = 2× precision× recall

precision+ recall
(6)

In order to analyse the accuracies of the nuclei detection
models, a rule was needed to compare the ground truth
coordinate annotations with the predicted nuclei locations. A
predicted nuclei location was considered as a true positive
detection when a ground truth annotation was within a certain
radius from the prediction. An optimal radius (R) was selected
based on analysing the accuracy results of PT dataset using
multiple different R values. The R values and corresponding
F1-scores are presented in the Table II. However, the F1-score
alone was not sufficient measure for selecting optimal R value,
since higher values of R generated persistently higher F1-
score. The reason for this is fundamentally in the inability
to select completely correct metric for true detections while
having wide scale of different sizes and shapes of nuclei
and a coordinate annotation for a ground truth detection.
Therefore, additional visual examination of different R values
was performed to discover the optimal value for R. Three
different R values are visualised in Figure 3. Overall analysis
resulted in selecting R=10. This decision and the problems
concerning coordinate annotations are further addressed in the
discussion chapter. All of the accuracy results presented in
this paper are calculated using the selected optimal R value,
excluding the results in Table II.

For MoNuSeg dataset, the groundtruth nuclei segmentations
were provided instead of coordinates, therefore, a true positive
was considered to be a detection that hits a segmented nuclear
area.

Model evaluation and interpretation

In order to ensure that the model decisions are based on
meaningful patterns in the input data, we utilised Layer-
wise Relevance Propagation [26], [35]. Here we used the
LRP implementation provided by the iNNvestigate toolbox
[27]. The LRP is a technique for propagating the prediction
backward in a neural network based on certain propagation
rules. The method provides a heatmap that visualises positively
and negatively relevant areas in the input image with respect
to the classification task. We randomly selected a set of 64x64
sized fields of views around a detected nuclei from each
of the processed image datasets. The set of sample images
were analysed using LRP method and the generated relevance
heatmaps were visually assessed in order to shed light on the
meaningful patterns related to model decisions according to
LRP analysis.

III. EXPERIMENTAL RESULTS

A. Nuclei detection from prostate tissue

First, we consider the deep learning based nuclei detection
from prostate tissue, for which we have an extensive annotated
dataset of 67070 nuclei.

Each of the different fixation models were trained on the
data that is defined by the model name. PAXgene model was
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Fig. 4. The nuclei detection F1-scores visualized using boxplots. Title of a subfigure denotes the dataset that was used as a test set and the model names in
the x-axis denote the modelname that was used for prediction. The line within a boxplot presents the median F1-score, the green triangle presents the mean
F1-score, boxplot lines visualise the 25th and 75th percentiles and the values that settle between these limits, and the outlier F1-scores are presented with
diamond shape marker

Fig. 5. Nuclei counts of the PT dataset. On the A plot, the annotated nuclei
counts are plotted against the detected nuclei using the baseline model and
MNSda model. On the B plot, the annotated nuclei counts are plotted against
the detected nuclei using the different tissue fixative models. The plot C shows
annotated nuclei counts plotted against a 2-step segmentation algorithm based
nuclei detection presented in [5].

trained on PAXgene fixed image data, and similarly formalin
and frozen models were trained on their respective image data.
In total 17 models were trained, each model by leaving out
all the data from one of the 16 patients and a final fixation
model trained on the whole dataset of one fixation data. The
16 leave-one-patient-out models were used for calculating the
results for a left-out image in a cross validation manner, and
the reported result is the average from the 16 test images. The
final fixation model trained with all data from the fixation type
was then used to analyse the accuracy when detecting nuclei
from other fixations.

We trained a baseline model with the whole PT dataset. The
baseline model was used as an initial model in the domain
adaptation step. In addition to the baseline model, 16 models
were trained by leaving out all the data from one of the
16 patients, the nuclei from this left out patient data was
then predicted using this leave-one-patient-out-model (LOPO-
model). In total, 17 models were trained.

The numerical accuracy results are collected in Table III.
Each row presents the detection accuracy of one model and
the corresponding training and test data are specified in the
following columns.

In rows 1-4, we present the results for the whole prostate
tissue dataset with fixation specific models and with the base-
line model. The F1-scores for fixation specific models range
from 0.843-0.873, whereas the model trained with multiple

fixations reaches 0.879 on the PT dataset. When comparing to
the F1-score 0.78 reported in [5] for a two-step segmentation
algorithm, all of the the deep learning based results presented
here show clear improvement.

It can be observed that better F1-score is achieved when
nuclei detection model training is carried out using image
data with multiple fixations compared to the fixation specific
models.

The precision and recall values for each model and test
set are presented in the last two columns in the Table III.
It can be noted that the models trained with visually better
quality images (formalin, PAXgene) reach higher precision
than a model trained with noisy frozen data. The precision
values for PT data for formalin and PAXgene models are 0.925
and 0.903 respectively, whereas the frozen model precision
reaches only 0.780. However, model recall is higher for a
frozen model (0.924) compared to the formalin model (0.810)
and the PAXgene model (0.850) recall values.

B. Generalization to multi-organ datasets

In order to test the generalization ability of our approach,
we conducted experiments on a publicly available MoNuSeg
dataset [8], and on another dataset with tissue from five organs
(5-tissue dataset).

The results for the multi-organ data are shown in lines 14-
17 of Table III. When testing the detection performance with
MNS data, the F1-scores are 0.730-0.799 and 0.802, revealing
a clear drop in accuracy when compared to the prostate tissue
dataset. For precision and recall, a similar pattern can be seen
when testing with the MNS dataset as for the PT dataset;
frozen model yields lower precision and higher recall when
comparing to those by formalin and PAXgene models. Further,
we applied a division to train and test sets according to
the split applied in [8], and the results obtained with the
baseline prostate model are listed in Table III, rows 18-19. The
divergence in these results show that the dataset has significant
variation in image characteristics.

Next, we further tested the generalization to other tissue
types with our 5-tissue dataset. The results are shown in Table
III lines 20-23. When testing with 5-tissue set, the F1-scores



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.3039414, IEEE Journal of
Biomedical and Health Informatics

IEEE, MANUSCRIPT SUBMITTED MONTH DAY, 2020. 8

Model name TRAIN data TEST data F1-score Precision Recall
FORMALIN PT-formalin PT 0,858 0,925 0,810
PAXGENE PT-PAXgene PT 0,873 0,903 0,850
FROZEN PT-frozen PT 0,843 0,780 0,924
baseline model PT PT 0,879 0,904 0,857

FORMALIN-CV PT-formalin PT-formalin 0,885 0,892 0,879
PAXGENE PT-PAXgene PT-formalin 0,886 0,878 0,895
FROZEN PT-frozen PT-formalin 0,814 0,718 0,941
PAXGENE-CV PT-PAXgene PT-PAXgene 0,894 0,899 0,890
FORMALIN PT-formalin PT-PAXgene 0,894 0,922 0,868
FROZEN PT-frozen PT-PAXgene 0,835 0,755 0,935
FROZEN-CV PT-frozen PT-frozen 0,879 0,867 0,896
FORMALIN PT-formalin PT-frozen 0,794 0,961 0,683
PAXGENE PT-PAXgene PT-frozen 0,838 0,931 0,766

FORMALIN PT-formalin MoNuSeg 0,730 0,887 0,647
PAXGENE PT-PAXgene MoNuSeg 0,785 0,840 0,758
FROZEN PT-frozen MoNuSeg 0,799 0,763 0,852
baseline model PT MoNuSeg 0,802 0,797 0,821
baseline model PT MoNuSeg-train 0,826 0,803 0,859
baseline model PT MoNuSeg-test 0,775 0,790 0,778

FORMALIN PT-formalin 5-tissue 0,816 0,943 0,727
PAXGENE PT-PAXgene 5-tissue 0,858 0,898 0,827
FROZEN PT-frozen 5-tissue 0,862 0,813 0,927
baseline model PT 5-tissue 0,883 0,864 0,907

MNS DA PT+MoNuSeg PT 0,908 0,903 0,915
MNS-train DA PT+MoNuSeg-train MoNuSeg-test 0,807 0,781 0,851
MNS DA PT+MoNuSeg 5-tissue 0,888 0,846 0,939

TABLE III
THE EXPERIMENTAL RESULTS FOR NUCLEI DETECTION ACCURACY OF EACH TRAINED MODEL USING F1-SCORE, PRECISION AND RECALL. THE

COLUMNS SPECIFY THE MODEL NAME, USED TRAINING DATA AND THE TEST DATA. THE RESULTS ARE GROUPED BY THE TEST DATA, AND THE LAST
THREE ROWS ARE THE DOMAIN ADAPTATION RESULTS. THE CV MODELS STAND FOR LEAVE-ONE-PATIENT-OUT CROSS VALIDATION, WHERE THE

REPORTED RESULT IS AN AVERAGE OF RESULTS WITHIN CROSS VALIDATION LOOP - TEST DATA IS ALWAYS LEFT OUT IN TRAINING PHASE.

are 0.816-0.862 for the fixation specific models, and 0.883 for
the baseline model. Again, similar patterns are observable in
precision and recall, but this time the baseline model does not
outperform PAXgene and frozen models in F1-score.

Improved generalization through unsupervised pseudo-label
domain adaptation

To enhance generalization of the deep learning models from
PT dataset to other domains, we applied pseudo-label domain
adaptation step. The baseline model trained on all PT data was
used as a starting point for domain adaptation to the MoNuSeg
data domain. The MoNuSeg data was divided into train and
test datasets based on the division on the original paper. From
the MoNuSeg train set, hard positive examples were collected
using the detections using baseline model. The training data
was generated as described previously in the Unsupervised
generation of training samples from confidence map -section.
Thus, the annotations provided with the dataset were merely
utilized in the evaluation of the model - the DA step was fully
unsupervised.

The resulting model after domain adaptation from PT to the
MoNuSeg dataset is called MNS DA, and the results for all
three datasets are listed on rows 24-26 in Table III. The results
show that the unsupervised pseudo-label domain adaptation
step enhances detection accuracy in all three cases. Specifi-

cally, the sensitivity is improved through domain adaptation;
as the model gets samples from the new domain, it starts to
detect more nuclei (i.e., the sensitivity increases). While the
adaptation to the MoNuSeg data domain could be expected to
improve accuracy for the MoNuSeg dataset, it was also the
case for the 5-tissue dataset, and perhaps surprisingly, also for
PT dataset.

For the sake of clarity and comparability, the F1-scores are
also presented as boxplots in the Figure 4. The nuclei counts
predicted by different models were plotted against the manual
counts and are shown in the Figure 5, where (A) baseline and
MNSda models show clear correlation with manual ground
truth, (B) fixative-specific models yield more variation and
divergence from manual ground truth, and (C) reference result
using the two-step segmentation from [5] shows increased
variance and bias which does not exist in the deep learning
based results.

Effect of cell density on detection accuracy

Further, in order to show that the accuracy is not severely
limited by the challenge caused by areas densely populated by
nuclei, we conducted the following experiment: the prostate
tissue dataset was divided pixelwise into five groups based
on spatial density of nuclei, and the detection accuracy for
baseline model as well as for baseline + MNS DA model
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was determined for each density group. The results, shown in
Figure 6 reveal there is only a minor drop in overall accuracy
(F1-score) when moving from low-density (< 20 nuclei per
50µm) to high-density (> 40 nuclei per 50µm) areas. While
the recall drops due to part of nuclei not being detected, the
precision increases as there are less false detections. Visual
inspection of the detections (see Supplementary Figure 2)
supports the results presented in 6.

Interpretability analysis using layerwise relevance propaga-
tion

As a final experiment, we investigate the classification
model performance from interpretability viewpoint in order to
gain insight into the connection between the spatial patterns
in input data and classifier outcome. The results from the
model interpretation analysis with LRP method are shown in
the Figure 7, which presents typical examples of the areas in
an input image considered to be important by the classifier in
nucleus detection.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we implemented a workflow for nuclei de-
tection that utilizes pseudo-label based unsupervised domain
adaptation in order to generalize to images from new domains,
including different tissues and images from different labs.
In addition, we studied the effect of three histopathological
sample fixation types on the accuracy of a nuclei detection
trained with H&E stained images.

In order to allow further model development, we have
shared the workflow implementation and the dataset, these are
available at https://github.com/BioimageInformaticsTampere/
NucleiDetection. The number of annotated nuclei in the pro-
vided dataset is considerably high compared to other public
datasets. In addition, it includes three types of tissue fixation
and processing and therefore enables development of fixation
agnostic nuclei detectors or further study of the topic.

In order to study the effect of sample fixation on the accu-
racy of a nuclei detection, we trained multiple convolutional
neural networks with varying training data. The numerical
results are collected in the Table III. The detection results
suggest that better accuracy can be achieved when more
variation in the sample fixation is present in the training
data. This can be concluded when comparing F1-scores of the
baseline model, trained with all three fixation types, and the
models trained only with a single fixation data. The effect is
similar when testing with each of the dataset. Correspondingly,
after applying the unsupervised domain adaptation step using
MoNuSeg dataset, the F1-score continues to increase.

Furthermore, the similarity between training and test data
fixation can be perceived based on the results in the Table III.
Detection in images from both PAXgene fixed and formalin
fixed tissue sections is distinctly of better in quality compared
to the images from frozen tissue sections. The similarity of
image quality improves generalization of a machine learning
algorithm. Consequently, PAXgene and formalin models detect
nuclei nearly equally well nuclei from both PAXgene and
formalin fixed tissue section images, yet, these models score

low accuracies on the frozen tissue section image data. Similar
effect can be concluded based on the precision and recall
values. The model trained with noisy frozen data detects
quite accurately nuclei from better quality images (PAXgene,
formalin). Yet, conversely the PAXgene and formalin models
fail (low recall) to detect the majority of the nuclei in images
from frozen tissue sections. However, high precision indicates
that when the nuclei is found it most often is a true positive. In
the PT dataset, frozen model scores lower F1-scores compared
to the formalin and PAXgene models. However, a contrary
effect can be seen when testing with the 5-tissue data and
MoNuSeg data. This seems to also indicate that the formalin
and PAXgene fixed tissue sample images are quite similar
concerning the image quality and therefore model general-
ization between these two datasets is decent. It also indicates
that in order to generalise across tissue types, a frozen fixed
tissue section images provide more variability in the image
data domain.

When directly comparing the numerical results of the study,
the problem with the metric itself, as well as the challenge
caused by using a single coordinate as the ground truth, should
be kept in mind. This was considered when analysing the effect
of selected radius in the final accuracy values. The Table II
presents how the F1-score reaches higher values when the R is
increased and thus based on the Table alone one might argue
that an even larger value for R should be utilized. The reality
however is very different when looking into the examples of
different R values in the Figure 3. In the figure, white line is
connecting the ground truth coordinate and the corresponding
true positive detection. Here, a chain effect can be seen when
one false negative is falsely detected as true positive by a
prediction that is actually a signal from closeby nuclei (see
example D - R3). Thus, when selecting an optimal R, instead
of looking at F1-score, the physical size and shape of nuclei
present in the datasets should be considered.

In addition to selecting an optimal value of R, the location
of a ground truth coordinate needs to be considered. An
obvious challenge can be seen in Figure 3 (E), where a
benign elongated nucleus is shown. The location of a ground
truth coordinate annotation can vary throughout the dataset,
complicating the evaluation of true positive samples. Similar
problem is faced when ground truth annotation is marked on
the edge of a nucleus (see Figure 3 (B) for an example).

Overall results confirm that sample fixation is a significant
factor in the variability present in histological image data,
and this should be considered when developing a robust
and generalizable nuclei detection methods. Based on our
results, increased cross domain generalization is achieved
when multiple sample fixation methods are present in the
training data. Our proposed pseudo-label based unsupervised
domain adaptation step was shown to be beneficial for de-
tection accuracy. However, the fully unsupervised domain
adaptation step contains the risk of failed adaptation in cases
where false positives are detected by the baseline model. In
the experiments presented here, such problem did not occur.
However, with ambiguous domain changes, e.g. when moving
from HE to immunohistochemical staining, the unsupervised
pseudo-labeling step may not provide adequate support for the

https://github.com/BioimageInformaticsTampere/NucleiDetection
https://github.com/BioimageInformaticsTampere/NucleiDetection
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Fig. 6. The nuclei detection F1-scores for PT dataset as a function of cell density. Images were segmented pixelwise into five density groups, and detection
accuracy by the baseline and MNS-DA models is presented as F1-score, precision and recall. Note that precision values by the two detection models are
almost identical, and not clearly visible due to overlap of curves.

Fig. 7. Examples of the important areas in an input image resulting in nucleus detection using LRP method. Each example visualises a 32x32 image block
around a detected nucleus and the corresponding confidence map presenting the network output, and a heatmap for relevant areas provided by LRP method.
The red areas present positively relevant areas related to nucleus detection and the blue areas present the negatively relevant areas.

new domain (see Supplementary Figure 3 for such examples
using the algorithm presented here and IHC data from [33].

In order to interpret the deep learning models and to
discover the reasons behind model decisions, we visually
assessed the model decisions using LRP method implemented
in the iNNvestigate toolbox [27]. Few examples are shown in
the Figure 7. Based on these examples and visual assessment
of multiple similar samples, the nuclei detection model seems
to find reasonable areas important related to nucleus detection,
such as nuclei edges. In addition, if nucleoli are visible in case
of a vesicular nucleus, those are often detected as important
areas related to nuclei detection. Overall, the relevant areas
provided by the LRP algorithm seem to correspond to the
areas that a human observer would find relevant as well.

To conclude, this study addresses the question on the
importance of the variability present in histological image
data that is caused by the tissue fixation process, and the
effects this variability has on the accuracy of a nuclei detection
algorithm. We have shown with our experiments that the tissue

fixation variability in the training data can cause significant
differences between nuclei detection accuracies obtained by
deep neural network models. The results of study are en-
couraging, and therefore, call for further research. A suitable
next step would be to conduct experiments with bigger and
more diverse datasets. In addition, more quantitative analysis
of model explanation and interpretation methods are needed
to build trust on the deep learning based approaches on these
important biological questions. These steps will eventually
enable development of a model that can generalize to real
world clinical environments.

V. ACKNOWLEDGEMENTS

We are grateful to Noora Salokorpi for her skillful assistance
in validation.

REFERENCES

[1] K. Sirinukunwattana, S. E. A. Raza, Y.-W. Tsang, D. R. Snead, I. A.
Cree, and N. M. Rajpoot, “Locality sensitive deep learning for detection



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.3039414, IEEE Journal of
Biomedical and Health Informatics

IEEE, MANUSCRIPT SUBMITTED MONTH DAY, 2020. 11

and classification of nuclei in routine colon cancer histology images,”
IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1196–1206,
2016.

[2] H. W. Jackson, J. R. Fischer, V. R. Zanotelli, H. R. Ali, R. Mechera,
S. D. Soysal, H. Moch, S. Muenst, Z. Varga, W. P. Weber et al., “The
single-cell pathology landscape of breast cancer,” Nature, vol. 578, no.
7796, pp. 615–620, 2020.

[3] F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in
microscopy image analysis: A survey,” IEEE transactions on neural
networks and learning systems, vol. 29, no. 10, pp. 4550–4568, 2017.

[4] H. R. Tizhoosh and L. Pantanowitz, “Artificial intelligence and digital
pathology: Challenges and opportunities,” Journal of pathology infor-
matics, vol. 9, 2018.
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