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A B S T R A C T

Alterations induced by prenatal exposure to nicotine have been observed in experimental (rodent) studies. While numerous developmental outcomes have been
associated with prenatal exposure to maternal cigarette smoking (PEMCS) in humans, the possible relation with brain structure is less clear. Here we sought to
elucidate the relation between PEMCS and structural properties of human corpus callosum in adolescence and early adulthood in a total of 1,747 youth. We deployed
three community-based cohorts of 446 (age 25–27 years, 46% exposed), 934 (age 12–18 years, 47% exposed) and 367 individuals (age 18–21 years, 9% exposed). A
mega-analysis revealed lower mean diffusivity in the callosal segments of exposed males. We speculate that prenatal exposure to maternal cigarette smoking disrupts
the early programming of callosal structure and increases the relative portion of small-diameter fibres.
1. Introduction

Cortico-cortical connections are formed in the early fetal period
(McConnell et al., 1989). The development of axonal connections is
guided by numerous signaling molecules, making it prone to external
insults (Lauder, 1985). Prenatal exposure to maternal cigarette smoking
(PEMCS) exposes the fetus to hypoxia and a large number of chemicals
including nicotine (Luck et al., 1985), which is a potent neuromodulator
due to the early expression of nicotinic receptors in the developing brain
(Atluri et al., 2001). Numerous studies have reported disrupted neural
development due to in utero exposure to nicotine in experimental animals
(Ernst et al., 2001). Nicotine causes abnormalities in cell proliferation
and differentiation (Slotkin et al., 1986), alters neuronal pathfinding
(Zheng et al., 1994), and disrupts the development of the cholinergic and
* Corresponding author. Department of Psychiatry, University of Oulu, Oulu, 9001
** Corresponding author. Bloorview Research Institute, Toronto, M4G 1R8, Canada

E-mail addresses: lassi.bjornholm@oulu.fi (L. Bj€ornholm), tpaus@hollandbloorvie

https://doi.org/10.1016/j.neuroimage.2019.116477
Received 18 January 2019; Received in revised form 9 December 2019; Accepted 1
Available online 24 December 2019
1053-8119/© 2019 The Authors. Published by Elsevier Inc. This is an open access ar
nc-nd/4.0/).
catecholaminergic systems (Oliff and Gallardo, 1999) as well as the
functions of sex hormones (Lichtensteiger and Schlumpf, 1985). Many
alterations caused by prenatal exposure to nicotine persist after birth
(Slotkin et al., 1986, 1987) or may emerge later in development due to
modified genetic programming (Yochum et al., 2014).

Prenatal exposure to maternal cigarette smoking is one of the most
prevalent harmful prenatal factors in industrialized countries; globally,
more than half of women who smoke daily continue smoking during
pregnancy (Lange et al., 2018). In large observational studies, this
exposure has been associated with various detrimental outcomes at birth
or later in life. The former includes lower birth weight (D’Onofrio et al.,
2003) and smaller head circumference (K€all�en, 2000), while the latter
includes overweight (Albers et al., 2018), lower cognition (Fried, 1995)
and poor mental health (Wakschlag et al., 2002). The causality of these
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(and other) associations between PEMCS and various possible outcomes
is, however, impossible to establish in such observational studies; in
many cases, these associations may be due to other (unmeasured) genetic
and environmental factors (Ernst et al., 2001; D’Onofrio et al., 2003). In
fact, findings in genetically informed studies do not support a causal
effect of PEMCS on later development of externalizing disorders or
attention deficit hyperactivity disorder (ADHD), but are rather consistent
with the effect of inherited or family factors (Gustavson et al., 2017;
D’Onofrio et al., 2008).

Brain imaging, not bound by diagnostic criteria, has the potential to
help with bridging the gap between preclinical and clinical observations.
Based on earlier experimental and observational research, structural al-
terations in brain associated with PEMCS are likely diverse. Reported
associations between PEMCS and imaging measures include reduced
head growth in the fetal period (Roza et al., 2007) and smaller total brain
and cortical grey-matter volumes in school-aged children (El Marroun
et al., 2014). We have previously reported thinner orbitofrontal cortex in
both male and female adolescents, and lower size of the corpus callosum
in female adolescents with (vs. without) PEMCS (Toro et al., 2008; Paus
et al., 2008). Another study on corpus callosum observed an association
between PEMCS and higher fractional anisotropy in the anterior corpus
callosum in adolescents (Jacobsen et al., 2007). The opposite, namely
lower fractional anisotropy in the same callosal region, was observed in
another study (Liu et al., 2011). While offering valuable findings, these
two studies were limited by relatively small sample size and differences
in offspring age.

Corpus callosum is the largest fiber-tract in the human brain, con-
necting the two brain hemispheres (Aboitiz et al., 1992).
Inter-hemispheric transfer of information is reflected in the composition
of callosal fibers. We have recently compared structural properties of the
corpus callosum, assessed in vivo with MRI, with the distribution of large
and small caliber fibers, as assessed in vitro (Bj€ornholm et al., 2017). In
the present report, we focus on an association betweenmaternal smoking
during pregnancy and structural properties of the corpus callosum in
adolescents and youth drawn from three community-based cohorts. We
use six complementary MRI measures sensitive to structural properties of
brain tissue: Longitudinal Relaxation Rate (R1 ¼ 1/T1, i.e. the inverse of
longitudinal relaxation time), Transverse Relaxation Rate (R2 ¼ 1/T2)
and Myelin-Water Fraction (MWF) are sensitive to tissue water and
myelin content (MacKay et al., 2006); Magnetization Transfer Ratio
(MTR) is a proxy of tissue macromolecular content, and is dominated by
myelin in white matter (Sled, 2018; Schmierer et al., 2004); Fractional
Anisotropy (FA) and Mean Diffusivity (MD) are measures sensitive to the
density, arrangement and morphology of axonal bundles (Mori and
Zhang, 2006). Finally, we use callosal mid-sagittal volume as a proxy of
the overall morphology and number of callosal fibers (Aboitiz et al.,
1992). Based on earlier studies associating PEMCS with disrupted
morphology of neural tissue (Ernst et al., 2001), unfavorable neuro-
developmental outcomes (K€all�en, 2000) and long-term epigenetic vari-
ation (Lee et al., 2015), we hypothesize that the composition of callosal
fibers is altered in youth exposed prenatally to maternal cigarette
smoking, as compared with non-exposed individuals.

2. Materials and methods

2.1. Study setting and analytical approach

The three cohort studies were approved by their local ethics com-
mittees and participants (or their guardians) have given written consent
to participate in the study. A more detailed description of each study is
given in Supplementary Materials and Methods.

In order to evaluate robustness of any PEMCS-associated variations in
the structural properties of the corpus callosum, we have designated the
NFBC1986 (see below) as a discovery cohort and the SYS and ALSPAC as
replication cohorts. The NFBC1986was chosen because all MRI measures
therein can be tested for replication in at least one of the two replication
2

cohorts. In addition, in measures available in two or more cohorts, we
provide results of their mega-analysis.

2.1.1. The NFBC 1986 Study
The Northern Finland Birth Cohort 1986 Study (NFBC, 1986; http:

//www.oulu.fi/nfbc/) is a prospective population-based collection of
health-related information about individuals with expected date of birth
between the 1st of July 1985 and the 30th of June 1986 in the Northern
Finland (J€arvelin et al., 1993). A subsample of 698 individuals exposed to
maternal smoking during pregnancy (smoking continued during the 2nd
trimester) had existing data of a previous follow-up and were eligible for
inclusion in the current study. The non-exposed control group was
selected randomly from offspring of non-smoking mothers with the same
inclusion and exclusion criteria as the exposed group (Lotfipour et al.,
2014). The following exclusion criteria were used: participant was
adopted, use of alcohol by the mother during pregnancy (excl. >210 ml
alcohol/week), diabetes of the mother during pregnancy (onset before
pregnancy, treated by insulin), premature birth (<35 weeks) and/or
detached placenta, multiple births, hyperbilirubinemia requiring trans-
fusion, type 1 diabetes, systemic rheumatologic disorders, malignant
tumors requiring chemotherapy, congenital heart defects or heart sur-
gery, aneurysm, epilepsy, bacterial infection of CNS, brain tumor, head
trauma with loss of consciousness > 30 min, muscular dystrophy, myo-
tonic dystrophy, nutritional and metabolic diseases, major neuro-
developmental disorders (e.g. autism), hearing deficit requiring hearing
aid, vision problems (strabismus, visual deficit not correctable), treat-
ment for schizophrenia or bipolar disorder, IQ < 70, low reading ability
(<2 SD), special education.

Data concerning maternal smoking were collected from two ques-
tionnaires, one completed by the mothers during pregnancy and one by
midwives right after delivery. The offspring of those women who
continued to smoke after the first trimester formed the exposed group.
Non-exposed controls were matched to the exposed participants by
maternal education (using 5-level categories of basic and occupational
education) and place of birth (urban/rural and Oulu/Lapland region). Of
the invited 1,396 individuals (698 exposed and 698 matched non-
exposed), a total of 471 (34%) participated in the MRI study. Data for
callosal volume, FA, MD or MTR were available for 446 individuals (age
25–27 years, mean [SD] ¼ 26.45 [0.51]); 206 individuals (46%) were
exposed to maternal smoking during pregnancy.

2.1.2. The SYS
The Saguenay Youth Study (SYS; http://saguenay-youth-study.org) is

aimed at evaluating brain and cardiometabolic health during adoles-
cence (Pausova et al., 2007). French-Canadian adolescents, aged 12–18
years (N ¼ 1029; mean age 15.0 � 1.8 years) were recruited from high
schools in the Saguenay/Lac-Saint-Jean region of Quebec, Canada; half of
the adolescents were exposed to maternal smoking during pregnancy and
the other (non-exposed) half was matched to the exposed by maternal
education and school attended. The exposed group included those par-
ticipants whose mother continued to smoke during the 2nd trimester of
pregnancy. The SYS uses a family-based design where two or more sib-
lings from the same family are included. Details of recruitment and
testing procedures are provided in (Pausova et al., 2007).

The main exclusion criteria for both exposed and non-exposed ado-
lescents were: (i) premature birth (<35 weeks); (ii) positive history of
alcohol abuse during gestation; (iii) positive medical history for menin-
gitis, malignancy, and heart disease requiring heart surgery (iv) severe
mental illness (e.g., autism, schizophrenia); or mental retardation (IQ <

70) and (v) MRI contraindications. The Research Ethics Committee of the
Chicoutimi Hospital approved the study protocol. Adolescents and their
parents signed informed assent and consent, respectively (Pausova et al.,
2017).

In the current study, MRI data in callosal volume or MTR were
available for 934 individuals (age 12–18 years, mean [Standard Devia-
tion, SD] ¼ 15.02 [1.83]); 442 individuals (47%) were exposed to

http://www.oulu.fi/nfbc/
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maternal smoking during pregnancy. The number of individuals with
existing data on each MRI measure is specified in Supplementary Mate-
rials and Methods.

2.1.3. The ALSPAC study
The Avon Longitudinal Study of Parents and Children birth cohort was

designed to investigate the influence of various factors on health trajec-
tories. Pregnant women residing in the former Avon Health Authority in
South-West England, who had an estimated date of delivery between 1
April 1991 and 31 December 1992 were invited to participate in the study.
This resulted in a cohort of 14,541 pregnancies, of which 13,988 single-
tons/twins were alive at 12 months of age (Fraser et al., 2013). Partici-
pants of this study were selected from the original cohort (Boyd et al.,
2013) based on their current domicile being within a 3-h journey (1-way)
from the scanning site and the availability of a minimum of three blood
samples obtained for sex-hormone assays (Khairullah et al., 2014). The
sample included the first 507 participants who met these criteria and
accepted the invitation to take part in the MRI substudy.

Information of maternal smoking was collected from the mothers
during pregnancy using questionnaires. Exposure to maternal cigarette
smoking during the 2nd trimester was used as criteria for the exposed
group and no maternal smoking before or during pregnancy for the non-
exposed group. A total of 507 male participants from ALSPAC were
scanned. Only male participants were included owing to the focus of the
NIH grant funding this work. Data for callosal volume, FA, MD, MTR, R1,
R2 or MWF were available for 367 individuals (age 18–21 years, mean
[SD] ¼ 19.57 [0.82]); 34 individuals (9%) were exposed to maternal
smoking during pregnancy, please see Supplementary material for details
on exclusion.

2.2. Image acquisition

All MRI datasets were acquired during a single session in each cohort.
Datasets for each cohort included a high-resolution (1-mm isotropic) T1w
structural scan and parametric imaging, including Magnetization Trans-
fer Imaging (ALSPAC, SYS and NFBC1986), Diffusion-Weighted Imaging
(NFBC1986 and ALSPAC) and Multi-Component Driven Equilibrium
Table 1
Parameters of acquisition of brain MRI. a) T1-weighted (T1w) and Magnetization T
Weighted Imaging (DWI) and MTI in the Northern Finland Birth Cohort 1986 (NFB
Acquisition parameters for Multi-Component Driven Equilibrium Single-Pulse Observ

a) The NFBC1986 Studya The SYS St

Modality T1w DWI MTI T1w M

Repetition time
(ms)

2400 9000 30 25 41

Echo time (ms) 2.56 102 11 4.2 7.
Flip angle (�) 8 90 15 30 30
Resolution (mm,
x/y/z)

1/1/1 2.3/2.3/2.3 1/1/3 1/1/
1

1/

Other parameters TI ¼
1000 ms

64 (b ¼ 1000 s/mm2) þ
1 (b ¼ 0 s/mm2)

1.5 kHz and
500 dege

– 1.
50

b) The ALSPAC Study: T1, T2 and MWF (mcDESPO

Modality SPGR IR

Repetition time (ms) 4.7 4
Echo time (ms) 2.112 2
Flip angle (�) 3, 4, 5, 6, 7, 9, 13 and 18 5
Resolution (mm, x/y/z) 1.72/1.72/1.72 1
Other parameters – IR

a 1.5 T S Magnetom Espree scanner using sequences: gradient recalled inversion reco
planar (DWI) and spoiled gradient recalled 3D (MTI).

b 1.0 T Philips scanner using sequences: 3D radio frequency-spoiled gradient echo
c 3.0 T General Electric HDx scanner using sequences: 3D fast spoiled gradient recall

1.8 � 2.4 mm resolution (DWI), 3D spoiled gradient recalled (MTI) and 3D fast spoil
d Acquisition included 8 T1-weighted spoiled gradient recalled echo (SPGR) image

state free precession (SSFP) images (eight flip angles, two phase-cycling angles).
e RF saturation frequency offset and flip angle.

3

Single-Pulse Observation of T1 and T2 (mcDESPOT; ALSPAC). Data were
acquired using equipment and parameters detailed in Table 1.

2.3. Image processing

All MRI data (ALSPAC, SYS and NFBC1986) were processed on a
scientific cluster environment (Taito, CSC) using the most recent versions
of identical software and processing configuration in all cohorts. Ten
callosal segments were drawn on the MNI152 1-mm brain template as
explained in (Bj€ornholm et al., 2017). The segments were then trans-
formed nonlinearly into native T1w images. Parametric images were also
transformed into native T1w images, where mean and volumetric pa-
rameters of callosal segments were automatically extracted (ALSPAC:
segment volume, FA, MD, MTR, R1, R2 and MWF; SYS: segment volume
and MTR; NFBC1986: segment volume, FA, MD and MTR), see below for
details for each imaging modality.

First, T1-weighted (T1w) scans were stripped of non-brain tissue
using bet (T2: based estimation, 2005), and the resulting brain was
registered linearly (brain-only, flirt, 12 dof) and nonlinearly (whole-head,
fnirt) to the MNI152 1-mm template (Andersson et al., 2007; Jenkinson
and Smith, 2001). Callosal segments in the MNI152 1-mm template were
then back-projected to native T1w images using information from this
registration.

In order to enhance the quality of the projection of the segments in
the SYS sample (age 13-18-y), an additional registration to a SYS808
template was performed (note that MNI152 is based on adult scans). This
included linear and nonlinear registration of each individual’s T1w
image to the SYS808 1-mm template (created by nonlinear averaging of
T1w images of a subset of SYS participants), and a registration of the
SYS808 template to the MNI152 template (linear and nonlinear). Callosal
segments in the SYS sample were then back-projected in one interpola-
tion step from the MNI152 template, via the SYS808 template, to the
native T1w images.

2.3.1. Callosal segment volume
In order to account accurately for the inter-individual variation in

callosal morphology, a different procedure was used for extracting the
ransfer Imaging (MTI) in the Saguenay youth Study (SYS) and T1w, Diffusion-
C1986) and the Avon Longitudinal Study of Parents and Children (ALSPAC). b)
ation of T1 and T2 (mcDESPOT) in ALSPAC.

udyb The ALSPAC Studyc

TI MTI T1w DWI MTI

30 7.9 cardiac-gated 26.7

9 11 3 87 1.8
15 20 90 5

1/3 1/1/3 1/1/1 2.4/2.4/2.4 1.9/1.9/1.9

5 kHz and
0 dege

1.5 kHz and
500 dege

TI ¼
450 ms

30 (b ¼ 1200 s/mm2)þ 3
(b ¼ 0 mm/s2)

2 kHz and
450 dege

T)d

-SPGR SSFP

.7 3.2

.112 1.6
10.59, 14.12, 18.53, 23.82, 29.12, 35.29, 45 and 60

.72/1.72/1.72 1.72/1.72/1.72
¼ 450 ms Phase-cycling angles of 0� and 180�

very spoiled magnitude prepared oversampling phase 3D (T1w), spin-echo echo-

(T1w) and 3D T1 Fast Field Echo (MTI).
(T1w), dual spin-echo, single shot echo-planar imaging with zero-filling to 1.8 �
ed gradient recall (mcDESPOT).
s, 2 inversion-prepared SPGR images (IR-SPGR) and 15 T1/T2 weighted steady-
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volumetric data. First, the 10 callosal segments in the MNI152-1 mm
template were expanded to the outermost outline of the corpus callosum
on two midsagittal slices. The segments were then projected to the native
T1w space using the same registrations as above. Second, in each indi-
vidual, brain tissue classified as white matter with at least 95% proba-
bility in fsl fast was used for masking the callosal segments in native
space. Finally, masked segments were inspected visually and volumes
extracted automatically.

2.3.2. Diffusion-weighted images
Non-diffusion-weighted b0 scans were stripped of non-brain tissue

using bet, after which the three b0 scans in the ALSPAC sample were
aligned (flirt, 6 dof) and averaged. The data were corrected for head
motion, eddy-currents, slice-wise outliers and within-volume motion in
FSL eddy cuda 8.0 (Andersson and Sotiropoulos, 2016) using parameters
repol (Andersson et al., 2016) and mporder¼4 (Andersson et al., 2017).
Parametric FA and MD maps were then calculated in dtifit using rotated
b-vectors. To minimize the effect of echo-planar imaging (EPI) artefacts
(Irfanoglu et al., 2012), the FA images were eroded to eliminate bright
edges using fslmaths and linearly (brain-only, flirt, 12 dof) and non-
linearly (brain-only, fnirt) registered to the native T1w images. Distor-
tions in the MD images were corrected using the same transformations.
Parametric values of FA and MD were extracted using the previously
transformed callosal segments in the native high resolution (T1w) space
to avoid interpolation errors in transferring callosal segments to the
low-resolution native diffusion space.

2.3.3. Magnetization transfer images
Magnetization transfer images with (MTon) and without (MToff)

saturation pulse were stripped of non-brain tissue using bet, MTon images
were linearly aligned (brain-only, flirt, 6 dof) to MToff images and
magnetization transfer ratios (MTR) were calculated as (MToff - MTon)/
MToff. The MTR maps were linearly (flirt, 6 dof) registered and trans-
formed to the native T1w images. Based on visual inspection of ROIs,
registration with six degrees of freedom (translation, rotation) was suf-
ficient for intra-subject MTR-to-T1w registration. Callosal MTR was
extracted using segments transformed to native T1w space as described
above.

2.3.4. Relaxometry images (mcDESPOT)
Preprocessing for mcDESPOT (R1, R2 and MWF) data was conducted

in Cardiff University Brain Research Imaging Centre. All images were co-
registered linearly to the Spoiled Gradient Recalled (SPGR) image ac-
quired with a flip-angle of 13� to correct for head motion. The images
were stripped of non-brain tissue using bet algorithm. Registration and
brain masking were performed with FSL. Using maps generated from the
Inversion Recovery-SPGR and 2 phase-cycling Steady-State Free Preces-
sion (SSFP) acquisitions, images were then corrected for B1 in-
homogeneities and off-resonance artefacts, respectively. The B1 and off-
resonance inhomogeneities were modelled using the DESPOT1-HIFI
(Deoni, 2007) and DESPOT2-FM (Deoni, 2009) models respectively,
these were then input into the fitting of the mcDESPOT model. The
mcDESPOT algorithm (Deoni et al., 2008) was used to identify the fast
relaxing (water trapped within the myelin layers) and slow relaxing
(free-moving water in intra- and extra-cellular space) components of the
T1 and T2 decay and the corresponding volume fractions. The fast vol-
ume fraction, i.e. fast water component divided by total, was taken as a
map of the myelin water fraction (MWF). Images in each mcDESPOT
modality (T1, T2 and MWF) were individually registered (brain-only,
flirt, 12 dof) to the native T1w image for extracting the segment-wise
mean values. Nonlinear registration provided better alignment of cal-
losal ROIs in parametric images (possibly due to higher field strength of
3T in ALSPAC).

The projected callosal segments were visually inspected in each MRI
measure and erroneous projections were excluded. For a more detailed
account on exclusion, see Supplementary Material.
4

2.4. Statistical analyses

Comparison of the exposed and non-exposed groups in continuous
variables (Age, Birth weight and IQ) were performed using independent
two-sample t-tests. Fisher’s exact test was used for categorical variables
(Maternal education level, Maternal alcohol use during pregnancy,
Family income and Maternal drug use during pregnancy) and exclusion
rate (quality control of T1w data registration).

Data extracted from the 10 callosal segments were analyzed in R (R
Core Team, 2018). In MTR images acquired in SYS, outliers (�4 SD) were
removed separately for two different acquisition schemes, after which
the data were mean-centered by acquisition. Outliers (�3 SD) were
removed by segment separately in each cohort, sex and imaging measure.
Outlier in any segment prompted the removal of all data of the in-
dividual’s affected MRI measure. Volumes of each of the 10 callosum
segments were normalized by the individual’s whole-brain volume.
Relaxation rates R1 and R2 were calculated in the ALSPAC cohort.
Finally, all MRI-derived callosal data were normalized (z-score) sepa-
rately in each cohort, sex, imaging measure and callosal segment
(removing by-segment variation) to facilitate comparisons across the
exposure (Fig. 1).

As stated above, for callosal volume, FA, MD andMTR, the NFBC1986
was chosen as a discovery cohort and the SYS and ALSPAC as replication
cohorts. In each cohort and for each MRI measure, the main effect of the
exposure (PEMCS 0 or 1) on callosal segments (coded from 1 to 10,
anterior to posterior) was evaluated using linear mixed-effects models.
All 10 segments were placed in a single model in each cohort, sex and
modality. In Model 1, participant Age was included as a fixed-effect
confounding variable. In Model 2, fixed-effects included participant
Age, Maternal education level, Maternal alcohol use during pregnancy
and Family income and Maternal drug use during pregnancy (the latter
two variables only in ALSPAC and SYS). In addition, we tested for
Exposure-by-Sex and Exposure-by-Segment interactions in Model 2. As
random effects in all tests, we included intercepts for individual and, in
SYS, individual nested in sibship. Note that we did not include callosal
segment as random effect because data were normalized by-segment (z-
score), as stated above.

Pooled data of all callosal MRI measures were included in a mega-
analysis using mixed-effects models separately in males and females. A
separate model was constructed for each measure (callosal volume, MTR,
FA and MD), enabling models that combine data from two or three co-
horts according to the availability of callosal MRI measures. All mega-
analyses included Model 1 (as above) and Model 2 (without Family in-
come and Maternal drug use, as these were not available for the
NFBC1986). Cohort was included as a random effect in all mega-analysis
models.

In order to estimate statistical significance, models with and without
the exposure were tested against each other using likelihood ratio tests.
Comparison of models was implemented because mixed models do not
provide a straightforward p-value (Winter, 2013). Multiple comparisons
were controlled with false discovery rate (FDR) in each cohort and model
(e.g. n¼ 4 for FDR in males in NFBC1986, Model 1). As post hoc analyses,
multivariate linear models, controlling for the same covariates as in
Model 2, were fitted by-segment in those MRI metrics that had shown
Exposure-by-Segment interaction. A p-value less than 0.05 (after FDR
correction) was considered significant. All analyses were performed
separately for males and females in normalized callosal measures.

Relationship between MRI measures and participant Age was
analyzed using inter-individual correlation (Pearson correlation coeffi-
cient) by callosal segment. Finally, mean correlation was calculated be-
tween Mean Diffusivity (MD) and other MRI measures across the
callosum in the NFBC1986 and the ALSPAC.

3. Results

Demographic information for the three cohorts (ALSPAC, SYS and



Fig. 1. Anterior-posterior profiles of normalized (z-score) callosal MRI measures in exposed (PEMCS, red) and non-exposed (blue) males and females in the Northern
Finland Birth Cohort 1986 (NFBC1986 [a]), Saguenay Youth Study (SYS [b]) and in males in the Avon Longitudinal Study of Parents and Children (ALSPAC [c]).
Associations between PEMCS and MRI measures were analyzed, first, by-measure using mixed-effects models and, second, by-segment in males in the NFBC1986 due
to the observed Segment-by-Exposure interaction. MRI measures and individual callosal segments showing association with PEMCS are marked with asterisk (*) and
detailed in Table 3 and Table S1, respectively. Colored 95% confidence intervals were cut at z-score 0.6 for visualization. Names of callosal segments: G, genu; B, body;
IS, isthmus; S, splenium.

Table 2
Demographic information for the Saguenay youth Study (SYS), the Northern Finland Birth Cohort 1986 (NFBC1986) and the Avon Longitudinal Study of Parents and
Children (ALSPAC).

The NFBC1986 Study The SYS Study The ALSPAC Study

Males Females Males Females Males

Non-
exposed

Exposed Non-
exposed

Exposed Non-
exposed

Exposed Non-
exposed

Exposed Non-
exposed

Exposed

Sample size 95 93 145 113 252 192 240 250 333 34
Age (years) 26.38 �

0.46
26.49 �
0.52

26.48 �
0.54

26.41 �
0.50

14.92 �
1.78

14.97 �
1.79

15.10 �
1.91

15.10 �
1.85

19.55 �
0.81

19.77 �
0.84

IQ 112.84 �
17.96

103.98 �
19.68 *

110.28 �
19.08

110.18 �
20.23

104.23 �
12.68

104.62 �
12.30

105.43 �
11.46

103.51 �
12.16

97.21 �
12.27

93.81 �
12.49

Birth weight (g) 3717.26 �
461.12

3602.15 �
491.92

3576.69 �
450.62

3417.43 �
451.95 *

3540.79 �
471.96

3365.39 �
475.12 *

3490.77 �
459.21

3210.44 �
473.45 *

3555.76 �
513.84

3477.94 �
471.58

Maternal
education
(%)

r ¼ 0.12 r ¼ 0.00 r ¼ 0.02 r ¼ -0.15 * r ¼ -0.19 *

level 1 46.32 36.56 29.66 31.86 18.25 16.67 12.50 19.60 8.41 17.65
level 2 18.95 15.05 17.24 15.93 34.13 36.98 31.25 43.20 29.13 52.94
level 3 25.26 36.56 34.48 30.09 32.94 28.65 36.67 20.40 34.23 20.59
level 4 9.47 11.83 18.62 22.12 14.68 17.71 19.58 16.80 28.23 8.82
Maternal
alcohol use
(%)

10.53 16.13 8.28 27.43 * 15.87 34.90 * 19.16 30.00 * 29.43 32.35

Family income
(%)

r ¼ -0.06 * r ¼ -0.07 r ¼ -0.26 *

level 1 – – – – 17.46 28.65 17.50 27.20 11.41 44.12
level 2 – – – – 29.37 18.23 28.75 22.40 23.42 29.41
level 3 – – – – 28.57 29.69 27.92 27.20 27.93 11.76
level 4 – – – – 24.60 23.44 25.83 23.20 37.24 14.71
Maternal drug
use (%)

– – – – 0.00 0.01 0.00 0.00 0 2.94 *

*p < 0.05.
T-test was used for estimating the significance of the effect of exposure on Age, IQ and Birth weight.
Fisher’s exact test was used for estimating the significance of the effect of exposure on Maternal education, Maternal alcohol use during pregnancy, Family income and
Maternal drug use during pregnancy.
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NFBC1986) is presented in Table 2.
There were no differences (Fisher’s exact test) in the number of

excluded exposed and non-exposed individuals in visual inspection of
nonlinear registration (callosal ROI alignment in T1w images) or removal
of outliers, see Supplementary material for details.

Associations between PEMCS and lower callosal volume and higher
FA were observed in exposed males in the Discovery cohort (NFBC1986)
when adjusting for confounders (Model 2: Age, Maternal education,
Maternal alcohol use during pregnancy, Family income and Maternal
drug use), Table 3 and Fig. 1. Neither of these associations was observed
in the replication cohorts (SYS and ALSPAC). The mega-analysis of each
callosal MRI measure showed lower MD in exposed males in a combined
sample of males of the NFBC1986 and ALSPAC (MD not available in SYS),
Table 4. All other results, with some being significant without replica-
tion, are reported in Supplementary Table 2.

Testing for Exposure-by-Sex interaction in the NFBC1986 revealed a
differential effect of the exposure on males and females for FA (males r ¼
0.20 and females r ¼ �0.12; χ2(1) ¼ 6.93, p ¼ 0.008) and segment
volume (males r ¼ �0.18 and females r ¼ 0.08; χ2(1)¼ 6.99, p¼ 0.008),
Fig. 1. Analysis of Exposure-by-Segment interaction revealed effects in
males in the NFBC1986 for segment volume, FA, MD and MTR, Table S1.
Further analysis of the Exposure-by-Segment interaction in males in the
NFBC1986 revealed several associations between PEMCS and individual
callosal segments. Multivariate linear models (adjusted as in Model 2)
showed relations for segment volume (in G3: r ¼ �0.55, B1: r ¼ �0.57
and B2: r¼�0.38), FA (in G3: r¼ 0.46, B1: r¼ 0.36, B2: r¼ 0.50, B3: r¼
0.56 and S2: r¼�0.32) andMD (in G3: r¼�0.45, B2: r¼�0.46 and B3:
r ¼ �0.47), Fig. 1.

Correlation analysis of participant Age and MRI measures provided
weak correlations, with a highest value of 0.25 (Age - R1 in B2 segment in
ALSPAC), Table S3. Relationship between Mean Diffusivity and other
MRI measures was analyzed due to the observed association with the
exposure and MD in the mega-analysis (NFBC1986 and ALSPAC). We
observed negative correlations between MD and all other measures (i.e.,
segment volume, FA [both cohorts], and R1, R2 and MWF [ALSPAC]).
MTR showed discrepant results between the two cohorts, Table S4.

4. Discussion

In this report, we investigated the association between prenatal
exposure to maternal cigarette smoking and both the volume and
microstructure of the offspring corpus callosum in three community-
based cohorts. We observed associations between PEMCS and lower
callosal volume and higher FA in exposed (vs. non-exposed) young males
in the “discovery” (NFBC1986) cohort, Table 3 and Fig. 1 but these as-
sociations were not replicated in the SYS or ALSPAC. A mega-analysis
revealed lower MD in exposed (vs. non-exposed) males in a combined
sample of the NFBC1986 and the ALSPAC, Table 4.

As expected, we observed lower birth weight in males and females in
SYS, and females in NFBC1986, Table 2. It has been observed previously
that variation in birth weight associated with PEMCS may be more
pronounced in females, as compared with males (Voigt et al., 2006). It
must be also noted that the neurodevelopmental consequences of nico-
tine exposure (in rodents) already emerge at doses lower than
growth-impairing levels (Ribary and Lichtensteiger, 1989; Navarro et al.,
1989).

We observed lower callosal volume in relation to PEMCS in young
adulthood in males (NFBC1986, mean age 26.44 y), but the finding was
not replicated in younger males (in SYS, mean age 14.94 y, or ALSPAC,
mean age 19.57 y), Table 3 and Fig. 1. Lower callosal volume, in general,
may reflect lower degree of axonal myelination or reduced axon caliber
or the overall lower number of axons; lower overall density of axons is an
unlikely explanation (Aboitiz et al., 1992). Similar microstructural fea-
tures may account for the lower MD (Concha, 2014; Song et al., 2003) in
exposed (vs. non-exposed) males, observed in a mega-analysis of a
combined dataset of the ALSPAC and the NFBC1986, Table 4. Lower
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Table 4
Associations between PEMCS and MRI measures in a mega-analysis of all three cohorts.

Measure Mega-analysis

Males Females

b SE χ2 p b SE χ2 p

Model 1
volume �0.03 0.06 0.28 0.59 �0.01 0.06 0.06 0.80
FA 0.18 0.11 2.74 0.10
MD �0.21 0.08 21.30 0.00*
MTR �0.02 0.07 0.06 0.80 0.00 0.07 0.00 1.00
Model 2’
volume �0.04 0.06 0.41 0.52 �0.01 0.06 0.01 0.92
FA 0.18 0.11 2.81 0.09
MD �0.20 0.07 16.81 0.00*
MTR �0.01 0.07 0.05 0.83 0.00 0.07 0.00 0.96

Model 1. Predictor: PEMCS, outcome: brain measure, confounders: Age.
Model 2’. Predictor: PEMCS, outcome: brain measure, confounders: Age, Maternal education, Maternal alcohol use. Please note that Family income and Maternal drug
use were not included.
b, beta estimate (variation in MRI measure [SD] per exposure [0 or 1]).
SE, standard error.
χ2, Chi-square of the effect of exposure on the model (likelihood ratio test).
p, uncorrected p-value for the effect of exposure on the model (likelihood ratio test).
*p < 0.05 after correction for multiple comparisons (FDR).
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callosal volume and higher FA in early adulthood in exposed (vs.
non-exposed) males (NFBC1986), together with the observation of lower
MD in exposed (vs. non-exposed) males (mega-analysis), may relate to a
higher fraction of small-caliber axons, as indicated by our earlier findings
on the relation between axon caliber (assessed histologically) and FA
(Bj€ornholm et al., 2017). Caution must be taken, however, when inter-
preting findings in the diffusion measures due to a relatively large voxel
size and a related partial-volume effect.

An Exposure-by-Sex interaction was present for segment volume
(males: r ¼ �0.18 and females: r ¼ 0.08) and FA (males: r ¼ 0.20 and
females: r ¼ �0.12) in the NFBC1986 cohort, suggesting different tra-
jectories of the associations with PEMCS between the sexes in early
adulthood. The lack of main effect of PEMCS in females may relate to the
greater vulnerability of the female brain to insults during the postnatal
(vs. prenatal) period or other processes distinct to those in males (Fitch
et al., 1991a, 1991b). No associations were observed between PEMCS
and MTR in any cohort, suggesting that myelination of axons (Sled,
2018) and/or axon diameter (Paus, 2010) is not moderated by the
exposure, and also that any features accountable for the sex differences
observed earlier in the NFBC1986 sample (Bj€ornholm et al., 2017) are
not associated with PEMCS. The possible effects of the exposure may be,
however, too subtle to detect, especially in the presence of partial-volume
effect in this measure, please see Table 1 for scan resolution.

An Exposure-by-Segment interaction was present for males in callosal
volume, FA, MD and MTR in the NFBC1986 cohort, Table S1. The find-
ings suggest that the differential effect of PEMCS along the anterior-
posterior axis of corpus callosum may only appear later in early adult-
hood. Segments showing an association with PEMCS in post hoc analysis
situate mostly between posterior Genu and posterior Body, a region with
an intermediate profile of myelinated small and some large diameter
axons (Aboitiz et al., 1992). The exact regional variation of the hypoth-
esized sex-specific effect of PEMCS is, however, difficult to predict due to
lack of earlier information.

The correlation between Age and callosal MRI measures provided
weak correlations in all cohorts, which implies homogeneity of the
samples in respect to maturational changes (observable in MRI),
Table S3. The narrow age range in ALSPAC and NFBC1986 may explain
this observation, while, in SYS, the maturational changes may be too
subtle to be detected using this method. The Age - MRI measure corre-
lation may also be higher in other brain regions than those studied in this
work. Furthermore, due to the observed association between PEMCS and
MD in the mega-analysis, we investigated the correlation between
7

callosal MD and other MRI measures, Table S4. The correlation between
MD and R2 was moderate (r ¼ �0.44), possibly relating to the observed
association with PEMCS in these measures, Table 3 and Table S2. No
major differences were observed between the two cohorts (ALSPAC and
NFBC1986) in these correlations.

The reported sex-specific variation in callosal structural measures
may relate to PEMCS-induced alterations in the programming of brain
development during the fetal period. While numerous factors may ac-
count for our findings, we speculate that PEMCS disrupts hormonal ef-
fects during fetal development, as reported in animal studies (Fitch et al.,
1991b; Sarasin et al., 2003), resulting in higher fraction of small-caliber
axons in adolescence and early adulthood (Paus and Toro, 2009), i.e.
during the ongoing maturation of white matter (Lebel et al., 2008;
Westlye et al., 2010). There are also numerous, while conflicting, in-
terpretations of our findings concerning interhemispheric transfer of
information and cognition (Hutchinson et al., 2009; Sui et al., 2018).
Nevertheless, our findings do not allow for inference of causality or
testing developmental hypothesis and the reports of a non-causal effect of
PEMCS on later outcomes must be kept in mind (Gustavson et al., 2017;
D’Onofrio et al., 2008).

A major limitation of this work is the lack of longitudinal data
(preferably spanning infancy), which impedes the investigation of the
timing of the emergence of any possible PEMCS-related alterations.
Pertaining to our cross-sectional data, the effect of cohort cannot be
separated from that of age and interpretations are thus limited.
Furthermore, despite harmonization of data processing, cohort differ-
ences limit combining data and the results of the mega-analysis must be
considered with caution. Large age differences (and the maturational
changes expected to take place) strongly limit assumptions of replication
in the two cohorts. Replication would also benefit of the presence of
identical MRI modalities in all cohorts. Findings in the ALSPAC (repli-
cation cohort) must be interpreted keeping in mind that inclusion in this
cohort was not based on PEMCS, no association between PEMCS and
birth weight was observed, and that only 9% of the sample were exposed.
Including more confounders, e.g. participants and/or parents genetic,
psychiatric or neurological diagnoses, would potentially reveal previ-
ously unknown effectors. Finally, larger sample sizes would allow for
more power to detect subtle alterations accountable to the exposure.

5. Conclusions

Prenatal exposure to maternal cigarette smoking was observed to
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associate with lower (mean) diffusivity in the corpus callosum. Other
structural differences between exposed and non-exposed offspring were
found in individual cohorts but did not replicate. Future studies should
elucidate the association between PEMCS-related white matter alter-
ations and the emergence of neurodevelopmental and psychopathologi-
cal conditions in a longitudinal study design.
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