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Traumatic brain injury (TBI) is a major global health issue, with outcomes spanning

from intracranial bleeding, debilitating sequelae, and invalidity with consequences for

individuals, families, and healthcare systems. Early diagnosis of TBI by testing peripheral

fluids such as blood or saliva has been the focus of many research efforts, leading

to FDA approval for a bench-top assay for blood GFAP and UCH-L1 and a plasma

point-of-care test for GFAP. The biomarker S100B has been included in clinical guidelines

for mTBI (mTBI) in Europe. Despite these successes, several unresolved issues have

been recognized, including the robustness of prior data, the presence of biomarkers

in tissues beyond the central nervous system, and the time course of biomarkers in

peripheral body fluids. In this review article, we present some of these issues and provide

a viewpoint derived from an analysis of existing literature. We focus on two astrocytic

proteins, S100B and GFAP, the most commonly employed biomarkers used in mTBI.

We also offer recommendations that may translate into a broader acceptance of these

clinical tools.

Keywords: blood-brain barrier, neurodiagnostics, astrocytes, brain damage, brain hemorrhage, blood biomarkers,

point-of-care, kinetics

INTRODUCTION

Over the past 20 years, there has been unprecedented progress in the development and availability
of blood- or peripheral fluid-based brain injury biomarkers to improve the diagnosis and clinical
characterization of patients with neurological disorders, offering also remarkable opportunities
toward the understanding of disease pathophysiology and influencing medical decision-making
and therapeutic strategies. Traditionally, research into brain diseases, particularly research related
to traumatic brain injury (TBI), has focused on neuronal damage. In fact, “brain damage” has often
been used as a synonym for neuronal cell death (1). Thus, it is to some extent surprising that the
astrocytic proteins S100B and glial fibrillary acidic protein (GFAP) are among the most studied and
promising peripheral biomarkers (2). Their elevations in peripheral body fluids in a wide range of
neurological and psychiatric conditions have been ascribed to ongoing brain injury or dysfunction
(3), increased blood-brain barrier (BBB) permeability (1, 4, 5), or both. In addition, they are being
used to diagnose TBI in research studies and clinical settings (2, 6–8). In this work, we review and
compare S100B and GFAP’s pathobiological characteristics and discuss the evidence for their use

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.835597
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.835597&domain=pdf&date_stamp=2022-03-21
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Dxj42@case.edu
https://doi.org/10.3389/fneur.2022.835597
https://www.frontiersin.org/articles/10.3389/fneur.2022.835597/full


Janigro et al. GFAP and S100B and Neurotrauma

in different neurological conditions (9–12) with a focus on
mild traumatic brain injury (mTBI). We also provide practical
recommendations for their validation and implementation in
clinical settings, considering the analytical aspects and outlining
limitations and knowledge gaps that need to be addressed in
future studies.

Notably, S100B and GFAP have distinct characteristics and
kinetic patterns, and have been show to yield independent and
complementary information. Hence, they can be synergistically
adopted in clinical decision making. Refinement of disease
phenotype and outcome prediction may also benefit from their
combined use.

PROPERTIES OF S100B AND GFAP

Figure 1 summarizes the properties of S100B and GFAP. S100B is
a small homodimeric protein consisting of two β subunits, with
a molecular weight of ∼21 kDa (13). It belongs to a multigenic
family of Ca2+-binding proteins (i.e., regulators of intracellular
levels of calcium) involved in a variety of intracellular
and extracellular activities, including neuronal differentiation,
survival and proliferation, protein phosphorylation, and cell
motility (13, 14). Besides executing intracellular functions under
physiological or pathological conditions, S100B is also actively
secreted by astrocytes and adipocytes into the extracellular
fluid, where, in particular in the brain, it seems to play an
important role in tissue development and repair (15, 16). S100B
released by adipocytes may (17) or not (18) influence peripheral
levels. Recent evidence has shown that S100B is responsible
for maintaining neuronal gamma rhythms in the hippocampus
(19, 20).

Organ S100B expression at the mRNA level is limited
to astrocytes, leukocytes, melanocytes the testis (21). See
also https://www.proteinatlas.org/ENSG00000160307-S100B/
tissue. S100B protein is present in adipocytes, striated muscle,
enteric glial cells, adipocytes, chondrocytes, melanocytes,
and heart muscle [e.g., see (21)]. Still, the highest protein
concentrations have been detected in astroglial cells (22). The
presence in extracranial organs is due to the cellular uptake
of circulating S100B (21) by a mechanism recently proposed
in ref. (23) showing that clathrin and lipid rafts contribute to
the internalization of S100B. The contribution of expression
outside the CNS to the blood signal in a healthy individual is
minor as the highest value, including all extracranial sources,
is well below the levels seen in TBI (24). However, the current
orthodoxy is that the clinical use of S100B in mTBI should be
limited to patients without major non-brain injuries (25, 26)
though extracranially released S100B is quickly eliminated (27).
Of note, a recent large-scale multicenter study found no effects
of multi-trauma on S100B levels (28).

Glial fibrillary acidic protein (GFAP) is a cytoskeletal
monomeric filament protein present in astroglial cells located
in white and gray matter (29). GFAP protein is also present in
non-glial and non-CNS cells, such as non-myelinating Schwann
cells, chondrocytes, testicular Leydig cells, enteric glia, podocytes,

mesangial cells, and liver and pancreas, stellate cells (30–34).
GFAP is released into the bloodstream both as an intact protein
(50 kDa) and as breakdown products (18–44 kDa) derived from
calpain- and caspase-cleavage, in particular caspase 3, 6, and 9
(35, 36).

Glia-derived proteins present in normal cerebrospinal and
interstitial brain fluids (CSF and IF, respectively) may act as
indicators of BBB damage (BBBD) when measured in peripheral
body fluids (5, 24). Their increase may be simply due to a passive,
rapid distribution across disrupted endothelial tight junctions or
by cellular damage to glial cells after a traumatic event (14, 37–
39). The fact that the BBB prevents S100B from leaving the
brain was experimentally demonstrated by showing that CSF
increases do not result in measurable serum changes unless an
event disrupting the BBB, such as mTBI, was superimposed (5).
Comparable evidence for GFAP is lacking, but a quantitative
model of GFAP and S100B transfer process across a leaky BBB
has been developed (24). The half-life of S100B was shorter than
GFAP, mostly due to different kidney filtration rates of protein
with different molecular weights.

An alternative to direct passage across a disrupted BBB
was recently proposed (40). The so-called glymphatic system
(41, 42) is, according to this hypothesis, responsible for the
migration of S100B and GFAP from the injured brain into the
peripheral blood. There are several important considerations that
glymphatic drainage of astrocytic protein implies. First, it may
explain secondary delayed biomarker surges after TBI (38, 39).
Cerebral edema may trigger pathological changes in GFAP and
S100B brain synthesis, resulting in more significant extravasation
via the glymphatic pathway. Second, it may also explain the
accumulation of tau protein in the CNS after severe trauma (43).
However, the glymphatic drainage hypothesis does not fit with
the kinetic data of glial markers acute appearance in the blood
(1–2 h vs. ∼20), nor does it seem to apply to mTBI where frank
brain lesions are seldom observed.

Following brain injury, S100B can also be passively released by
dying damaged astrocytes into the circulation via the BBB, with
rapid clearance thereafter (half-life 60–120min). This may be the
main trigger of secondary, delayed increases in S100B (or GFAP)
after TBI (38, 39). These are usually correlated with secondary
adverse events.

WHAT DO ELEVATIONS IN S100B OR GFAP
REPRESENT?

Figure 2 describes in a graphical format the following
paragraphs. Since BBB “leakage” is a hallmark of many
neurological diseases (44, 45) or even subclinical events such as
subconcussive head hits (46, 47), increases in peripheral levels
of glial proteins occur in various brain diseases. In the presence
of an anatomical lesion or noxious event (e.g., a seizure or TBI),
ex novo synthesis by reactive astrocytes may further elevate
IF and CSF levels, which will increase their peripheral levels
across a permissive BBB. Thus, a biomarker “dose-response”
related to damage severity would be significant; none of todays’
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FIGURE 1 | See text.

FIGURE 2 | See text.

markers consistently gives a linear relationship between levels
and parenchymal lesion size/severity.

The issue of whether or not a disrupted BBB in the absence
of brain damage is sufficient to elevate serum levels is not purely
academic. Within the spectrum of TBI, a subconcussive injury

group was identified by a quantitative dynamic contrast MRI
protocol to show that American football athletes experience
BBB disruptions even when no concussion is present (48). BBB
damage was also reflected by elevated blood S100B in non-
concussed football players with high head impact scores reported
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in two independent studies (46, 47). This raises the intriguing
possibility that in mTBI clinical trials (see below), false-positive
elevations of GFAP and S100B in the absence of demonstrable
parenchymal involvement may reflect BBB damage not visible on
CT imaging.

While most of the available clinical findings relate to TBI and
its radiological sequelae, other studies focused on ischemic and
hemorrhagic stroke [S100B and GFAP (49)], brain neoplasms or
metastases (S100B) (9, 50) and GFAP (51), infectious diseases
with CNS involvement (S100B) (52), or psychiatric disorders
(S100B) (53). Therefore, due to the mechanism of S100B (and
GFAP) release across a dysfunctional BBB and from damaged
parenchymal cells, these biomarkers lack specificity for any
given neurological disease when sampled in the periphery. Thus,
an elevation of S100B or GFAP cannot be interpreted as a
stroke or TBI signal without considering the patient’s clinical
context. Therefore, the illness’s setting and its mode of onset are
paramount in translating any peripheral glia-derived biomarker
analysis into a medical diagnosis.

A literature review on blood biomarkers for brain diseases
reveals that the term “statistically significant increase” is often
used to suggest a clinically meaningful effect on biomarker levels.
For example, ref. (17) reports an increase of S100B with body
mass index (BMI). The correlation between these two variables
was statistically significant, yet only a small percentage of S100B
levels were above the normal threshold when using the test
employed (0.12 ng/ml). Thus, while a correlation between BMI
and S100B existed, the clinical significance of the increase may
not be significant. Nevertheless, it is important to understand
why obesity should influence blood levels of S100B. The most
parsimonious explanation is that fat tissue (adipocytes) release
S100B and that more fat tissue will release larger quantities.
A caveat of this explanation is that in the article mentioned
above, a positive relationship between S100B and BMI was true
only for values of BMI >30; in other words, the correlation
between S100B and BMI was due to increases of S100B in
obese individuals. If adipose tissue were a source of venous
S100B, one would expect this to hold true also within the
normal-to-overweight range. The question thus is, are there any
comorbidities of obesity other than BMI that may influence brain
release of S100B? Hypertension elevates S100B by a mechanism
involving the cerebral vasculature (54), and hypertension is a
comorbidity of obesity. It is thus possible that the elevated levels
of S100B in obese individuals are not due to obesity itself but
rather to complications associated with an elevated BMI.

THE RATIONALE FOR THE USE OF S100B
AND GFAP IN TRAUMATIC BRAIN INJURY

TBI is defined as a perturbation of brain function or a
pathological brain structure lesion caused by an external force
(55). In mTBI (mTBI), the duration of unconsciousness is a
few minutes (up to 30min) and post-traumatic amnesia up to
24 h. However, in many cases of mTBI, patients may not lose
consciousness. The best-known classification criteria for mTBI
are the American Congress of Rehabilitation Medicine (ACRM)

(56) and World Health Organization (WHO) classifications
(56). mTBI comprises the vast majority (80–90%) of all TBI
cases. However, this figure is considered an underestimation,
as a significant proportion of TBI victims do not seek medical
attention (57). Even a mTBI may result in complex events,
including functional, metabolic, and inflammatory alterations.
These changes are reflected in the levels of brain-derived proteins
released into the circulation and CSF (58).

TBI is among the most common causes for seeking emergency
medical attention. Patients with mTBI are, by definition,
conscious when they arrive at emergency departments (57).
Considering the high numbers of these patients, the substantial
healthcare burden is obvious, independent of whether mTBI
victims experienced a short period of unconsciousness and
amnesia. From a clinical viewpoint, the most common questions
encountered by emergency physicians dealing with head injury
patients are related to diagnosing TBI severity, need to undergo
a head CT, need for hospitalization, and prognosis of long-
term sequelae.

mTBI diagnosis is often challenging in the emergency
department setting because patients are typically intact on
neurological examination, and criteria for acute head CT are
often not met (6, 59, 60). Nevertheless, CT is the gold standard
to identify the subgroup of patients with intracranial pathology
necessitating in-hospital or neurosurgical care (61). Several
international guidelines have been developed to aid in decision-
making about how to risk-stratify patients for the need of
acute head CT. These guidelines are based on the patient’s
medical history, medications, initial and evolving symptoms,
and findings on neurological examination (62). Regardless, a
significant proportion of patients who undergo head CT at
admission have a negative scan for macroscopical brain lesions
(63). This is clinically problematic as there is an iatrogenic risk for
radiation-induced neoplasia associated with CT scanning (64).
This risk is especially pronounced in children and infants.

Blood-based biomarkers are widely assessed for estimation
of disease severity and progression in many areas of medicine.
The most studied indication for clinical blood-based biomarker
use in neurotraumatology is stratifying patients for CT
imaging after a head injury [e.g., Scandinavian guidelines (6)].
Essentially, the biomarker used in this setting further stratifies
a group of intermediate-risk mTBI patients to low-risk, hence
omitting the need for CT and/or hospitalization. Studies have
confirmed the excellent sensitivity of S100B in this setting,
although the specificity is disappointingly low and may hamper
effective implementation.

In severe TBI, current management and care involve a
combination of neurosurgery and neurointensive care. During
this period, dynamic changes in the brain (such as hemorrhagic
or ischemic complications) may be challenging to detect
and hence treat. A biomarker may add valuable diagnostic
information in this setting. Although there is no strict
neuroprotective drug in clinical use, many have been proposed
and are presently being evaluated. Other neuroprotective
measures following TBI may also need to be assessed and
followed during the time-course of TBI development. Insights
relating to long-term outcomes following TBI may aid clinicians
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in the management and timing of rehabilitation efforts. Outcome
prediction may also be informative regarding the level of care,
questions concerning life-support measures, and information to
family and relatives.

CLINICAL STUDIES AND CURRENT USE IN
TBI (INCLUDING INJURIES, CT, MRI,
OUTCOME VARIABLES)

The current management of TBI involves different phases.
Immediately after a TBI event, the patient and/or bystanders
decide whether to involve health care professionals. Initial
symptoms and clinical signs may be worrisome (such as loss
of consciousness (LOC), amnesia, seizures, and neurological
deficits), which usually lead to a health care contact, even if
these symptoms/signs often subside. In some instances, such as
in sporting activities, specific informatic questionnaires may be
used to manage patients (see below). In any case, a group of these
patients will end up seeking medical care, most of them within
the first few hours after the event. These cases generally present
to Emergency Departments (ED’s), although some may be seen
in primary care facilities. Irrespective of where the patients seek
care, the initial assessment is similar. Elements of patient history,
including medications (primarily blood thinners), description
of the traumatic event, and initial symptoms, are combined
with clinical examination to stratify patients according to the
risk of intracranial injury, particularly those that may require
intervention (such as neurosurgery). The foundation of this
process is a score based on the consciousness level of the patient,
in practice, often the Glasgow Coma Scale (GCS), but many other
parameters can be included. Based on all these factors, patients
are either briefly observed, admitted to the hospital, transferred
to another hospital, receive a CT scan (or a combination of these),
or discharged without further investigation.

It is notoriously difficult to stratify these patients accurately.
International guidelines and decision rules, either based on
derivation and validation cohorts or an evidence-based process,
simplify the above factors to facilitate management for the
treating physician. Despite this approach, many patients still
receive unnecessary CT scans and/or hospitalization as the
guidelines are designed to maximize sensitivity (negative
predictive value) for intracranial complications after TBI, leading
to a low specificity (positive predictive value). More importantly,
most elements of these guidelines are based upon subjective
measures either supplied from the patient (who has suffered
a TBI, possibly clouding accurate reporting) or the treating
physician (inter-rater agreeability may be low). Additionally,
many patients are children, elderly, or may suffer from dementia,
and many patients are intoxicated (65). All these factors further
complicate clinical judgment and even guideline use.

A biomarker is an objective measure. Results are presented as
continuous variables, allowing a cutoff to be established, often
based on receiver operator curve (ROC) analysis with a clinically
relevant outcome. The chosen cutoff can either maximize the
sensitivity or specificity (or both using two separate cutoffs),
depending on the intended use of the biomarker. In mTBI,
guideline development has generally used positive (pathological)

CT scans and an outcome measure. High sensitivity has been
targeted. It is noteworthy that there is a commonly used threshold
for S100B (depending on the test used but with clinical-grade
Roche and Diasorin tests around 0.1–0.12 ng/ml) whereas (see
below) there is no predetermined “normal” threshold for GFAP
in most articles published.

Adults
S100B is the only biomarker that has been incorporated in a
guideline including clinical covariates. The use of S100B has been
recommended as part of the Scandinavian Guidelines for Initial
Management of Minimal, Mild and Moderate Head Injuries in
Adults (6, 59, 60). S100B (cutoff < 0.1 ug/L when measured with
Roche Diagnostics system) can be used as part of the guideline
algorithm to rule out the need for head CT in patients with
isolated mild head injuries with low clinical risk for intracranial
bleeding within 6 h from the injury. The use of S100B in the
Scandinavian guideline has recently been validated in an external
cohort with a sensitivity of 0.94 and specificity of 0.19 (59, 66).
The positive and negative predictive values for acute traumatic
lesions on head CT were 0.18 and 0.94, respectively. The results
also showed that the Scandinavian Guidelines could be safely
used in imaging decision-making within 24 h of head injury (66).
The Scandinavian guidelines with S100B incorporated reduce
CT usage and costs (67). A recent meta-analysis confirms this
approach (68). Other studies have shown, however, the presence
of peripheral trauma may impact serum values [e.g., (69)].

GFAP is detectable within 1 h following TBI and peaks within
20–24 h with a half-life of 24–48 h (70). Abnormal serum GFAP
levels persist for days after the initial injury (58); GFAP can
discriminate patients with TBI and orthopedic controls after
30 days (39), but the relevance of this finding in acute TBI is
marginal. GFAP levels are affected by extracranial injuries (71),
but no specific guidelines exist on the process of patient selection
for the diagnostic use of GFAP.

The recent ALERT-TBI study showed that blood tests
including GFAP and Ubiquitin C-terminal hydrolase-L1 (UCH-
L1) in CT-positive findings yielded better sensitivity and
specificity (7) than the Scandinavian guidelines in the recent
validation study (59). The superiority of GFAP over S100B was
also noted in two studies (72, 73). The FDA recently approved
this test to identify patients in whom a head CT is necessary.
The study based on which the approval was granted showed that
the results were significantly driven by GFAP and not UCH-L1
(7, 70, 74) [see also (75)]. Unlike the Scandinavian guidelines,
the FDA-approved test does not consider clinical covariates such
as extracranial injuries or other clinical factors predisposing for
intracranial hemorrhage. GFAP is currently not incorporated
into any clinical guideline.

In contrast to mTBI, severe TBI (sTBI) is associated with
high mortality (76). About 30% of patients with sTBI die, and
50% suffer at least moderate disability after 1 year, although
some make almost complete recoveries (77). Initial assessment
of severity may be misleading, and severity grading may change
during the acute injury phase because TBI is a dynamic process
with a complex and heterogeneous pathophysiology. Early
outcome predictions are also difficult because of the threat of
secondary insults.
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The diagnosis of sTBI remains a daily task for neurosurgeons,
anesthesiologists, and emergency care physicians and is based
on clinical and radiological findings (8, 76). Almost all studies
have reported that the ability of S100B or GFAP to discriminate
between CT-negative and CT-positive patients is significantly
better in patients with sTBI than in patients with mTBI. For
instance, the so-far most extensive acute diagnostics study
reported that GFAP levels upon admission were highly predictive
of abnormal CT findings, outperformed other markers, and
complemented clinical variables considered in current CT
decision rules. The results were more pronounced in moderate
and severe TBI. Surprisingly, the correlation between GFAP and
S100B was relatively weak (0.57)—even in patients admitted to
intensive care units (8). Similar findings were reported in a
smaller study that also included S100B and GFAP. The study
examined not only sTBI patients but all severity levels, which
leads the results to be driven by the severe cases (78).

Blood-based biomarkers have been investigated in the
diagnosis of secondary insults and outcome prediction in
sTBI. In the acute phase of severe traumatic brain injury,
the prognosis is essential for both nearest of kin and treating
physicians. It facilitates decision-making and the choice of
the appropriate extent and intensity of treatment measures.
Both S100B and GFAP are robust predictors of outcome
in patients with sTBI. S100B can identify patients with an
unfavorable outcome and the development of brain death or
mortality after sTBI (79–81). In other studies, GFAP and S100B
were strong predictors of unfavorable outcomes and correlated
with injury severity (82, 83). Serum GFAP levels were also
significantly higher in patients who died or had an unfavorable
outcome (84). The most widely used prognostic models—the
CRASH and the IMPACT calculators—use variables available
at admission, such as initial severity using the GCS score, age,
pupillary reactivity, CT findings, major secondary insults, and
laboratory findings (85). There is growing interest in adding
biomarkers to existing clinical prognostic models to improve
predictive reliability.

Recently, Thelin et al. examined the concentrations of six
different protein biomarkers in relation to injury severity and
outcome in patients with predominantly severe traumatic brain
injury (70% of cases) in the first week after injury (86). The
combination of GFAP and neurofilament light protein provided
the best improvement in performance in predictive outcome
models, including IMPACT. A principal components analysis
model revealed clustering of neuronal markers tau, Ubiquitin
carboxy-terminal hydrolase L1 (UCH-L1), and the astrocytic
markers S100B and GFAP. None of the examined markers were
significantly correlated with diffuse axonal damage detected by
MRI. Levels of S100B and UCH-L1 were associated with the
presence of associated extracranial injury (86). Czeiter et al.
reported that levels of GFAP improved the performance of the
IMPACT calculator in predicting the outcome of patients with
sTBI (8). However, in terms of incremental value to imaging
findings, in a study examining the additional value of biomarkers
to the Helsinki CT Score to predict outcome in CT-positive TBI
patients, neither S100B nor GFAP showed significant prognostic
improvement (87).

Children
Considering the increased risk from ionizing radiation and
the challenging clinical examination of children, a reliable
brain biomarker would be important in managing mTBI in
these patients. Although studies seem promising, with similar
diagnostic performance to adult studies (88–93), more data
is needed before the test can be recommended in guidelines
(94). Interestingly, an ongoing interventional study should add
considerable data to this field (95).

In children, predicting the outcome of sTBI is more complex
than in adults because of the heterogeneity of the developing
brain and the limitations of clinical examination. The lesions seen
on CT in children with sTBI have low sensitivity in predicting
outcomes. Therefore, novel objective methods are needed to
improve or even replace clinical and radiological parameters
that have been associated with outcomes in children with sTBI.
Prognostic biomarker studies in children with sTBI are only a
few. As in adults, S100B is the most studied prognostic biomarker
in children. S100B can discriminate between moderate to sTBI
and controls (96). Its levels are associated with outcomes in
multiple studies, including TBIs of different severities (97–99). In
a recent study with a small cohort of children with sTBI, levels of
GFAP discriminated between controls and mTBI or sTBI (100).
In earlier studies, levels of GFAP have correlated with outcomes
in children with sTBI (101, 102).

CONFOUNDING FACTORS

Amajor difference between the S100B and GFAP literature is that
while to distinguish between CT-positive and negative findings, a
consistent cutoff has often been used for S100B, in contrast, in
the case of GFAP, the cutoff varies depending on the study. In
addition, cutoff values for S100B are usually reported a priori,
while for GFAP these were derived from data analysis. While
this appears to be due to the use of different testing methods,
it is nevertheless worth noting that, for example, Bazarian et al.
used a CT- cutoff (ng/ml) of 0.022 GFAP/327 UCH-L1 (mTBI,
assay: Abbott Laboratories) (7), while Papa et al. used 0.03/0.1
(mTBI–moderate TBI, assay: Banyan Biomarkers Inc.) (103).
Moreover, Posti et al., reported cutoffs for GFAP from 0.14 to
0.24 (Quanterix Simoa) depending on the initial clinical severity
and presence of possible extracranial injuries (78, 101). In most
studies dealing with GFAP, there was no predetermined cutoff,
and cutoffs were calculated post facto to fit the data (2).

Another difference between the two tests (GFAP vs. S100B)
is the lower limit of detection (LLOD). For S100B, the LLODs
reported by the vendors (chiefly Diasorin and Roche Diagnostics;
LLOD 0.02 and 0.005 ng/ml, respectively) were also reported in
most publications. In contrast, the LLOD values for GFAP have
varied wildly between studies. By using a very sensitive platform,
Bogoslovsky et al. reported a LLOD of 0.0008 (ng/ml), others
report a LLOD of 0.1 (28, 74), 0.01 (104, 105), 0.02 (103), 0.008
(70). This, of course, compounds the interpretation of negative
predictive values and false negatives. For example, the study by
Welch mentioned above (105) (LLOD = 0.01 ng/ml for GFAP)
found a substantial number of samples below the LLOD in both
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CT- and CT+ patients (64 and 21% of all patients, respectively);
false negative values in the CT+ group were factored as the value
of LLOD, not as false negatives. The multicenter TRACK-TBI
effort reported 26% of samples below LLOD for GFAP, but the
study did not distinguish those in CT- and CT+; the impact of
>¼ of samples below LLOD on NPV was not discussed (74).
In another study (103), samples below LLOD were equalized to
½ of LLOD; the percentage of these values in CT+ subjects was
not reported.

The kinetic behaviors of serum GFAP and S100B have
been investigated (39, 70, 105, 106). In addition, a computer
simulation reported acute, transient values for GFAP and S100B
after simulated BBBD (24). On average, for S100B in severe
TBI, most studies indicated a t1/2 of about 24 h, even if very
early sampling in these patients reveals rapid decreases (1–
2 h). Another study has shown that the elimination of S100B
after cardiac surgery is faster and not affected by a moderate
decrease in GFR (107). The half-life of S100B has been shown
to depend on kidney glomerular filtration (24). The protein
GFAP (n = 18) appears to have t1/2 of about 24–48 h in severe
TBI. Papa et al. (70) report elevated levels of GFAP at time =

0, which corresponded to values at admission (within 4 h after
TBI). In patients with TBI, 11.6% of samples were below LLOD;
in the CT+ group, the low end of the range was the LLOD
(0.008 ng/ml). Thus, even when using an ultrasensitive test, some
patients with positive intracranial findings present with GFAP
levels at or around LLOD. How these values were analyzed when
estimating the half-life for GFAP was not discussed.

The fact that according to most studies the kinetic decay of
biomarker’s occurs within the recommended time window for
testing suggests that time of testing should be either standardized
(very difficult since TBI diagnosis is not easy to synchronize
across different centers) or that time of testing should be
included in the determination of a diagnosis. An alternative
approach may consist of testing at two-time points, separated
by an interval consistent with the kinetics of S100B or GFAP
in blood. In the acute diagnosis of TBI (perhaps excluding the
need for head CT imaging), longitudinal sampling—at least two
samples—may thus be required to assess the trend in biomarker
concentration to acquire clinically useful information. Finnish
researchers obtained promising results for GFAP in longitudinal
measurement in acute diagnosis of stroke (108).

Given that the brain is the primary source of circulating S100B
and GFAP, why are their half-life values so different? Several
hypotheses can be formulated, including the effect of GFAP
and S100B distribution in tissues and the impact of glomerular
filtration (GFR). Experimental work in rats demonstrated that
blood S100B partitions with tissues where it is taken up primarily
by immune-related cells (dendritic cells in the skin, CD4+ cells
in the spleen, etc.) (21). Overall, except for skin cells, S100B
blood levels are independent of extracranial sources (18, 24).
Both GFAP and S100B are found in testes, but this seems to
be due to local production rather than uptake. In addition,
diffusion from blood to testes is prevented by testicular barrier
cells. While the fate of circulating S100B has been studied,
to our knowledge, nothing is known about GFAP uptake by
peripheral tissues.

The kinetic process of protein excretion depends onmolecular
size, among other variables. Molecules smaller than 15 kDa pass
into urine through glomerular filtration, whereas the kidney
can also filter a selected few proteins with molecular weights
between 16 and 69 kDa (24). For example, a common excreted
protein, cystatin, has a molecular weight only slightly greater
than that of S100B 98. It is thus predicted that S100B, owing to
its lower molecular weight, will filter faster than its larger GFAP
counterpart. This could, in a computer model (24), explain the
different half-lives of GFAP and S100B.

The extracranial contribution to peripheral blood levels has
been shown primarily for S100B but also for GFAP and UCH-L1
(71, 72, 109, 110). The general understanding of this problem is
that the biomarker’s presence in non-CNS tissue contributes to
the signal measured in blood. This is clearly a confounding factor
since, at least in the case of TBI, fractures and tissue damage
may occur together with injury to the head. The mechanism
of extracranial sources’ contribution to blood levels may be
the damage of cells expressing S100B or GFAP and subsequent
release of cytosolic content in body fluids. This mechanism is
assumed correct even though alternative explanations can be
provided. For example, the immunodetection system used may
allow for cross-reactivity with inflammatory mediators released
by peripheral damage. This was confirmed for S100B measured
during open-heart injuries (109). An alternative reason for the
increased biomarker levels after multi-trauma is the effect of
trauma itself on the BBB (111). Multi trauma promotes a pro-
inflammatory cascade and broad changes in blood pressure,
which may indirectly cause increased permeability of the BBB. In
addition, there is accumulating evidence that inflammatory pain
states produce significant changes in the BBB permeability (112,
113). Thus, a combination of cellular (activated leukocytes) and
molecular (inflammatory mediators) can synergistically upset the
dynamic equilibrium which characterizes BBB function.

SPORTS, BIOMARKERS, AND TBI

A recent set of review articles (114, 115) has summarized the state
of the art in biomarkers’ use in sports concussion and TBI. In
our review, we wish to underscore a number of factors that are
relevant for sport assessment of mTBI and concussions.

Mounting research in the field of sports concussion
biomarkers underscores the deleterious effects of brain injury
from recreational activity and professional sports. This increased
awareness derives perhaps from the concussion liability trial
against the USA National Football League and the literature
linking chronic traumatic encephalopathy (CTE) to sport-related
repetitive concussions. Without going into the merit of the
proposed link with CTE [see (116)], concussions in sports
deserve a diagnostic approach that is slightly different form the
usual approach to TBI. First, the athletes involved are typically
young and healthy; in high school sports, concussed athletes
may not yet have a fully developed brain. In addition, the
diagnosis at the site of injury depends critically on the presence
of medical expertise, usually provided by trainers, “soccer moms”
or physician-parents. This is an ideal scenario for an objective
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test to rule out concussion sequelae. The test, however, has to
be done in absence of a trained phlebotomist, which is a great
opportunity for salivary tests. Several studies have shown the
utility of S100B in this context, including the salivary test recently
developed by one of us [DJ (115, 117)].

The issue of mTBI/concussion in sports, unlike civilian TBI
but in synchrony with military blast injuries, is the repetitive
nature of the event. It is not uncommon for an American football
player, a soldier, or a boxer, to experience several mTBI episodes.
Thus, each acute event should be clinically gauged as a possible
chronic disease. A test for the sequelae of repeated TBI is lacking,
but the use of autoantibodies against the S100B biomarker itself
has shown early promise (46, 118). Autoantibodies against GFAP
have also been described (119, 120).

A few reports have shed doubt on the utility of S100B in
sports concussion owing to its increases in the absence of head
impacts (121, 122). Others have shown that “running the game”
does not impact the significance of S100B elevations after a game
(46, 47, 118, 123–125). The main point of contentions seems
to be whether S100B can be released from extracranial sources
and if this will impact the predictive value of the test. Or, in
other words, does physical exercise impact the BBB? Normal
levels of exercise improve BBB function (126), while strenuous,
prolonged super physiological activity impairs it (127). The
latter is due to free radical formation. It is thus possible that
the increases in S100B after strenuous exercise are due to free
radical formation, BBB disruption and elevation in brain-derived
S100B (128).

CONCLUSIONS AND FUTURE ASPECTS

A lot of effort has been made to retool the clinical
armamentarium used to diagnose TBI. For several reasons,
blood biomarkers have become focus of intense research and
development. The reasons for focusing on peripheral biomarkers
have been discussed in this review. The combined outcome of
these endeavors has produced a sizeable number of articles,
reviews and reports. Owing to analytical heterogeneity among
laboratories, a direct comparison across studies is not always
possible. This is in particular true for GFAP where a broad
range of thresholds and LOD have been published. Future
side-by-side studies need to use predetermined cutoff values and
reproducible, publicly available, measurement strategies.

With the advent of POC plasma testing solutions it is
becoming clear that blood testing may have the limitation of
procurement of serum/plasma on the field. This may be a lesser
issue if saliva is used (58, 117, 129) as is the case for S100B.
Since the Scandinavian guidelines integrate clinical findings with
biomarker values, we believe that this should also be adopted
for other biomarkers. In fact, as shown above, brain-derived
biomarkers cannot be specific for a particular neurological
disease: thus, clinical judgment synergistically aids interpretation
of biomarker values.

Although S100B is incorporated into the Scandinavian
guidelines as an option to reduce CT scanning, implementation
of these guidelines has been difficult. One aspect seems to be the
introduction of a new modality in these patients (a biomarker),
although the poor specificity reasonably contributes to the
implementation difficulties. Indeed, the diagnostic performance
of S100B in mTBI is somewhat similar to the performance of D-
dimer in pulmonary embolism (130), a blood test that has also
been difficult to implement clinically. A better understanding of
barriers to guideline implementation may facilitate future efforts.

As suggested in a stroke study (108) and by the original patent
on S100B in brain diseases [see (131)], repeated monitoring of
a biomarker may be a partial solution to the steep kinetic decay
of the biomarker within the diagnostic window for mTBI. In the
future, monitoring prehospital biomarker trends compared to
single-point measurement will be needed if the biomarkers are
to be more broadly applied to clinical practice.

In conclusion, blood (or saliva) neurobiomarkers are reaching
maturity at least in the TBI space. The future shall bring new
discoveries and refinement of use, as in the case of GFAP and
S100B. These show similarities and differences; the latter perhaps
should be further explored to develop a combination test that
exploits the strengths and lessens the weaknesses of these two
popular means to diagnose TBI.
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