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A General Method for Comparing Probit- and Logit-models 

with Single and Multilevel Data 

Antti Veilahti 

Abstract 

The paper proposes a method for overcoming the so-called latent scale-problem that 
prevents nested logistic and probit models from being compared. This allows us to 
decompose direct and indirect effects for binary outcomes. Our solution is based on an 
explicit construction of a latent propensity behind a given binary variable. The method 
is validated based on both simulated and the European Social Survey data. It is more 
accurate and easier to interpret than the previously available methods. Furthermore, it is 
the only method allowing us to compare mixed binary models: the so-called y-
standardisation method, for instance, is not suitable for multilevel data because there is 
no global scale parameter applicable to both fixed and random effects. Finally, the paper 
concludes that the reason why nested binary regression models are not comparable is 
not related to ‘unobserved heterogeneity’, like Mood (2010) suggested, but it reflects 
the structure of the observed model.  
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Introduction

One of the most topical methodological debates in quantitative social sciences re-

lates to the comparison of categorical regression models. In the case of continuous

variables, linear regression models can be compared in order to distinguish between

direct and indirect effects. For instance, to what extent social class directly regulates

income and to what extent it is mediated by the level of education. Likewise, it is

possible to compare error variances across models so as to evaluate how much of the

variation of income overall is explained by class or education (Prairie 1996). Such

direct comparisons are not suitable for binary outcomes such as unemployment or

the occurrence of a disease (e.g., Karlson, Holm, and Breen 2012).

This problem has been long known (Amemiya, 1981; Bollen, 1989: 238–246; Gail,

Wieand and Piantadosi, 1984; Long, 1983: 49–52; Wooldridge, 2002: 470–472), but

it used to be omitted by most sociologists. It then came as a striking news when

Carina Mood (2010) reiterated the issue few years ago. Technically, the problem

bears witness to the fact that categorical regression models appear to be specified

only up to an ‘unobserved’ parameter (ibid.: 67) and which depends on the chosen

set of predictors. However, we will argue that in acutality the size of the error is

actually a structural property of the larger model: unlike what Mood argued, it is

an ‘observable’ aspect of that model.

Such discrepancies are easy to understand intuitively: as there are more predic-

tors in a larger model, the intercept group becomes more specific and the level of

heterogeneity internal to that group is reduced. This results in more specific like-

lihood estimates that, for linear regression models, would result in the diminishing

size of error variance. Unfortunately, in categorical models the error term is not

available and the change of scale cannot be directly accessed.

There is another, more precise and sleek description of this issue that forms the

basis of our approach. Indeed, it can be shown that binary regression models are

equivalent with linear regression models, if we replace the binary outcome y with

a suitable latent propensity y∗ so that y∗ > 0 whenever y = 1 (Long 1997: 47–

50). Instead of modelling y, we can use linear methods to modelling y∗. While it

is debatable whether it is plausible to assume the existence of such a propensity in

the first place—what would it mean to say that someone is, say, more ‘manly’ than

someone else—the idea is that the binary variable looses some information: it is

unable of differentiating between those who are close to being men and those who

are women by margin. If such a propensity y∗ did exist, however, we could use this

latent variable to observe the relative level of heterogeneity between the two models.

In this paper, we will generate this missed ‘information’ by hand. This approach

might sound rather artificial, but we will show that the results do not depend on the
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contents of this ‘information’. Therefore, we will adopt a pragmatic position and

claim that such a propensity y∗ exists at the level of data—regardless of its meaning

or existence at the level of social reality: there is no need to debate on whether

there is a trait like ‘manliness’ but we are only dealing with constructs related to

the particular set of data.

It is crucial that the binary and latent linear models agree as long as the model

satisfies the suitable conditions regarding the error distribution. The only require-

ment is that y∗ is scaled by a constant factor so that the error term is normally (or

logistically) distributed with variance fixed at 1 (or π2/3 for logistic models). The

variance can be fixed because only the sign of y∗ is actually observed (whether or

not y∗ > 0) and multiplying y∗ by any positive number results in the same outcome

y.

This equality between the binary and latent models under those conditions also

stands for the very source of error. Indeed, when considering models involving a

different number of predictors, two different latent propensities need to be used in

order for them to satisfy the distributional conditions. Both of them need to be

scaled according to their own error terms, and that is the precise reason why the

corresponding binary models are not comparable (Mood 2010). There is also another

problem identified by Karlson et al (2012): as long as the dropped predictors do not

follow a suitable distribution (e.g. normal), not only the scale of y∗ is altered but also

its shape. This problem is avoided by our method, which uses a shared variable y∗

across nested models. Even if the error distribution of the submodels does not itself

satisfy the distributional conditions, this is the case always when comparing linear

regression methods, which is a standard approach. Furthermore, the discrepancies

will turn out to be much less severe than those involved in the comparison of binary

models.

In this study, we will first explain our construction of an actual propensity y∗.

We will then empirically validate the method in single- and two-level settings: we

will show that the method yields deterministic results which are more credible than

those produced by other methods, like the y-standardisation approach. It turns out

that our method is particularly accurate for single level data whereas the random

effects are slightly biased due to the shrinking of the maximum likelihood estimates.

1 Constructing a Latent Propensity

Instead of partaking the ontological debate on whether there actually is a latent

propensity for a given binary variable y, we are dealing with a finite set of data.

All constructs that we suggest exist as part of this data—not the reality to which it

refers. It is an empirical question whether they result in reliable or useful estimates.
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The following construction will be presented in the context of hierarchical probit-

and logit-regression models, but the method is directly applicable to single level data

by omitting the random components γ and u.

A mixed logistic regression model is given as

ln
p

1− p
= xβ + rγ + u, (1)

where p is the expected value of y given x, r, γ and u. Similarly a probit-model is

given by

Θ−1(p) = xβ + rγ + u, (2)

where Θ−1 is the inverse of the normal cumulative probability distribution. For sim-

plicity we have not written out the indices of the different predictors or interactions:

x and r are (horizontal) vectors of fixed and random variables, β and γ are scalar

vectors, and u is the sum of all higher level residuals (there can be more than two

levels).

To those readers new to mixed modeling, these models are similar to single level

models except for the fact that for some effects (r) the coefficient is allowed to

vary across contexts (γ), as does the constant term (u). In addition, we assume

that the expected values of u and γ vanish and that these are constant within any

single context. Depending on whether the random covariance matrix is structured,

further conditions over the covariances between u and the different components of

the random vector γ.

It can be shown that if there is a latent propensity y∗ for which the multilevel

regression model

y∗ = xβ∗ + rγ∗ + u∗ + e∗ (3)

satisfies the standard conditions (e∗ is either normally or logistically distributed with

variance equal to 1 or π2/3), then the respective binary model (1) or (2) agrees with

the latent model (3). This means that y∗− e∗ is either Θ−1(p) or ln p
1−p . Given that

y∗ > 0 if and only if y = 1, the latter is equivalent with

e∗ > −(xβ + rγ + u). (4)

Error Term

Instead of assuming the existence of such y∗, the idea is to start instead from a

binary variable y and explicitly create a suitable variable e∗ so that its conditional

distribution is normal (or logistic) and that it satisfies the aforementioned equiva-

lence. Given that we already know the binary model on y, we can then use such a
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variable to construct

y∗construct = xβ + rγ + u+ e∗,

which satisfies all the requirements for being a suitable latent propensity on y.

Such a variable e∗ can be constructed in the following way: for each case, cal-

culate the expected conditional probability p and dividing the normal (or logistic)

distribution into two sides at a suitable point, which is to be determined by the

respective binary model. Then pick a value from the appropriate side of that distri-

bution.

In practice, we thus first need to calculate the conditional probability by con-

ducting the probit- or logit-analysis. For each observation, the probability p that

y = 1, and thus that the error should be in the upper part of the suitable distribu-

tion, is the inverse of the link function of the model-estimate xβ+ rγ+u. The error

e∗ is then reflected by a cumulative probability value q so that q <= p if y = 0 and

q > p otherwise. In both cases, we can generate q from the uniform distribution and

apply the link function Θ−1(q) or ln q
1−q in order to acquire a suitable candidate for

e∗.

It is easy to see that the variable e∗ constructed in this way satisfies the required

distributional conditions. Namely, for each observation the probability that q < p

is p and thus the conditional distribution of q | x, r, i is the uniform distribution

between 0 and 1. The resulting distribution is thus normal (or logistic) given the

used link function, and its variance is independent of x, r and i, guaranteeing ho-

moscedasticity. The construction also ensures that the inequality (4) is satisfied if

and only if y = 1.

Adjustment

In theory, the conditional distribution of e∗ for given x, r and context i satisfies the

required conditions. However, the actual variable e∗ is based on a finite random

sample. Although it is reasonably close to the suitable distribution and is a latent

propensity of y, it is not entirely independent of x, r and the context i. To adjust

e∗, we can start by modelling e∗ itself so that

e∗ = xβadj + rγadj + uadj + eadj,raw. (5)

The error term eadj,raw satisfies the required distributional conditions while being

independent of x, r and u. Particularly in the multilevel case, where the relative

variance of the different components plays a more crucial role, it is mandatory to

further adjust the error term by a suitable scalar constant in order for the variance

of eadj to equal to the theoretically expected value (π2/3 in the logistic case or 1 in

5



the case of probit-models).

These adjustments are so small that eadj > −(xβ + rγ + u) if and only if y = 1

still holds in about 99,8 % of the cases. While the simulated propensity

y∗adj = xβ + rγ + u+ eadj

thus fails to reproduce y unanimously, this is not really a concern because the actual

value of y does not affect the model when β, γ and u are already known. Even so, by

constructing eadj similarly ten times and choosing the one with the lowest number

of errors, it was possible to reduced the number of discrepancies by half.

Some Further Remarks On the Construction of y∗

It was an essential part of the introduction of multilevel models in the 1980’s to

realise that the maximum likelihood estimates of the random parameters are more

conservative than the mean values, making the random parameters smaller than the

observed group averages. For instance, in the case of the variance component model

where there is only the higher level residual u and when normal errors are assumed,

the actual estimate of the residual term u is

(y∗ − xβ)
var(u)

var(u) + var(e)/ni

,

where ni is the number of observations in the context i (cf. Rashbash et al. 2015:

39). Part of the observed higher level differences are then attributed to individuals,

as reflections of random variation. This violates the assumption of the independence

of levels, however. If we use a mixed model when constructing eadj, it is not actually

independent of higher level effects. Similarly, the retrospective model estimate of

eadj is not the same as the original construct eadj.

To avoid the first problem, the equation (5) can instead be composed by consider-

ing both rγ and u as fixed effects. This is done by using single level linear regression

instead of multilevel regression, by incorporating the context as a categorical pre-

dictor (so that each context is associated with a different constant) and including

the fixed interactions of the original random effects with context. By constructing

eadj this way, it appeared that both the fixed and random parameters of the model

are independent of eadj at least to six digit accuracy (i.e. relative errors are lower

than 0,0001 %).

However, the shrinking of the random parameters also affects the initial model

(2) and, again, when the produced latent variable y∗ is modelled. This makes the

random parameters produced by our approach less reliable than the fixed part of the

model. We examined whether y∗ itself instead of the error term could be constructed
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by a fixed effects models, but the results were more ambiguous than when y∗ is

based on a mixed model, regardless of the adjustment. However, it will turn out

that the underestimation is reasonably consistent, still providing a suitable basis for

comparison across nested models, when the size of contexts is sufficient.

There are two other concerns that need to be addressed. The first issue relates to

the set of predictors x and r used when constructing the latent propensity. Above,

we suggested that y∗adj has to reflect the full model, incorporating all predictors used

while comparing models. As we will demonstrate below, this will give reasonable

results. By contrast, we also tested the possibility that we could use some smaller set

of predictors. Because y∗ (almost) fully reproduces y, there is no loss of information

whichever way y∗ is constructed. However, this does not mean that a linear model

on y∗ should always reflect y adequately: the additional predictors on y would be

exhibited only to a reduced extent (cf. Cox et al, 1992).

Second, we examined whether the results would be similar if we did not require

the inequality (4) but eadj would be independent of the observed outcome y. As

long as we construct y∗ based on all considered predictors, this does not appear to

affect the fixed part of the model, which is further evidence to the fact that the

latent scale factor is actually a property of the model (2) instead of being related

to the ‘unobserved heterogeneity’ of the outcome. However, due to the shrinking of

the random components, the fact that eadj reflects y makes the random part more

reliable.

Different Ways of Rescaling Binary Models

The basic motive for the above construction is that we can use the constructed

variable y∗adj instead of y as a basis of approximating the regression coefficients β, γ

and u. However, it has been suggested that we could instead compare binary models

themselves after rescaling the submodel by a suitable global parameter. Winship

and Mare (1984) suggest the submodel to be scaled by a factor√
var(y∗)/var(y∗sub), (6)

where y∗sub = x′β′ + r′γ′ + u′ + e′ is a latent propensity on y corresponding to the

submodel (e′ is normal and independent with variation equal to one). Alternatively,

we can use the full construct y∗ as a basis of a submodel

y∗ = x′β′lat + r′γ′lat + u′lat + e′lat (7)

and use √
var(e′lat)/var(eadj) = st.dev(e′lat) (8)
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as the scaling parameter. It is easy to show that in the single level case these

two parameters agree if and only if the rescaled binary models agree with those

produced by the linear submodel (7), that is, when the omitted terms are normal.

This is because they are absorbed in the error term e′lat, which is otherwise not

normal.

Even so, because we are actually scaling the fixed part of the model, it is more

appropriate to use √
var(x′β′lat)/var(x′β′) (9)

instead. In the single level case, the random terms are omitted and this can be

written as √
var(y∗ − e′lat)/var(y∗sub − e) =

√
var(y∗)− var(e′lat)

var(y∗sub)− 1
.

The x-standardised coefficient (9) agrees with (6) or (8) if and only if (6) and (8)

are actually equal1. This only occurs when the omitted predictors are normal (or

logistic), that is, when the rescaled binary model agrees with the linear submodel

on y∗.

In the multilevel case, we can also use the the coefficient√
var(x′β′lat)/var(x′β′)

for fixed effects, but it does not agree with the one reflecting the fitted parts√
var(y∗ − e′lat)/var(y∗sub − e). For random coefficients it would be best to use√

var(r′latγ
′ + u′lat)/var(r′γ′ + u′)

or even a specific scaling parameter for each random component. Unless it agrees

with (9), it is not meaningful to rescale mixed binary models as a basis of comparing

random effects.

There are now three questions that the rest of this paper seeks to answer: to

what extent do these different scaling-parameters agree? Second, which one of them

is the best method for rescaling nested binary models? And third, when there is

disagreement between them, is it more appropriate to compare linear submodels on

y∗ rather than optimally scaled binary submodels?

2 Research Design

In the rest of this paper, we will evaluate the reliability of the method empirically,

seeking to answer the three questions asked above. In particular, we will compare

the results of the latent linear model with differently scaled binary submodels.
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Data

We analysed the method by using both random data and the sixth round of the

European Social Survey (2012). In the latter set of data, NUTS2-units as the higher

level units, each consisting of from 5 to 2380 respondents and with 36 402 alto-

gether. The European Social Survey (2012) data was used to assess the method in

practical situations, whereas random data was used to assess the applicability of the

method with variables reflecting various distributions and particularly with variables

independent of other terms so that the results could be compared with theoretical

expectations.

With simulated data, we used 1000 random observations for single level models.

It was the intent to try the method with such a limited set of data to see whether it is

still determinist. In the multilevel case, we used 3000 or 30 000 random observations

from 50 or 500 contexts (with the average context size of 60 or 600). In the latter

case, we analysed an outcome y which was based on an actual latent variable y =

x1+. . .+x8+x1 ·(x9+x10), where x1, . . . , x5 were lower level variables and x6, . . . , x10

depend only on the context. For single level models, all variables were defined at the

lowest level. They were chosen to reflect binary, normal and uniform distributions.

Procedure

The results are expressed for probit-models, but logistic models were found to pro-

duce a comparable level of error. For both sets of data, we chose various initial

models and then compared different submodels of y∗ with different binary submod-

els on y. We varied the five predictors used for the full model and the number and

set of predictors included in the submodel. For multilevel models, we also altered

whether the random effect was incorporated as part of the submodel.

In each case, the different scaling factors proposed in the previous chapter were

calculated, while the corresponding fixed and random terms based on the rescaled

binary models were compared with those produced by the linear submodel of y∗.

Both approaches to error adjustment were tried. The fixed coefficients were com-

pared both on average and by calculating the sum of squares∑
i

(βi,lat − scl · β′i)2

for different scaling factors scl.

In the context of the ESS data, in contrast, we sought to examine the usefulness

of the model in more complex situations. The comparisons were conducted in three

different settings depending on the structure of the full model. Each combination
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of outcome and predictors was used as a basis of comparing 11-16 binary and linear

models and with 64 combinations of variables. In all the three settings, the outcomes

and variables were chosen among those expressed in Table 1 (p. 10).

The first two settings were based on variance component models with no random

effects. Each latent variable was constructed based on three lower level effects, one

of which was binary and the others continuous, and one continuous higher level effect

together with all two- and three-way interactions. In these two settings, the binary

and simulated models were then compared for 16 different subsets of these 15 fixed

effects or interactions. Both settings then resulted in 1024 pairs of submodels. It was

our intent to test whether we could include all possible combinations of variables,

examining whether the method is robust enough to handle a reasonable level of

complexity.

In the third setting, the aim was to examine the behaviour of the random effects

in practical situations. The models included a random parameter that, depending on

the model was either continuous or binary. We particularly asked whether replacing

a random effect by a fixed one would still produce reliable results. In this setting,

11 submodels were used resulting in 704 pairs of submodels altogether.

Table 1: Variables used in the analyses

role variable
outcomes anxious

voted
boycott
trust eu

fixed effects father’s socioeconomic status
lr-scale

random effects neuroticism
hinctnta
gndr
chldhm

higher level effects GDP per capita
popularity of tertiary education

3 Results I: Single Level Models

Above we constructed a latent variable y∗adj whose sign depends on a given binary

outcome y—in 99,8 % of cases at least—and which satisfies the distributional con-

ditions for a suitable set of predictors. Theoretically, a mixed model on y∗adj should

then reproduce the binary regression model on y.
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In the case of single level models, this appears to be the case: the full models

are produced with at least five digit accuracy, meaning that all of the β-coefficient

estimated based on y∗adj differ from the binary coefficients on y by less than 0,0001

%. As a result, the binary submodel also agrees with the corresponding latent model

constructed on the basis of this binary submodel

y∗sub = x′β′ + e′, (10)

which differs from the one based on the original latent construct

y∗ = x′βred + ered. (11)

The latent error term ered incorporates part of the omitted terms that are included

in x but not x′ and r′. If these variables are normal, then (11) should agree with

(10).

Previously we discussed the best way of reparametrising the latter equation so

as to compare the two. If (6) and (8) agree, there is no difference between the three

scaling parameters: 1/
√

var(ered),
√

var(y∗)/var(y∗sub), and
√

var(x′βred)/var(x′β′).

In addition, we considered two additional scaling parameters constructed by hand:

a weighted average over the quotients βred/β
′ and the quotient of the sums of the

norms of the two arrays of coefficients.

The Most Appropriate Scale Parameter

We examined the accuracy of these parameters when normalcy of the omitted terms

is not assumed. This was done by considering the sums of squares comprising the

difference between the rescaled coefficients and the original ones∑
(β′rescaled − βred)2.

In 384 sets of simulated data we analysed, the measure of the fitness of the scale

parameter was the lowest for
√

var(x′βred)/var(x′β′), averaging at .0007, and with

the maximum value of .0117, as illustrated in Table 2. This suggests that even in

the worst case the difference of the coefficients depending on the method should be

much less than 10 %, as long as the proper scale-parameter is used. As a brief note,

the errors indicated in Table 2 increase linearly as a function of the variance of xβ,

indicating that the errors are limited relative to the size of xβ.

Based on Table 2, comparing the different approaches to reparametrising the

model, it is obvious that
√

var(x′βred)/var(x′β′) is preferrable. Only the parameter

based on y-standardisation has been previously accessible, however, and this has

further contribute to the biases of the binary approach.
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Table 2: Sum of squares of the differences of the β-coefficients in the rescaled binary
model and the respective submodel on y∗, simulated single level data.

scaling parameter mean difference sd min max√
var(x′βred)/var(x′β′) .0007 .0014 0 .0117

1/
√

var(ered) .0011 .0018 0 .0129√
var(y∗)/var(y∗sub) .0017 .0029 0 .0170

sum of the norms .0012 .0063 0 .0626
weighted average .0032 .0272 0 .2712

Which Approach is the Best?

Yet the models based on y∗ and y∗sub differ not just by a scale-parameter but also

structurally, as suggested by the differences identified above. We examined whether

the most appropriate rescaled binary model or the submodel based on the full latent

parameter y∗ would be more credible basis for decomposing the original model. This

was done by adjusting the predictors included in the submodel so that they would

be independent of the other parameters. In this case, it is a mathematical fact that

the respective coefficients in the submodel should reflect their extraction in the full

model.

This appeared to be the case when comparing the full model with the latent sub-

model on y∗: the average difference of the β-coefficients was found to be negligible

(lower than 0.001 %). In contrast, the rescaled binary model appeared to under-

estimate the coefficients by almost 2 % on average (Table 3), suggesting that the

model violates the expected structural composition. The latent submodel is thus

more appropriate than the binary one when decomposing the direct and indirect

effects, at least when independent effects are involved.

Table 3: Extraction of independent effects in binary submodels relative to the full
model, %.

distribution mean difference sd min max
normal 100.2 1.7 96.1 103.9

uniform 100.0 1.4 96.1 103.8
binary 100.1 1.3 97.2 103.9

4 Results II: Mixed Models

In the single level case, the method is deterministic and provides much more ac-

curate estimates for independent effects than the rescaled binary models. In the

multilevel case, the results are similarly deterministic, with at least six digit ac-
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curacy (0, 0001%) when the error term is adjusted based on a fixed model. By

contrast, adjusting the error based on a random effect model resulted in slight varia-

tion in the estimate as summarised in Table 6. However, in cross-model comparisons

such differencies are diminished because the same error term is used for both of the

two nested models, making the comparisons reasonably accurate even with smaller

contexts.

Table 4: Standard deviation of the coefficients when the error adjustment is based
on a mixed model with the average size of context 60 and 600, %.

effect type small contexts large contexts
sd sd

lower level β-coefficient < 0.2 < .003
higher level β-coefficient < 2.0 < .04

The random γ-coefficient 4.1 0.1
Change of γ across models 0.5 < .01

Higher level residual u 7.9 1.4
Change of u across models 1.2 0.3

Full Model

As with single level models, we started by comparing the full binary model with

the full model on y∗. The results were slightly less unanimous (see Table 5). With

fixed error adjustment which guarantees deterministic results, the latent model re-

produces the lowest level effects reasonably well, with the standard deviation of the

difference being less than 0.2 % for all tested distributions. In the case of mixed error

adjustment, in contrast, the difference was about 1 %, fifth of which is explained by

the indeterminacy of the approach and the rest by structural differencies. As with

single level models, with the overall differences of the β-coefficients is proportional

to the standard deviation of the xβ-term.

Table 5: Difference of the full binary and linear models for different effect types, %.

small contexts, fixed large contexts, fixed small contexts, mixed large contexts, mixed
effect type mean sd mean sd mean sd mean sd

Lowest level fixed effect 100.0 0.22 100.0 0.01 100.0 0.1 100.0 < 0.01
Fixed effect behind a random effect 99.9 0.58 100.1 0.38 100.0 0.03 100.0 0.02

Higher level fixed effect 100.3 2.8 100.6 1.8 100.0 1.8 99.8 0.6
Constant 99.7 1.5 100.0 0.04 100.6 1.4 100.0 0.02

Residual u 78.2 24.8 113.8 19.8 91.5 16.1 101.7 10.2
Random effect γ 91.4 14.2 110.1 10.4 98.3 9.3 100.6 6.7

The differences indicated in Table 5 result from the fact that the maximum likeli-

hood estimates of the random terms are subject to shrinking: when constructing the

binary model, this shrinking occurs only once. By contrast, the latent construct y∗

itself reflects the originally shrank model, while the linear model on y∗ is then sub-

ject to shrinking the second time. Even so, the results were found to be more reliable

than in alternative approaches that would avoid the effects of double shrinking2.
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Comparing Nested Models

The underestimation of the random parameters due to double shrinking is not nec-

essarily a flaw, however, if the shrinking is consistent enough so that nested models

can be meaningfully compared. While no previously valid method exists by which

we could verify the validity of such comparisons entirely, we can look for indirect ev-

idence. In particular, we can demonstrate that the results are much more reasonable

than when comparing binary models directly.

In the binary case, the submodel sometimes gave much lower random parameters

than the full model, which should happen only rarely. A similar phenomenon did

not occur to a notable extent when comparing latent models. Moreover, the vari-

ance of the difference of the random components was much higher when comparing

rescaled binary models instead of the linear ones. This suggests that rescaling bi-

nary models is not a meaningful approach in regard to the random effects: there

is no global scale parameter that would allow the y-standardisation method to be

extended to multilevel settings, but each random component instead requires its own

scale parameter.

On the other hand, the higher level residual is closely connected to the higher

level fixed effects used. When looking at a higher level effects that is independent

of other effects, the linear submodel on y∗ gives reasonable results with a standard

deviation of 3 %, whereas the nested binary models would misrepresent the effect

by 15 % on average (Table 6). Also in more complex settings, where there higher

level effects are not independent, there occurs fewer outliers in the linear approach,

making it a more credible candidate than the binary one.

The contrast between the binary and linear approaches is similarly apparent

when looking at lower level fixed effects. The linear submodels were much closer

to theoretical expectations, with 0.2 % accuracy, whereas the nested binary models

discrepancies with the standard deviation as high as 1.6 %. For both methods, the

accuracy was notably higher when increasing the size of contexts to 600, but the

relative difference between the two approaches remained similar.

Table 6: Accuracy of the independent effects relative to theoretical expectations, %.
fixed adjustment mixed adjustment binary model

effect type mean sd mean sd mean sd
Lowest level fixed effect 100.0 1.0 100.1 1.0 100.0 3.5

Fixed effect behind a random effect 100.0 1.2 100.0 1.2 100.0 3.7
Higher level fixed effect 100.4 3.4 100.3 4.2 102.5 23.9

Higher level fixed effect (large contexts) 100.1 0.6 100.1 0.6 102.2 8.5
Residual term u 98.4 1.0 98.4 1.2 95.6 4.9

Random parameter γ 99.1 1.8 98.8 2.0 95.6 7.2

Against this background, we wanted to measure the difference between the two

methods in more complex settings, where variables need not be independent. As
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illustrated in Table 7, the differences are notable. In some respects, but not all, the

rescaled binary model approaches the linear one when the size of contexts becomes

substantial: this does not apply to the higher level effects or the random coefficients.

Therefore, unlike in the single level case, in the multilevel setting the rescaled

binary models should not be used at all: the discrepancies are limited for the lowest

level fixed effects similarly as with single level data, but not with higher level effects

or the random parameters. The comparison also shows that in regard to the random

parameters, the approach based on the fixed error adjustment is as biased as is the

binary approach (Table 7).

Table 7: Difference between cross-level comparisons in the latent and binary settings,
%.

small contexts large contexts
fixed mixed fixed mixed

effect type mean sd mean sd mean sd mean sd
Lowest level fixed effect 98.7 6.0 99.2 6.1 99.7 2.6 99.7 2.6

Fixed part of a random effect 98.0 9.6 98.4 9.6 100.9 10.9 100.9 10.6
Higher level fixed effect 105.2 7.1 102.9 7.2 99.5 24.6 102.1 24.6

Constant 96.1 2.4 96.0 2.4 97.3 6.2 97.3 6.2
Residual u 121.1 53.5 105.8 32.9 109.3 31.6 102.6 14.4

Random effect γ 101.1 11.7 99.7 11.9 100.1 3.1 99.9 2.5

Choosing the Right Approach to Error Adjustment

Both approaches to error adjustment have their own benefits. For smaller con-

texts, the choice depends on if we want to emphasise the determinacy of the approach

and β-coefficients, or if we are instead interested in the higher level effects. When

the size of contexts is large, the choice is less urgent. In general, we should only

use the fixed error adjustment when seeking to decompose fixed effects. By con-

trast, when seeking to decompose the higher level effects or cross-level interactions,

it seems more appropriate to utilise the mixed adjustment instead.

A Brief Comparison of the Linear and Binary Models with ESS Data

While the simulated data demonstrates that the linear approach gives much more

credible results than the binary one, we examined the differences also in the context

of the European Social Survey. In practical social scientific research, the higher level

effects usually account to only a fraction of the overall variation, and we wanted to

know whether the rescaled binary approach could have practical relevance in such

applications.

The differences between the latent and rescaled binary approaches are again

prominent, however (Table 9). It appears that continuous effects tend to be under-
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Table 8: Relative difference of the different components of the rescaled binary sub-
models of y and the corresponding linear submodels of y∗, %

model type mean st. dev. st. err.
constant 100.0 3.2 0.1

fixed effect 99.0 8.7 3.2
fixed part of a continuous random effect 101.6 5.3 0.2

fixed part of a binary random effect 97.8 16.8 0.6
interaction with a continuous random effect 102.6 11.3 0.8

interaction with a binary random effect 96.2 16.3 1.5
higher level fixed effect 98.4 9.4 0.5

cross-level interaction 100.2 9.9 1.7
higher level residual u 90.2 9.8 0.2

random effect γ 91.6 17.1 1.1

estimated by binary models, whereas binary effects are usually slightly exaggerated

but also more variable. The average difference is also higher when a binary variable

is involved in the submodel. Moreover, the binary model becomes less reliable when

the number of omitted terms increases (Table 9).

Higher level effects and interactions are even less accurate. On average, the

changes in the random parameters are underestimated by the binary model, but

these differences are even more variable than those associated with fixed effects.

Table 9: Average difference of the β-coefficients between the linear and binary mod-
els, by type of the submodel (x is a lower level fixed effect, rc a continuous random
effect, rb a binary random effect, and z a higher level effect), %

difference in %
∑

(β′rescaled − βred)2
type of the model mean sd min max mean sd

constant 98.5 5.4 81.3 120.6 .0019 .0028
x 99.2 1.8 94.5 103.0 .0005 .0008

rc, x 99.5 1.8 94.0 103.2 .0098 .0360
rc, x, rc × x 101.0 1.9 92.9 103.6 .0006 .0016

rb, x 101.0 3.5 94.9 110.5 .0011 .0020
rb, x, rb × x 101.0 4.4 92.5 13.6 .0036 .0086

z 99.6 5.1 86.3 129.8 .0026 .0050
z, rc 101.1 3.9 98.0 117.6 .0007 .0016

z, rc, z × rc 100.2 1.4 97.6 103.3 .0002 .0003
z, rb 102.4 4.1 96.0 113.0 .0014 .0027

z, rb, z × rb 101.8 4.4 95.7 112.5 .0014 .0026
rc, rb 99.1 7.6 71.7 116.6 .0027 .0099

rc, rb, rc × rb 100.2 1.7 95.0 105.2 .0041 .0245
z, rc, rb 101.1 3.8 95.5 116.6 .0034 .0084

z, rc, rb, z × rc, z × rb 99.9 1.5 96.3 103.6 .0003 .0005
full model 99.8 1.2 97.2 103.0 .0002 .0005
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5 Conclusions

Probit- and logit-models continue to dominate quantitative social scientific research.

In this paper, we have proposed a solution to a problem that makes the direct

comparison of such models erroneous (cf. Mood, 2010). In this paper, we have

proposed a solution to this problem. In particular, we have demonstrated that it is

possible to construct a continuous variable y∗ which reflects a given binary outcome

y and which we can then analyse by linear methods. This allow us to decompose

fixed and random effects.

Our method is the only currently available method for decomposing fixed and

random effects on binary outcomes for multilevel data. With single level data, the

method also gives results that are much closer to theoretical expectations than the

binary approaches like, say, the y-standardisation method (Winship and Mare 1984;

Long, 1997), which compromises both the validity and reliability of cross-model

comparisons.

Even in the single level context, the previous solutions are not just less accurate,

but they have other limitations as well. For instances, Mood’s (2010) attempt to

use marginal effects is difficult to interpret, particularly if there are large differences

between classes. In contrast, the KHB-method makes assumptions about the added

predictor. Also, the KHB-algorithm in STATA often failed to function when com-

paring models involving a large number of variables, while our method handles such

settings with ease.

In the y-standardisation approach, by contrast, the two compared models refer

to different latent variables. Not only do they differ by a global scale parameter but

due to different error distributions. Only when the omitted variables are normal (or

logistic), this difference can be avoided.

We have proposed two alternative ways of operationalising the method. One of

them gives deterministic results, whereas the other one yields more reliable higher

level and random estimates. With a sufficient size of contexts, there is no notable

difference between these two operationalisations, however, whereas the binary ap-

proach continues to yield biased results.

This suggests that there are structural reasons why the y-standardisation method,

or any alternative rescaling method is not suitable for comparing mixed binary mod-

els. In particular, there is no global scale parameter but the fixed and random parts

of the model should be scaled differently.

By contrast, comparing linear models on a given continuous variable allows us

to use standard decomposition tools, including the relative change of R2-values (cf.

Prairie 1996). The constructed variable y∗ satisfies all the conditions required for

it to be used as a basis of such methods. Our only concern is that the linear
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(sub)models on y∗ should adequately reflect the original variable y. This assumption

has been verified in the context of single level data as well as the fixed coefficients

(β) for multilevel data. For random coefficients we have demonstrated that our

approach is more reasonable than the direct comparison of binary models.

As one shortcoming, our method does not provide adequate statistical metrics,

and leave it for future research to establish whether such metrics can be recovered

from y∗. Even so, we can still consult the corresponding binary models in order to

assess the statistical scales for fixed and random effects. In other words, we can

transfer the linear coefficients back to the binary context by using the inverse scale

parameter 1/st.dev(e′lat) and used the metrics provided by the binary model, or we

can verify whether the effects are significant directly from the binary model. For

single level models, these estimates are reasonably accurate, whereas for multilevel

models their accuracy can be estimated based on Tables 6 and 8. Of course, this does

not allow us to estimate the significance of the cross-model comparisons, but even

for linear models there is no adequate basis for examining the change of individual

effects statistically. Instead, only the change in the overall fitness of the model

(information criterion) can be tested.

In conclusion, we have demonstrated three things: the previously used scale-

parameter is not the optimal one. Second, in complex settings, our method gives

more accurate results in comparing nested models than those that have been previ-

ously available. Finally, our results question the previous argument that the com-

parison of binary regression models should fail due to ‘unobserved’ heterogeneity

within data (Mood, 2010). Instead, we have demonstrated that the choice of the

error parameter e, which stands for this ‘unobserved’ heterogeneity, does not affect

the results (with at least six digit accuracy): nested models are not comparable

because of the structure of the observed models, and not because of what remains

unobserved about them.
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Notes

1This is based on the fact that if a/b = c/d, then a/b = (a− c)/(b− d) = c/d.
2In order to avoid double shrinking, we tried to use either when constructing y∗, or alter-

natively, when analysing y∗ constructed as above. The resulting random parameters were then

overestimated, however, and the discrepancies were generally higher. We also tried weighting the

cases in the retrospective analysis of y∗, say, by counting each case 100 times so that the size of

contexts would increase. This is recommended only with fixed error adjustment, however, because

otherwise the random components appeared to be greatly overestimated. While increasing the

reliability of the full model, this weighting did not enhance the reliability of the relative change

in the random parameters in cross-model comparisons, moving the models further apart from the

corresponding binary models.
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