
288  |  	﻿�  J Appl Ichthyol. 2020;36:288–297.wileyonlinelibrary.com/journal/jai

1  | INTRODUC TION

In recent decades, many Atlantic salmon (Salmo salar) stocks have 
severely declined, and some have become extinct, partly due to in-
tensive fishing and habitat destruction (Hindar, Hutchings, Diserudd, 
& Fiske, 2011; Mills, Pershing, Sheeham, & Mountain, 2013). Besides 
this, increasing global temperatures have resulted in large-scale 
changes in the community structure and demographics of popu-
lations (Sydeman, Poloczanska, Reed, & Thompson, 2015). Many 
species have exhibited changes in morphology, life history, phe-
nology, and genetic structure (Czorlich, Aykanat, Erkinaro, Orell, 
& Primmer, 2018; Root et al., 2003; Sheridan & Bickford, 2011; 
Thresher, Koslow, Morison, & Smith, 2007), accompanied by range 
shifts, population declines, and extinctions (Parmesan & Yohe, 2003; 
Perry, Low, Ellis, & Reynolds, 2005; Root et al., 2003; Sydeman et al., 
2015). Changes in global temperature regimes and an accompany-
ing increase in water temperatures are predicted to cause further 
depression of population viability, age structure, and adaptive traits 

(Jonsson & Jonsson, 2004a; Jonsson & Jonsson, 2009; Perry et al., 
2005; Peyronnet, Friedland, & Ó Maoiléidigh, 2008; Beaugrand 
& Reid, 2012; Piou & Prevost, 2013). In anadromous fish, warmer 
temperatures are associated with an increased metabolic rate and 
oxygen use (Barnes, King, & Carter, 2011), faster growth during the 
freshwater phase, a younger age at smoltification (Jonsson, Jonsson, 
& Hansen, 2005), an earlier smolt migration (Jokikokko, Jutila, & 
Kallio-Nyberg, 2016; Otero et al., 2014), higher marine survival 
(Jutila, Jokikokko, & Julkunen, 2005; Kallio-Nyberg, Jutila, Saloniemi, 
& Jokikokko, 2004), a faster growth rate in the sea, and younger 
sea age at maturity (Jonsson, Finstad, & Jonsson, 2012; Jonsson & 
Jonsson, 2004b; Jonsson, Jonsson, & Hansen, 2003). In addition, 
temperature affects community structure and population demo-
graphics, e.g. marine food webs, density-dependent processes and 
behaviour in general (e.g. Chaput & Benoit, 2012; Friedland, Chaput, 
& MacLean, 2005; Jonsson, Jonsson, & Albretsen, 2016; Peyronnet 
et al., 2008; Portner & Farrell, 2008; Todd et al., 2008). Food abun-
dance also varies with temperature: herring, the main prey fish for 
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salmon in the northern Baltic Sea, are at their peak when the sea 
surface temperature is high (Dippner, Hänninen, Kousa, & Vuorinen, 
2001; Salminen, Erkamo, & Salmi, 2001).

The rise in sea surface temperature in the Baltic Sea is due to 
global warming (Jylhä et al., 2009). The Baltic Sea provides an excel-
lent laboratory for studies of increasing temperature on the life his-
tory-related feeding migration, growth, and maturation of Atlantic 
salmon. Compared to North Atlantic stocks, the marine phase of 
Atlantic salmon in the Baltic Sea is better known due to the more 
limited geographic scale and accessibility of the marine system, as 
well as the large amounts of data accumulated during the monitoring 
and fishing of the stocks over decades (Aro, 2002; ICES, 2016). The 
Main Basin, the southern part of the Baltic Sea (Figure 1), is the most 
important feeding ground for immature salmon. However, instead of 
migrating to south, especially the larger individuals of the northern 

stocks remain to feed in the Gulf of Bothnia (GoB) (Salminen, Kuikka, 
& Erkamo, 1994).

We investigated the effects of temperature on Atlantic salmon's 
post-smolt life history by using two types of data. In the first data-
set, tag recovery data was applied to test whether the smolt-year 
temperature affected the smolt length of caught fish (smolt-year 
classes 1985–2015). Fish from the four main Bothnian Bay rivers 
were tagged and measured as smolts, and recaptured later during 
their marine feeding phase throughout the Baltic Sea. These data 
(limited to smolt-year classes 1985–2004 and dispersal in the sec-
ond winter year) were also used to study the effects of temperature 
on feeding dispersal in the sea. The feeding distance was regarded 
as short if the salmon remained in the Gulf of Bothnia, and long if 
they migrated further south. In the other dataset, unmarked salmon 
caught during their spawning migration (year classes 2001–2012) 

F I G U R E  1   Map of the Baltic Sea 
showing sea areas: Gulf of Bothnia (GoB, 
ICES rectangles 31 and 30), Bothnian Bay 
(31), Bothnian Sea (30), Baltic Main Basin 
(23–28), Archipelago Sea (ÅS, 29), Gulf 
of Finland (32), and rivers sustaining the 
Atlantic salmon population. The locations 
of temperature measurement sites (white 
square) in Vaasa and Jomala and catch 
sampling sites for returning salmon (black 
stars) are shown
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were used to test whether the temperature during the post-smolt 
period affected male growth and their return as grilse, i.e. after only 
one winter at sea.

2  | MATERIAL S AND METHODS

2.1 | Data

Baltic Sea lineage is one of the major clades of Atlantic salmon in 
European waters (Bourret et al., 2013; Säisä et al., 2005). Baltic 
salmon usually spend two to four years in their natal river before 
migrating to their feeding grounds in the sea, where they spend 
another one to three years before migrating back to their natal 
streams to spawn (Jokikokko, Kallio-Nyberg, & Jutila, 2004; Jutila, 
Jokikokko, Kallio-Nyberg, Saloniemi, & Pasanen, 2003; Kallio-
Nyberg, Romakkaniemi, Jokikokko, Saloniemi, & Jutila, 2015). The 
northern part of the Baltic Sea, the Gulf of Bothnia, hosts many 
rivers with stable salmon stocks that are healthier and less de-
pressed than the salmon stocks in the southern range of the Baltic 
Sea drainage area (ICES, 2011a, 2016).

Currently, Gulf of Bothnia salmon populations have the larg-
est number of released salmon smolts due to intensive restoration 
efforts and compensatory stocking since the mid-1990s (Jutila, 
Jokikokko, & Julkunen, 2003). Gulf of Bothnia salmon stocks share 
similar migration routes and feeding grounds in the sea (Koljonen, 
2006), which in turn results in correlated temporal variation in life 
history traits (Kallio-Nyberg, Jutila, Jokikokko, & Saloniemi, 2006; 
Kallio-Nyberg, Peltonen, & Rita, 1999).

Our first dataset is based on Carlin-tagged smolts that were 
recaptured as sub-adults (smolt-year classes 1985–2014). Both 
wild and reared salmon smolts had been tagged and released into 
the Tornionjoki, Kemijoki, Simojoki, and Iijoki rivers in the spring 
(Jokikokko & Mäntyniemi, 2003; Jutila, Jokikokko, & Julkunen, 
2003; Kallio-Nyberg et al., 2015Romakkaniemi et al., 2003). Tagged 
individuals were recaptured as adults (usually 0.5%–3.0% of tagged 
smolts) in the Gulf of Bothnia and in the Main Basin (MB) by commer-
cial fishermen, who reported the time of capture, recovery site, and 
the catch length and weight of the individual salmon (Kallio-Nyberg 
et al., 2015). Smolt length was already measured during tagging.

The mixed stock catch dataset here consisted of only spawning 
migrating males (Table 1). Only males were analysed, because they 

TA B L E  1   Mixed-stock sea catch sample sizes and the mean grilse weight (kg) of Atlantic salmon (Salmo salar) males in smolt-year classes 
2001–2012 from the Gulf of Bothnia during the spawning migration, and sample sizes for tag recovery data for tagged smolts of year classes 
1985–2004 from the Gulf of Bothnia (GoB) and Baltic Main Basin (MB), during the adult feeding migration

No. males in catches (mixed stock data) No. tags recovered (Carlin recovery data)

Smolt year class 1SW GoB 1–4SW GoB 1SW weight Smolt year class GoB 2SW MB 2SW

2001 82 121 2.3 ± 0.9 1985 2 424

2002 86 112 1.9 ± 0.3 1986 9 401

2003 55 107 2.3 ± 0.4 1987 6 179

2004 101 230 2.1 ± 0.8 1988 76 286

2005 86 176 2.2 ± 0.9 1989 106 146

2006 252 344 2.5 ± 0.8 1990 49 68

2007 191 292 2.0 ± 0.8 1991 58 153

2008 120 285 2.2 ± 0.7 1992 8 54

2009 49 172 1.9 ± 0.6 1993 2 25

2010 35   2.3 ± 0.8 1994 7 67

2011 53   2.2 ± 0.7 1995 3 70

2012 29   1.8 ± 0.5 1996 0 71

        1997 0 87

        1998 0 49

        1999 3 62

        2000 3 82

        2001 0 61

        2002 2 71

        2003 3 79

        2004 1 41

  1,139 1,839     338 2,476

Note: The mixed stock sample sizes are presented for one-sea-winter-old males for known weight (1SW) and for all males (1–4SW) for known age. 
The tag recovery data of tagged smolts are presented according to the feeding site (Gulf of Bothnia or Main Basin) of the 2SW adult fish during their 
second winter (December–April).
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show substantial variation in age at maturity, i.e. both one-sea-win-
ter (1SW) and multi-sea-winter (MSW) fish are common, while fe-
males are mostly MSW fish (Jokikokko et al., 2004; Kallio-Nyberg, 
Koljonen, & Saloniemi, 2014). The methods and sampling sites re-
mained unchanged between 2001 and 2013, when salmon return-
ing to the spawning grounds were sampled as part of the national 
EU Data Collection Framework programme (ICES, 2016) (Figure 1). 
The sea age of each salmon was determined using the guidelines for 
Atlantic salmon scale reading (ICES, 2011b). All individuals included 
in this study were sampled during their first spawning migration in 
the Gulf of Bothnia (Figure 1), and the measured sea age was there-
fore equal to sea age at first maturity. The sex, bodyweight, and 
length (total) of the males were recorded. The mixed stock sample 
in the Gulf of Bothnia may include salmon from more than ten riv-
ers (Koljonen, 2006). The mature salmon in the catch sample from 
the Gulf of Bothnia were mainly from the stocks of the Tornionjoki, 
Kalixälven, Byskeälven, Vindelälven, Simojoki, Iijoki, Oulujoki, and 
Luleälven rivers (Kallio-Nyberg et al., 2014; see Figure 1).

In the mixed catch data, the stock of origin of individual fish is 
unknown, and the data are analysed without information on the 
river origin of stock. However, in the Appendix S1, we compare 
the present results with the previously published (Kallio-Nyberg 
et al., 2014) genetic mixed-model analysis and historical sea age 
distribution of the male salmon among northern Baltic Sea salmon 
stocks.

Air temperature data were retrieved from the Finnish 
Meteorological Institute (www.fmi.fi). The spring or summer 
air temperature at the Finnish Meteorological Institute air tem-
peratures sites at the Vaasa (63°10′N, 21°64′E; close to Gulf of 
Bothnia rivers) and Jomala weather stations (60°18′N, 19°19′E; 
close to the Main Basin of the Baltic Sea) were chosen, as these 
coastal sites are near the smolt migration areas. The correlation 
between annual temperatures measured at Vaasa and Jomala was 
statistically significant (summer temperatures; Spearman correla-
tion: p < .001, r = .895, n = 12). Post-smolts migrate mainly to the 
Bothnian Bay for 1–2 months, and after this, feeding salmon mi-
grate to the southern Gulf of Bothnia (Bothnian Sea) or the Main 
Basin of the Baltic Sea (Jutila, Jokikokko, & Ikonen, 2009; Kallio-
Nyberg et al., 1999).

The abundance of herring aged 0+ in the Gulf of Bothnia was 
estimated using the 1+ herring abundance data from the previous 
year (ICES, 2012), i.e. the smolt year. Young herring are the most 
important prey for salmon in the first summer in the Gulf of Bothnia 
(Salminen et al., 2001).

2.2 | Statistical methods

We used linear regression to test whether the smolt-year tempera-
ture affected the length of the recaptured smolts. The summer air 
temperature in Vaasa during the smolt year was used as a predictor 
for smolt growth (i.e. smolt years between 1985 and 2015). When 
all recaptured Carlin-tagged Simojoki and Tornionjoki salmon were 

included, the mean (±std) annual sample size for smolts was 419 
(±354, n = 12,570 smolts, for 30 years), and for wild smolts only 77 
(±83, n = 2,018; 26 years). Smolt size is not a good response variable 
for reared salmon, as size varies according to rearing history, rear-
ing conditions, and hatchery (Jokikokko, Kallio-Nyberg, Saloniemi, & 
Jutila, 2006). The summer temperature measured at the Vaasa sta-
tion was used, because the highest post-smolt numbers, according 
to Jutila et al. (2009), are in June in the Bothnian Bay near Vaasa, 
and the mortality of post-smolt is highest at the beginning of sea life.

To test whether the temperature of the smolt year affected the 
spatial distribution of feeding salmon, we used logistic binomial regres-
sion models, with the recapture site (the Gulf of Bothnia versus the 
Main Basin) as the binomial response variable, and smolt length and air 
temperature in the smolt year as predictors. All 2SW (19–23 months at 
sea, November–March) salmon that had been tagged and released as 
smolts in the Bothnian Bay Tornionjoki, Kemijoki, Simojoki, and Iijoki 
rivers (Jutila, Jokikokko, Kallio-Nyberg, et al., 2003; Kallio-Nyberg 
et al., 1999, 2015) were included in the analysis. The total number of 
recoveries of 2SW salmon was 2,814 from the smolt years 1985–2004 
(Table 1). The spring air temperature at Jomala was used in the models, 
because salmon migrate to the southern Gulf of Bothnia in the second 
winter if they stay in the Gulf (Kallio-Nyberg et al., 1999). Interactions 
between predictors were calculated for all models, but only the models 
with the lowest AIC (Akaike information criteria) are reported.

The correlation (Spearman correlation) between the annual 
abundance of young herring (1985–2007) in the Bothnian Sea and 
air temperature (Jomala, Vaasa) was applied as a measure of food 
availability. The abundance of 0+ herring for a particular year was 
estimated using the abundance of 1+ herring from the following year 
(ICES, 2012). The abundance of young herring in the Bothnian Sea 
is associated positively with the feeding migration of salmon in the 
Bothnian Sea and marine survival (Kallio-Nyberg et al., 1999; Kallio-
Nyberg, Saloniemi, Jutila, & Jokikokko, 2011).

The growth of 1SW male salmon was analysed from mixed stock 
data (year-level data) using linear regression. The air temperature in 
the smolt year was used as a predictor across the 12 years (i.e. smolt 
years between 2001 and 2012). The weight of all males independent 
of origin and weight for these 410 wild and 866 reared individual fish 
were used as the response variable for the proxy of first-year sea 
growth. The sample size and mean weight of all 1SW male salmon in 
each smolt-year class is presented in Table 1. The air temperature of 
the smolt year was measured in the spring at the Jomala and Vaasa 
stations.

The effect of temperature on the probability of returning as grilse 
was analysed as a binomial log-linear model in the mixed stock data 
(as 1, i.e. matured in the first year, versus 0 for later maturing, 2SW 
or older; see data in Table 1; Carlin recovery data). The air tempera-
ture in the smolt year measured in the summer at the Jomala sta-
tion in 2000–2009 was used as a predictor. The Jomala temperature 
was used, because the feeding salmon migrate to the southern Gulf 
of Bothnia or the Main Basin of the Baltic Sea. Currently, nearly all 
salmon return to spawn before the fourth sea winter (Kallio-Nyberg 
et al., 2014); but see the Appendix S1 for historical data.

http://www.fmi.fi
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3  | RESULTS

3.1 | Effects of temperature on smolt length and 
feeding area

In the 30-year data for the Carlin-tagged and recaptured Bothnian 
Bay wild and reared salmon (smolt-year classes 1985–2014), a de-
crease of 6.4 mm was observed in mean smolt length with a one-
degree Celsius increase in the smolt-year mean summer temperature 
(in Vaasa; smolt length = 275.1 − 6.4  *  temperature; F(1,28) = 5.05, 
p = .033, R2 = .153) (Figure 2). When the study was limited to wild 
smolts (26 years of data), the decrease in smolt size with increasing 
temperature was somewhat lower (smolt length = 212.7 − 3.7 * tem-
perature; F(1,24) = 2.89, p = .102, R2 = .108).

If the spring of the second sea winter (19–23  months at sea) 
(Figure 3) was warm (temperature about 4–5°C in Jomala), salmon 
fed more frequently (Table  2, model M1) in the Gulf of Bothnia 
(northern Baltic) than in the Baltic Main Basin (southern Baltic). The 
preference for a northern feeding area increased with larger smolts 
(Table 2, model M2). The higher abundance of young herring in the 
Gulf of Bothnia in 1985–2007 also reflected the higher summer 
air temperature (Jomala: r = .658, p < .001, n = 23; Vaasa: r = .627, 
p = .001, n = 23).

3.2 | Effects of temperature on growth and the 
probability of returning as grilse

The mean spring air temperature monitored in the Gulf of 
Bothnia was a good predictor for 1SW male weight (Jomala: 
weight  =  2.737  −  0.152  *  temperature, F(1,10)  =  13.3, p  <  .005, 
R2 = .570; Vaasa: weight = 2.489 − 0.114 * temperature, F(1,10) = 6.8, 
p < .025, R2 = .406). The grilse mean weight decreased by 150 g per 
one-degree Celsius increase in mean air temperature (Figure  4) in 
Jomala, while in Vaasa it was essentially the same. When the study 

was limited to 1SW hatchery males, the decrease was 160  g per 
one-degree Celsius increase in mean air temperature at Jomala 
(weight  =  2.953  −  0.161  *  temperature, F(1,10)  =  9.53, p  =  .012, 
R2 = .487). Probably due to the small sample size (n = 410), the decrease 
was not significant for wild males weight = 2.019 − 0.062 * tempera-
ture, F(1,10) = 0.73, p = .412, R2 = .068).

After smolting, northern Atlantic salmon stocks usually migrate 
to the southern parts of the Baltic Main Basin to feed and return to 
their native rivers in the north close to maturation (after one to four 
sea years) (Table 1: mixed data; catch sites in Figure 1). Mixed stock 
samples of the smolt-year classes 2001–2009 indicate that the prob-
ability of returning as grilse increases as a function of the increasing 
air temperature (summer air temperature at Jomala: χ2 = 3.70, df = 1, 
p = .054). Mean air temperatures between 15 and 16°C are critical to 
the decision to return (Figure 5).

4  | DISCUSSION

An increasing temperature in the smolt year was associated with 
smaller smolt and grilse, and an increasing grilse proportion in our 
long-term data on Atlantic salmon in the Baltic Sea. An increasing 
temperature in the Gulf of Bothnia was also associated with more 
recaptures in the feeding grounds closer to the home rivers during 
the second sea winter.

Water temperatures in the rivers and sea are known to be linked 
to down-migrating salmon smolts (Jutila et al., 2005). Salmon smolts 
tend to leave their home river in the spring, when conditions are op-
timal (“the smolt window”; Otero et al., 2014), typically when the sea 
surface temperature reaches between 9 and 12°C in river mouths in 
the Bothnian Bay (Jutila et al., 2005). Spring and summer sea surface 

F I G U R E  2   The model predicted Atlantic salmon smolt length 
from the tag recovery data (Table 1) in relation to temperature (°C) 
(summer air temperature in the Gulf of Bothnia, in Vaasa; p = .032). 
Regression: length (mm) = 275.1 − 6.38 * temperature, R2 = .153. 
The model predicting a linear trend (continuous line) between smolt 
length and the summer air temperature in the smolt year, with 95% 
confidence limits of the mean (broken lines), is presented

F I G U R E  3   The proportion of Atlantic salmon tag recoveries in 
Baltic Sea feeding areas in the northern (Gulf of Bothnia) relative 
to the more southern Baltic Main Basin during their second winter 
(19–23 months in the sea, Dec–April) in relation to the spring air 
temperature (°C) of their smolt year at the Jomala weather station 
(60°18′N, 19°19′E). Wald confidence limits (−95 and +95) are 
presented
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temperatures in the Baltic Sea vary parallel with air temperature 
(Stramska & Białogrodzka, 2015).

In recent years, smolt migration has started earlier as a result of 
earlier thermal springs (in Finland, defined as the period when mean 
day and night temperatures remain above 0°C and below 10°C in the 
Gulf of Bothnia) (Jokikokko et al., 2016; Otero et al., 2014). In this 
study, an increasing air temperature in the Gulf of Bothnia was asso-
ciated with a smaller mean smolt size of recaptured Atlantic salmon. 
A larger smolt size is known to improve marine survival in general for 
both wild and reared salmon smolts (Jokikokko et al., 2006; Kallio-
Nyberg et al., 2011). Survival increases up to a smolt length of 140–
220 mm when it levels off in the Bothnian Sea (Salminen, Kuikka, & 
Erkamo, 1995). High survival promotes a large year-class size, fol-
lowed by the stock's greater reproduction capacity. However, even 
if wild smolts are often smaller, their survival is better than that 
of reared smolts, and the difference in survival between wild and 
reared smolts increases in years when the average survival is low 
(Saloniemi, Jokikokko, Kallio-Nyberg, Jutila, & Pasanen, 2004).

Survival rates after the post-smolt stage tend to be high when sea 
surface temperature and herring abundance are also high (Salminen 

et al., 1995). During colder summers, small smolts are likely to have 
lower survival, causing mean smolt size to increase in those years. 
Selection against small smolts is likely to remove the weakest indi-
viduals with less competitive ability and less favourable genotypes. 
Sea temperature is likely to be the main environmental factor de-
termining if smolts migrate to the south into the Baltic Main Basin, 
because in warm years, prey fish abundance in the north, in the Gulf 
of Bothnia, is high, and as a result, salmon marine survival is high for 
those years (Kallio-Nyberg et al., 2004, 2006).

The recovery data used in the present analysis included differ-
ent Bothnian Bay stocks (Tornionjoki, Iijoki, and Simojoki salmon), 
comprising both reared and wild smolts. Reared salmon released as 
smolts more often remain in northern feeding areas than salmon 
born in the wild (Jutila, Jokikokko, Kallio-Nyberg, et al., 2003; 
Kallio-Nyberg et al., 2015). Nevertheless, Kallio-Nyberg et al. (1999) 
demonstrated that although salmon stocks differed in their life his-
tory traits, their spatial distribution during the feeding season var-
ied synchronously according to environmental factors. When young 
herring are abundant in the Bothnian Sea, all salmon stocks tend 
largely to remain in the Bothnian Sea during the second sea winter 
(Kallio-Nyberg et al., 1999).

TA B L E  2   Feeding ground preference models [Gulf of Bothnia (GoB) or Main Basin (MB)] for tagged Atlantic salmon smolts, recovered 
as adults during their second sea winter, in relation to the annual spring air temperature (year) in the corresponding smolt year in the Gulf 
of Bothnia (Jomala) (nGoB = 338; nMB = 2,476) (M1), or in relation to both the air temperature in the smolt year and their smolt length (cm) 
(nGoB = 303; nMB = 2,277) (M2)

Migration model Effect Estimate SE df Wald χ2 Pr > |χ2| AIC

M1 Intercept −5.101 0.248 1 421.57 <0.001 1,831.6

Temperature 0.877 0.057 1 199.40 <0.001  

M2 Intercept −9.110 0.543 1 281.60 <0.001 1,566.9

Temperature 0.813 0.061 1 179.51 <0.001  

Smolt length 0.199 0.023 1 76.22 <0.001  

Note: All tagged Atlantic salmon smolts released in 1985–2004 into the Bothnian Bay and subsequently recovered as adults are included.
Abbreviation: AIC, Akaike information criterion.

F I G U R E  4   The model-predicted weight of 1SW Atlantic salmon 
males in the mixed-stock catch data (Table 1) in relation to the 
spring air temperature of the smolt year (°C) (at Jomala; p = .005). 
Regression: Weight = 2.737 − 0.152 * air temperature, R2 = .406. 
Annual observations (open circles) and the model-predicted linear 
trend (continuous line) between the weight of 1SW males and the 
spring temperature in the smolt year, with 95% confidence limits of 
the mean (broken lines), are presented. The model is based on data 
from 12 years, but only 10 observations are shown, because the 
values for two years were the same

F I G U R E  5   The probability of Atlantic salmon male spawning 
as grilse (1SW) in relation to the summer air temperature (°C) in 
their smolt year for smolt-year classes 2001–2009 in the Gulf 
of Bothnia. (SAS GENMOD: Type 3 analysis: air temperature at 
Jomala: χ2 = 3.70, df = 1, p = .054). The 95% standard error bars are 
presented
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Earlier smolt migration due to global warming (Otero et al., 
2014) may also affect sea migration. Post-smolts (under 24  cm) 
feed on surface fauna (Jutila & Toivonen, 1985), and during their 
first summer in the sea, they shift their diet from invertebrates to 
prey fish (Salminen et al., 2001). Zooplankton and young herring 
are abundant during warm springs in the Gulf of Bothnia (Dippner 
et al., 2001). Herring are the main prey fish for piscivorous salmon 
in the Gulf of Bothnia (Karlsson, Ikonen, Mitans, & Hansson, 1999; 
Salminen et al., 2001), and a high herring abundance in the Gulf 
of Bothnia is associated with salmon continuing to feed in the 
Gulf of Bothnia (Kallio-Nyberg et al., 1999; Salminen et al., 1994). 
Nevertheless, colder winter months may cause slower growth 
in salmon in the Bothnian Sea compared with the Main Basin 
(Jevrejeva et al., 2004).

Our long-term data suggest that increasing temperatures are 
associated with the smaller mean sizes and younger age (1SW) of 
returning male salmon in the Baltic Sea. When time spent feeding at 
sea increases, the risk of dying at sea before spawning also increases. 
The benefits of continuing to feed in the sea to gain a larger size 
may be less than the cost of waiting and being exposed to increased 
mortality (Jonsson & Jonsson, 2007). Staying in the Gulf of Bothnia 
instead of migrating south and returning as grilse may be an advan-
tageous reproduction strategy for males, especially after warmer 
growing conditions in the smolt year.

Other factors such as selective fishing are also known to affect 
the age structure of spawning salmon (Jokikokko & Jutila, 2005; 
Jørgensen et al., 2007; Kokkonen, Vainikka, & Heikinheimo, 2015). 
Size-selective fishing tends to remove fast-growing individuals and 
cause maturation at a younger age (Kokkonen et al., 2015). Fishing 
may have reduced the proportion of older, and thus larger, fish in the 
spawning stock. Such selection may have stronger negative effects 
in females, because their fitness is strongly associated with a higher 
number of larger eggs, which is typical of larger females.

A comparison between the current and historical records (Alm, 
1934) of age at maturation shows a trend towards younger spawn-
ing, especially among hatchery-produced smolts (Figures S1 and S2). 
Early spawning fish were rare, and repeat spawning was common in 
the 1930s, but the Atlantic salmon spawning age distribution in the 
Bothnian Bay is currently very narrow. In the current data (2000–
2014), the mean spawning age for Tornionjoki wild females was 
2.2 years (reared females 2.0 years), and 1.8 years for wild spawning 
males (reared males 1.3 years) (Figure S2). The low proportion of re-
peat spawning fish (2.8% in Simojoki stock, 1997–2003; Jokikokko, 
& Jutila, 2005) results in an even smaller size in ascending salmon.

An increasing temperature is likely to change the migration be-
haviour and decrease the age at maturity of Atlantic salmon popula-
tions. At the same time, fishing mortality acts in the same direction 
by favouring faster life cycles and a smaller spawning size. Hatchery 
rearing also causes smolts to grow faster, and become larger but less 
competitive in the wild (Jonsson et al., 2003).

Observed changes in life history traits (Friedland, Hansen, 
Dunkey, & MacLean, 2000; Hutchings & Jones, 1998; Jonsson et al., 
2016; Kallio-Nyberg et al., 1999) have previously been associated 

with phenotypic plasticity, which may be the first step in adjusting 
to changing environments (Sydeman et al., 2015). The maturation 
period is known to have high heritability, and minor genes have been 
regarded as its most likely basis, but a single major locus, either alone 
or with minor loci, is also found behind the trait (Lafuente & Beldade, 
2019). New studies (Ayllon et al., 2015; Barson et al., 2015; Czorlich 
et al., 2018) have found a very simple one-locus system that predicts 
much of the variation in age at maturity of Atlantic salmon along the 
north Atlantic coast, including the Baltic Sea. The early maturation 
allele was dominant in males but recessive in females.

The response to selection and especially the rate of response 
depend on the genetic basis of the traits. Strong natural selection 
can decrease frequencies of relevant alleles and even remove them 
entirely from the population. Erosion of genetic variation (and as-
sociated phenotypes) is fast and more permanent if the phenotype 
is based on a single locus. For example, genetic variation for migra-
tion timing has been nearly fixed in Chinook salmon (Oncorhynchus 
tsawytscha) as a consequence of dam construction (Thompson et al., 
2019). The timing of spawning migration is variable for both Atlantic 
and Pacific salmon, and warming is likely to affect the timing of mi-
gration for both (Quinn, McGinnity, & Reed, 2015).

However, the difference in dominance patterns in males and fe-
males is likely to somewhat slow the erosion of genetic variation. The 
present study included only male returners, because females of the 
same age are not physiologically able to reproduce. However, the 
data (based partly on another dataset) in Figure S2b of the Appendix 
S1 shows a similar spawning age trend for females and males. On 
average, female spawners are older than male spawners. Although 
domestication tends to decrease spawning age, the difference 
in spawning age between the sexes remains. The trend towards a 
smaller maturation size is also associated with a more male-biased 
sex ratio (Figure S2a in the Appendix S1) in populations with the 
youngest (and smallest) males.

A fast decrease in the mean spawning age and size of Atlantic 
salmon males is a probable scenario, with increasing climate tem-
peratures and other anthropogenic interventions in the Baltic Sea 
Atlantic salmon populations. We may be witnessing permanent evo-
lutionary changes (Crozier & Hutchings, 2014) in Atlantic salmon 
populations in the Baltic Sea. Anthropogenic impacts at many levels 
are changing the genetic and ecological structure of not only the 
Atlantic salmon populations but river and marine ecosystems in gen-
eral, as well as the human economy based on recreational and com-
mercial fishery.
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