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A B S T R A C T   

Prenatal maternal depressive symptoms are related to an increased offspring susceptibility to psychiatric dis-
orders over the life course. Alterations in fetal brain development might partly mediate this association. The 
relation of prenatal depressive symptoms with child's amygdalar volumes is still underexplored, and this study 
aimed to address this gap. We explored the association of prenatal maternal depressive symptoms with amyg-
dalar volumes in 28 4-year-old children (14 female). Amygdalar volumes were assessed using the volBrain 
pipeline and manual segmentation. Prenatal depressive symptoms were self-reported by mothers at gestational 
weeks 14, 24 and 34 (Edinburgh Postnatal Depression Scale). Sex differences were probed, and possible pre- and 
postnatal confounders, such as maternal general anxiety, were controlled for. We observed that elevated de-
pressive symptoms of the early second trimester, after controlling for prenatal maternal general anxiety, were 
significantly related to smaller right amygdalar volumes in the whole sample. Higher depressive symptoms of the 
third trimester were associated with significantly smaller right amygdalar volumes in boys compared to girls. 
Altogether, our data suggest that offspring limbic brain development might be affected by maternal depressive 
symptoms in early pregnancy, and might also be more vulnerable to depressive symptoms in late pregnancy in 
boys compared to girls.   

1. Introduction 

The prevalence of maternal prenatal depression is high worldwide, 
varying in studies from 5% to 74%, depending on the diagnostic in-
strument and country (Gelaye et al., 2016; Woody et al., 2017;  
Field, 2011). Prenatal depression often continues into postnatal de-
pression whose prevalence is usually comparably lower (Field, 2011;  
Underwood et al., 2016). For many years, research focused on the ef-
fects of maternal postnatal depression on mother-child interaction and 
offspring development. Meanwhile, evidence is mounting that prenatal 
depression has long-lasting effects on offspring health over and above 
the effects of maternal postnatal depression (e.g., Pearson et al., 2013;  

Davis et al., 2004). Higher levels of prenatal depressive symptoms have 
been associated with preterm delivery, infant behavioral problems, 
higher infant stress hormone levels (Grigoriadis et al., 2013;  
Grote et al., 2010; Lundy et al., 1999; Stroud et al., 2016; Field, 2011;  
Davis et al., 2004; Field et al., 2010), as well as with internalizing and 
externalizing behavior in children (Gentile, 2017; Field, 2011), and 
with depression and male criminality in adolescents and adults 
(Gentile, 2017; Pearson et al., 2013; Plant et al., 2015; Mäki et al., 
2003). The underlying mechanisms are not yet fully understood and 
likely involve genetic, epigenetic, inflammatory, stress-related and be-
havioral mechanisms (Sohr-Preston and Scaramella, 2006; Non et al., 
2014; Sullivan et al., 2000; Plant et al., 2015; Kim et al., 2015). Prenatal 
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depression compromises maternal health-related behavior and has been 
associated with higher maternal subjective stress (Gentile, 2017; Sohr- 
Preston and Scaramella, 2006). It has been proposed that the associa-
tion between offspring outcomes and prenatal maternal adversity such 
as depression are partly mediated by stress-related effects on fetal brain 
development (Bock et al., 2015; Andersen, 2003). The intrauterine 
period is regarded as a sensitive time window for brain development, 
and the effects of prenatal stress on fetal brain development likely vary 
depending on the timing of stress exposure, its chronicity, and on off-
spring sex. Animal studies have revealed that the most prominent 
changes related to prenatal stress target prefrontal and limbic brain 
areas including the amygdala (Bock et al., 2015; Andersen 2003). In 
humans, recent studies have shown that prenatal depression is linked to 
atypical functional and /or structural amygdalar connectivity in infants 
(Posner et al., 2016; Qiu et al., 2015) and in young girls, but not boys 
(Soe et al., 2018), to altered cortical gray matter volumes in children 
(Lebel et al., 2016; El Marroun et al., 2016; Sandman et al., 2015), and 
to increased amygdalar responses to negative emotional faces in school- 
aged children (van der Knaap et al., 2018). The amygdala plays a 
central role in salience processing, stress physiology, and, in humans, in 
anxiety disorders and depression (Yilmazer-Hanke, 2012;  
Lindquist et al., 2012). To the best of our knowledge, only a few studies 
have investigated the relation between maternal prenatal depressive 
symptoms and offspring amygdalar volumes, and these studies assessed 
prenatal depression only once in late pregnancy: In neonates, no asso-
ciation between prenatal depressive symptoms and amygdalar volumes 
has been found (Rifkin-Graboi et al., 2013), even though an interaction 
between prenatal depression and genetic factors on amygdalar volumes 
has been revealed (Qiu et al., 2017). However, in 4.5-year-olds, a po-
sitive association between prenatal depressive symptoms of the late 
second trimester and right amygdalar volumes has been reported in 
girls, but not boys (Wen et al., 2017). In summary, the association 
between maternal prenatal depression and amygdalar volume is yet 
underexplored, as is the possible role of the timing of exposure and its 
chronicity. 

With this study, we aimed to explore the association of maternal 
prenatal depressive symptoms with amygdalar volumes in four-year old 
children, taking into account timing and chronicity of prenatal ex-
posure, child's sex, and other pre- and postnatal factors. Given the re-
sults of Wen and coworkers (2017), we hypothesized prenatal depres-
sive symptoms of the late second trimester to be more positively related 
to right amygdalar volumes in girls than in boys. 

2. Methods 

2.1. Participants 

Participants were mother-child-dyads recruited from the FinnBrain 
Birth Cohort Study [www.finnbrain.fi] (Karlsson et al., 2018). Neuroi-
maging data was collected from 33 four-year-old children. The inclu-
sion criterion was child's age of ca. 4 years (47 – 54 months). Exclusion 
criteria for the children were significant developmental abnormalities 
of major organs (e.g., heart, limbs) and sensory systems (e.g., blindness, 
deafness), a diagnosis of a neurodevelopmental disorder such as autism 
or epilepsy, need for daily medication at the time of the scan, lifetime 
experience of a severe head trauma or concussion (with unconscious-
ness or clinical MRI scans post trauma), and other clinical investiga-
tions, all assessed by self-report from the parents. The parent(s) gave 
written informed consent in accordance with the Declaration of Hel-
sinki. The protocol was approved by the Ethics Committee of the South- 
Western Hospital District of Finland. 

One subject was excluded from the analyses due to a technical 
failure of the MRI data acquisition. Four further subjects were excluded 
because of low quality of the brain structural data due to motion as 
assessed by visual inspection. In the final sample, 28 mother-child- 

dyads were included [mean age of children (at MRI scan time)= 50.8 
months (SD= 1.6, range= 47.7 - 54.0), mean age of mothers (at term) 
= 30.4 years (SD= 4.0), and 14 of the children were boys (50%)]. Data 
from an overlapping sample have been published elsewhere 
(Acosta et al. 2019). 

2.2. Measures and Procedures 

2.2.1. Maternal prenatal depressive symptoms 
For the assessment of maternal prenatal depressive symptoms the 

Finnish version of the Edinburgh Postnatal Depression Scale (EPDS) 
(Cox et al., 1987) was administered at gestational weeks (gwk) 14, 24 
and 34. The EPDS is a 10-item self-report questionnaire assessing ty-
pical symptoms of depression during the last two weeks. Each item is 
scored on a 4-point scale, and sum scores range from 0 to 30. Missing 
values (at maximum 3 items per time point) were imputed with the 
mean value of the existing ones. EPDS questionnaire data were not 
available for one of the mothers at gwk24 and data were imputed by the 
MissForest method (Stekhoven and Bühlmann, 2012). The EPDS has 
been validated in several studies and is regarded as a valid instrument 
for assessing both pre- and postnatal depressive symptoms 
(Eberhard-Gran et al., 2001; Cox et al., 1996; Kozinszky and 
Dudas, 2015). In this study, the sum scores of each time point (EPDS 
gwk14, EPDS gwk24, EPDS gwk34) were investigated. Additionally, the 
individual sum scores of all three time points were combined to form a 
total EPDS sum score (EPDS Sum) as a proxy for the chronicity of 
prenatal depressive symptoms. 

2.2.2. Prenatal maternal control variables 
To control for general and pregnancy-related anxiety, the Finnish 

versions of the anxiety subscale of the revised Symptom Checklist 90 
(SCL-90-R) (Holi et al., 1998; Derogatis, 1983) and the PRAQ-R2 
questionnaire (Huizink et al., 2016) were administered. General anxiety 
(SCL) was assessed at gwk 14, 24 and 34, and pregnancy-related anxiety 
(PRAQ) was assessed at gwk 24 and 34. Missing values (at maximum 3 
items per time point for SCL and at maximum 1 item for PRAQ) were 
imputed with the mean value of the existing ones. No questionnaire 
data was available for one of the mothers at gwk 24, and the SCL data 
was imputed by the MissForest method (Stekhoven and 
Bühlmann, 2012). Individual sum scores were computed for prenatal 
maternal anxiety (SCL Sum) and pregnancy-related anxiety (PRAQ 
Sum; missing: n=1) over pregnancy. 

The Trauma and Distress Scale (TADS) (Salokangas et al., 2016) was 
administered to mothers at gwk 14 to assess childhood stress exposure 
and maltreatment. It has been shown that childhood maltreatment in-
creases the risk for depression (Li, D'Arcy, and Meng, 2016) and is re-
lated to reduced gray matter volumes of the fetal brain (Moog et al., 
2018). Missing values (at maximum 1 item per subscale and time point) 
were imputed with the mean value of the existing ones, and an in-
dividual sum score (TADS sum) was created. 

Furthermore, the following maternal variables were assessed via 
mothers’ self-report at gwk 14 and/or 34: maternal education, maternal 
age, prenatal medication, and prenatal alcohol, nicotine and illicit drug 
consumption. Obstetric data was retrieved from the Finnish Medical 
Birth Register of the National Institute for Health and Welfare (http:// 
www.thl.fi), and included gestational complications (diabetes: n= 6, 
hypertension: n=1), maternal prepregnancy body mass index (BMI) 
and previous miscarriages or abortions. We dichotomized BMI 
(BMI<25, BMI >= 25) given that maternal obesity has been asso-
ciated with alterations in the infant brain (Pulli et al., 2019). We further 
dichotomized medication use (thyroxine and corticosteroids; yes/no), 
alcohol and/or nicotine exposure (yes/no), gestational complications 
and previous miscarriages and/or abortions (yes/no). No significant use 
of antidepressants or illicit drugs was reported (four missing values at 
the first time point: medication: n=2, alcohol exposure: n=1; illicit 
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drugs: n=1). Education was trichotomized [low: high school or voca-
tional education (9 years), middle: (career) college (12 years), high: 
university (+12 years)]. 

2.2.3. Postnatal maternal control variables 
Maternal postnatal depressive symptoms were assessed by use of the 

Edinburgh Postnatal Depression Scale (EPDS) (Cox et al., 1987) at 3 
months (n= 28) and 6 months (n= 23), and at 1 year (n= 24), 2 years 
(n= 18) and 4 years (n= 22) post-partum. Maternal postnatal anxiety 
was assessed using the anxiety subscale of the revised Symptom 
Checklist 90 (SCL-90-R) (Derogatis, 1983; Holi et al., 1998) at 3 and 6 
months, and at 2 and 4 years post-partum. Individual sum scores for 
postnatal maternal depressive symptoms and for general anxiety were 
created by summing up the scores of all postnatal time points, for de-
pressive symptoms and for anxiety separately. 

2.2.4. MRI acquisition 
Magnetic resonance imaging was performed using a 3 T Philips 

Ingenuity TF PET/MR (Philips, Amsterdam, Netherlands) and a Sense- 
Head-32 channel coil. The 3D T1 turbo field echo (TFE) sequence was 
imaged in sagittal orientation. The Field of view was 256 × 256 mm. 
Data was acquired and reconstructed with 1mm isotropic voxels. 
Parallel imaging was used with a SENSE factor of 2 and a flip angle of 7 
degree. Repetition time was 8.1 ms and echo time was 3.7 ms. The 
sequence duration was 4 minutes 23 seconds. 

2.2.5. Volume segmentation of the amygdala 
The native anatomical images were preprocessed and segmented 

applying the volBrain pipeline (Manjón and Coupé, 2016). The seg-
mentation of the amygdala volumes was amended by two raters ac-
cording to the segmentation protocol by Hashempour and colleagues 
(Hashempour et al., 2019) that has been developed in our research 
group for the segmentation of young children's data. For the manual 
segmentation, the software ITK-SNAP (version 3.6.0; http://www. 
itksnap.org) (Yushkevich et al., 2006) and MNI Display (http://www. 
bic.mni.mcgill.ca/software/ Display/Display.html) were used (inter-
rater reliability [ICC(2,1)](Koo and Li, 2016): ICC (right amygdala)= 
0.93, ICC (left amygdala)= 0.94). Total intracranial volume was as-
sessed by use of volBrain. 

2.2.6. Statistical analyses 
Statistical analyses of behavioral and brain volume data were per-

formed using R 3.4.4 (R Core Team, 2016) (http://www.r-project.org/). 
Packages in use were “Hmisc” (Harrell, 2017), “psych” (Revelle, 2018), 
“nortest” (Gross and Ligges, 2015), “ggplot2” (Wickham, 2009), “mis-
sForest” (Stekhoven, 2013) and “car” (Fox and Weisberg, 2011) among 
others. Missing values of postnatal control variables were imputed by 
means of multiple imputation (Van Buuren, 2018; Rubio, 1987) using 
the package “mice” (Van Buuren and Groothuis-Oudshoorn, 2011), and 
the results given from these analyses are the pooled results. 

Standard multiple linear regression analyses were performed to 

Table 1. 
The mean scores (M), standard deviations (SD) and frequencies, respectively, are listed for maternal prenatal EPDS scores, child's amygdalar volumes and control 
variables, for the whole sample and for girls and boys separately. In the right column p-values for sex differences in the sample are listed.       

Variable Whole sample Boys (n= 14) Girls (n= 14) p  

M ± SD (range)     
Child's age [mo] 50.8 ± 1.6 

(47.7-54.0) 
50.8 ± 1.2 
(48.7-53.1) 

50.8 ± 2.0 
(47.7-54.0) 

0.949 

Gestational weeks at birth 39.9 ± 1.1 
(38.0-42.1) 

39.9 ± 1.1 
(38.0-42.0) 

39.9 ± 1.1 
(38.0-42.1) 

0.901 

Birth weight [g] 3620.0 ± 386.1 
(2750-4225) 

3540.1 ± 431.9 
(2750-4025) 

3700.0 ± 330.7 
(2950-4225) 

0.281 

EPDS gwk14 4.18 ± 3.31 
(0-12) 

5.64 ± 3.56 
(0-12) 

2.71 ± 2.33 
(0-8) 

0.016* 

EPDS gwk24 4.80 ± 3.06 
(0-13) 

5.36 ± 2.59 
(1-9) 

4.25 ± 3.48 
(0-13) 

0.347 

EPDS gwk34 4.93 ± 4.52 
(0-17) 

5.36 ± 3.67 
(1-13) 

4.50 ± 5.35 
(0-17) 

0.625 

EPDS Sum 13.91 ± 8.96 
(0-31) 

16.36 ± 8.54 
(6-31) 

11.46 ± 9.00 
(0-31) 

0.152 

Left amygdala volume [mm3] 1157.6 ± 107.8 
(908-1330) 

1115.4 ± 104.9 
(908-1273) 

1199.7 ± 96.6 
(1028-1330) 

0.036* 

Right amygdala volume [mm3] 1186.5 ± 117.3 
(935-1480) 

1164.6 ± 127.5 
(935-1379) 

1208.4 ± 106.2 
(1091-1480) 

0.333 

Total intracranial volume [cm3] 1400.8 ± 135.5 
(1137.4-1720.1) 

1485.9 ± 120.0 
(1315.4-1720.1) 

1315.7 ± 90.0 
(1137.4-1459.5) 

<0.001* 

Prenatal SCL Sum 7.69 ± 8.41 
(0-32) 

8.30 ± 9.06 
(0-32) 

7.08 ± 8.01 
(0-23) 

0.709 

PRAQ Sum 
(n=27) 

43.81 ± 9.72 
(28-61) 

46.57 ± 8.73 
(32-61) 

40.85 ± 10.17 
(28-59) 

0.128 

Postnatal EPDS Sum 
(n=13) 

24.17 ± 20.88 
(4-83) 

28.03 ± 27.52 
(4-83) 

19.67 ± 9.64 
(8-34) 

0.496 

Postnatal SCL Sum 
(n=13) 

12.62 ± 16.76 
(1-60) 

16.86 ± 21.38 
(2-60) 

7.67 ± 8.50 
(1-22) 

0.346 

TADS Sum 10.72 ± 10.94 
(0-43) 

9.09 ± 8.43 
(0-28) 

12.36 ± 13.10 
(0-43) 

0.440 

Frequencies     
Maternal pre-pregnancy BMI (<25 / >=25) 17/11 7/7 10/4 0.246 
Prenatal alcohol and/or nicotine consumption (no/yes) (n=27) 19/8 9/5 10/3 0.472 
Prenatal medication – thyroxine (no/yes) 26/2 13/1 13/1 1.000 
Prenatal medication – corticosteroids (no/yes) 26/2 13/1 13/1 1.000 
Gestational complications (no/yes) 21/7 8/6 13/1 0.029* 
Miscarriages and/or abortions (no/yes) 21/7 11/3 10/4 0.663 
Maternal education (low/middle/high) 5/5/18 1/3/10 4/2/8 0.329 

*p<0.05; Abbr: EPDS= Edinburgh Postnatal Depression Scale, PRAQ=pregnancy-related anxiety questionnaire, SCL= anxiety subscale of the revised Symptom 
Checklist 90  
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investigate the associations between bilateral amygdala volumes and a) 
the individual EPDS scores and b) the interaction between EPDS scores 
and child's sex. Individual EPDS scores of all three time points (gwk14, 
gwk24, gwk34) and the EPDS Sum score were analyzed in independent 
analyses. All analyses included child's age at MRI scan time, child's sex 
and child's intracranial volume as (control) variables. In sensitivity 
analyses, we repeated all the multiple regression analyses by subse-
quently adding and removing each of the following control variables 
to/from the model in order to test if the observed results were explained 
by these covariates: maternal prenatal medication, prenatal alcohol 
and/or nicotine exposure, postnatal depressive symptoms, pre-/post-
natal maternal general anxiety, pregnancy-related anxiety, maternal 
education, maternal BMI, gestational complications, previous mis-
carriages and/or abortions, maternal childhood trauma, child's birth 
weight and gestational age. We performed post-hoc analyses for the 
results that were either significant or related to our hypothesis, probing 
the association between amygdalar volumes and EPDS scores by means 
of partial correlation analyses. In all correlational analyses, Pearson 
Product Moment correlation coefficients (r) and, for non-normally 
distributed data, Spearman correlation coefficients (rho) are reported. 

We chose a statistical threshold of p< 0.05. Given the exploratory 
nature of the study, no correction for multiple testing was carried out. 

3. Results 

3.1. Description of the sample 

Descriptive information on EPDS scores, amygdalar volumes and 
control variables is listed for the whole sample and for boys and girls 
separately in Table 1. In the whole sample, the EPDS scores of different 
time points were highly intercorrelated (gwk14-gwk24: rho= 0.56, 
gwk14-gwk34: rho= 0.73; gwk24-gwk34: rho= 0.37). Mothers of girls 
compared to those of boys reported significantly lower depressive 
symptoms at gwk14. EPDS scores were also significantly positively 
correlated with SCL sum scores (gwk14: rho= 0.55; gwk24: rho= 0.49; 
gwk34: rho= 0.57, Sum: rho= 0.67) and with postnatal EPDS scores 
(gwk14: W= 5.6; gwk34: W= 3.3; Sum: W= 4.7). Left amygdalar 
volumes were significantly larger in girls compared to boys (Table 1). 

3.2. Association between maternal prenatal depressive symptoms and child's 
amygdalar volumes 

3.2.1. Higher EPDS gwk14 scores were associated with smaller bilateral 
amygdalar volumes after controlling for prenatal anxiety 

In the multiple linear regression analyses of the whole sample, we 
did not find significant associations between EPDS scores and amyg-
dalar volumes if we only controlled for child's sex, age and total in-
tracranial volume (Table 2). However, in the sensitivity analyses we 

observed that higher EPDS gwk14 scores were significantly associated 
with smaller right amygdalar volumes after controlling for prenatal 
general anxiety (see Methods, 2.2.6) (Fig. 1). Multicollinearity in this 
analysis did not exceed recommended thresholds (variance inflation 
factor of all predictors <2.2). Post hoc partial correlation analyses re-
vealed that right amygdalar volumes were negatively correlated with 
EPDS gwk14 scores in the whole sample (rho: -0.46, p= 0.016), and 
both in boys (r= -0.54, p= 0.046) as well as weakly in girls (r= -0.39, 
p= 0.164) (controlling for child's age, total intracranial volume, pre-
natal SCL Sum score and in the whole sample additionally for sex). 
Postnatal depressive symptoms were not significantly related to bi-
lateral amygdalar volumes in the sensitivity analyses (all p> 0.32). 

3.2.2. Higher EPDS gwk34 scores were associated with smaller right 
amygdalar volumes in boys compared to girls 

In multiple linear regression analyses, investigating the interaction 
between EPDS scores and child's sex on amygdalar volumes, we 

Table 2. 
The association between amygdalar volumes, prenatal EPDS scores and child's sex. The results or the multiple linear regression analyses with amygdalar 
volumes as dependent variable are listed. In the upper part of the table prenatal EPDS is the predictor. In the lower part the interaction term of EPDS and child's sex is 
the predictor.           

Volumes EPDS gwk14 EPDS gwk24 EPDS gwk34 EPDS Sum 
β ± SE p β ± SE p β ± SE p β ± SE p  

L amygdala -7.21 ± 7.11 0.321 3.90 ± 6.86 0.575 -4.30 ± 4.39 0.337 -1.56 ± 2.39 0.519 
R amygdala -10.77 ± 8.05 0.194a 5.98 ± 7.85 0.454 -5.54 ± 5.02 0.281 -2.06 ± 2.74 0.460 
Interaction between EPDS and child's sex (0= female, 1= male) on amygdalar volumes:  

EPDS gwk14 x sex EPDS gwk24 x sex EPDS gwk34 x sex EPDS Sum x sex 
L amygdala 0.59 ± 15.48 0.970 -5.33 ± 14.24 0.712 -3.49 ± 9.78 0.724 -1.54 ± 4.83 0.752 
R amygdala -12.18 ± 17.33 0.489 -10.87 ± 16.17 0.509 -22.11 ± 10.18 0.041b -8.06 ± 5.27 0.140 

Abbr.: L= left, R=right, EPDS= Edinburgh Postnatal Depression Scale, SE= standard error, gwk= gestational week 
a p<0.05 when controlling for prenatal SCL Sum 
b p<0.05 when controlling for birth weight, TADS Sum, postnatal depressive symptoms, p<0.06 with PRAQ Sum (n=27), medication (thyroxine), maternal 

education, previous miscarriages and/or abortions, p<0.07 with gestational weeks, alcohol and/or nicotine exposure (n=27), medication (corticosteroids), p<0.08 
with pre- and postnatal SCL Sum, p< 0.10 with maternal BMI, and p< 0.12 with gestational complications  

Fig. 1.. Association between EPDS gwk14 scores and right amygdalar 
volumes Higher EPDS gwk14 scores were significantly correlated with smaller 
right amygdalar volumes (rho= -0.46, p= 0.016) after controlling for child's 
sex, age and intracranial volume, and for maternal prenatal SCLSum scores 
(residuals are displayed). 
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observed that EPDS gwk34 scores were significantly more negatively 
associated with right amygdalar volumes in boys compared to girls 
(Table 2, Fig. 2). In the sensitivity analyses, testing potential con-
founders, the association stayed significant after controlling for birth 
weight, maternal postnatal depressive symptoms and maternal child-
hood maltreatment experiences, but was reduced to nonsignificance by 
the other control variables (Table 2). Post hoc partial correlation ana-
lyses (controlling for child's age and total intracranial volume) yielded 
that right amygdalar volumes were significantly negatively correlated 
with EPDS gwk34 scores in boys (r= - 0.62, p= 0.018), but no asso-
ciation was observed in girls (rho= 0.26, p= 0.366). 

We found no evidence for interactions between EPDS gwk24 scores 
and sex on amygdalar volumes (Table 2). Post hoc partial correlation 
analyses showed no associations between EPDS gwk24 scores and right 
or left amygdalar volume in girls (all p> 0.24) or boys (all p> 0.87). 

4. Discussion 

With this study, we explored the association between maternal 
prenatal depressive symptoms and amygdalar gray matter volumes in 
four-year-olds. We observed that higher maternal depressive symptoms 
in the early second trimester (gwk 14) were related to smaller right 
amygdalar volumes after controlling for prenatal maternal anxiety. 
Postnatal depressive symptoms were not significantly associated with 
child's amygdalar volumes. 

Furthermore, we detected a sexually dimorphic association between 
maternal depressive symptoms of the third trimester and right amyg-
dalar volumes: Higher prenatal depressive symptoms were significantly 
related to smaller amygdalar volumes in boys compared to girls. This 
sex-specific association remained significant after controlling for post-
natal depressive symptoms, but was reduced to nonsignificance by 
control variables such as gestational complications and maternal BMI. 

In our study, maternal pre- and postnatal depressive symptoms were 
moderately to highly intercorrelated, and a high comorbidity with an-
xiety symptoms was observed. The course of depression during preg-
nancy is still poorly investigated (Gentile, 2017), but might be de-
composable into different symptom trajectories during pregnancy 
(Korja et al., 2018). Prenatal depression has evolved to be a strong 
predictor for postnatal depression (Field, 2011), and the incidence of 

comorbid anxiety and depression in patients amounts to 50% on 
average, ranging between 33 and 90% (Gorman, 1996). 

Controversy still continues as to whether depression and anxiety 
should be considered as separate or unitary disorders. Depression and 
anxiety share some, but not all neurobiological disturbances 
(Hranov, 2007). Importantly, Field et al. (2010) have shown that pre-
natal anxiety and depression exert partly distinct physiological effects 
on neonates, such as lowered versus heightened neonatal cortisol levels, 
respectively (Field et al., 2010). Neonates of mothers with comorbid 
anxiety and depression have exhibited physiological profiles resembling 
the attenuated profiles of depressed mothers’ offspring (Field et al., 
2010). In our study, control for maternal prenatal anxiety strengthened 
the association between EPDS gwk14 and right amygdalar volumes, 
suggesting that maternal anxiety weakens the effects of maternal de-
pression on neonatal outcomes, thereby paralleling the findings of  
Field et al. (2010). 

To the best of our knowledge, this study is the first to investigate the 
association between maternal depression of the early second trimester 
with amygdalar volumes, and our study revealed a negative association 
between EPDS gwk14 scores and right amygdalar volumes after con-
trolling for maternal general anxiety. Amygdalar development starts 
early in embryonic life: All three main amygdalar subdivisions are de-
tectable around the fifth week, and amygdalar neuronal migration, 
neuronal differentiation, axonal outgrowth and synaptogenesis con-
tinue during the second trimester until the early third trimester 
(Müller and O'Rahilly, 2006; Ulfig et al., 2003; Humphrey, 1968). 

However, our hypothesis that maternal depressive symptoms of the 
late second trimester would be related to significantly larger right 
amygdalar volumes in girls compared to boys was only partly supported 
by our data: EPDS gwk24 scores were not significantly associated with 
amygdalar volumes in our sample, and while EPDS gwk34 scores 
showed a sex-specific interaction on right amygdalar volumes, post hoc 
analyses revealed, contrary to our expectations, a significant negative 
association for boys and no association for girls. It has been proposed 
that neurodevelopmental trajectories vary between sexes leading to 
different time windows of vulnerability (Entringer et al., 2015;  
Bock et al., 2015). Evidence is growing that prenatal stress exerts 
sexually dimorphic effects on the human fetus (Hicks et al., 2019), and 
neuroimaging studies have revealed sex-specific associations of ma-
ternal prenatal stress with neonatal functional amygdalar connectivity 
(Graham et al., 2019), and neonatal and child's amygdalar volumes 
(Buss et al., 2012; Lehtola et al., n.d.; Acosta et al. 2019). Sex-specific 
placental responses to prenatal stress might underly the observed 
sexually dimorphic effects: For instance, human studies have shown 
that the female placenta reacts with multiple adaptations of placental 
gene expression to prenatal challenges compared to minimal adapta-
tions in male placentas (Clifton, 2010). Therefore, sex differences in the 
developmental timing of the amygdala and/or in placental functions 
might explain why maternal depressive symptoms of the third trimester 
associate with amygdalar volumes in boys and girls differently, sug-
gesting a higher vulnerability of boys compared to girls in late preg-
nancy. 

In animal studies, smaller offspring amygdalar volumes have been 
associated with in utero synthetic glucocorticoid exposure 
(Miranda and Sousa, 2018; Oliveira et al., 2012). In humans, reduced 
amygdalar volumes, especially of the left hemisphere, have been linked 
to hypercortisolism in children diagnosed with Cushing's syndrome 
(Merke et al., 2005) and to chronic corticosteroid therapy in adults 
(Brown et al., 2008). As mentioned above, significantly higher cortisol 
levels and a higher stress reactivity have been observed in neonates of 
prenatally depressed mothers compared to those of anxious mothers or 
controls (Field et al., 2010; Lundy et al., 1999; Stroud et al., 2016). The 
effects of maternal depression on offsping development are presumably 
not directly mediated by elevated maternal prenatal cortisol levels 
(O'Donnell and Meaney, 2017) which have not consistently been as-
sociated with maternal depression during pregnancy, although data 

Fig. 2.. The association between EPDS gwk34 scores, child's sex and right 
amygdalar volumes EPDS gwk34 scores and child's sex showed a significant 
interaction on right amygdalar volumes (β ± SE= -22.11 ± 10.18, p= 0.041). 
Controlling for child's age and total intracranial volume, right amygdalar vo-
lumes were significantly negatively correlated with EPDS gwk34 scores in boys 
(r= -0.62, p= 0.018), but no association was observed in girls (rho= 0.26, p= 
0.366). The residuals of right amygdalar volumes are displayed, controlling for 
child's age and total intracranial volume. 
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regarding the first trimester is scarce (Salacz et al., 2012; Field et al., 
2010; Hellgren et al., 2016; O'Donnell and Meaney, 2017). Fetal ex-
posure to maternal cortisol is regulated by a placental enzyme, the 
11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2). Acute 
maternal stress up-regulates the enzyme's activity protecting the fetus 
from rising cortisol concentrations (Welberg et al., 2005). However, 
chronic maternal stress has been associated with a lower activity of 
11beta-HSD2 in animal and human studies resulting in a higher fetal 
cortisol exposure (O'Donnell et al., 2012; Mairesse et al., 2007;  
Welberg et al., 2005). Maternal depressive symptoms might be related 
to a reduced activity of 11beta-HSD2 (Seth et al., 2015; O'Donnell et al., 
2012; Hellgren et al., 2016), even though findings have been, to some 
extent, inconsistent (Reynolds et al., 2015), and to an increased pla-
cental glucocorticoid sensitivity (Reynolds et al., 2015). Importantly, in 
typically progressing pregnancies, maternal psychophysiological stress 
responses are less attenuated in early compared to late pregnancy 
(Entringer et al., 2010; O'Donnell and Meaney, 2017). 

We assume that maternal depressive symptoms alter placental 
functions resulting in less protection of the fetus from maternal stress 
responses, and this, along with a higher maternal stress reactivity in 
early compared to late pregnancy, might explain the association of 
maternal depressive symptoms in early pregnancy with smaller child's 
amygdalar volumes in our study. By contrast, higher maternal cortisol 
levels in early pregnancy without depression have been linked to larger 
amygdalar volumes in girls (Buss et al., 2012), and, based on these and 
our findings, we speculate that the effects of prenatal depression on 
fetal brain development are not directly mediated by maternal prenatal 
cortisol levels, but involve other pathways. 

Smaller amygdalar volumes might facilitate unfavorable behavioral 
outcomes in children and adults: Behavioral problems, such as proac-
tive aggression and conduct problems (Rogers and De Brito, 2016;  
Naaijen et al., 2018), emotional difficulties and peer relationship pro-
blems (Acosta et al. 2019), and a diagnosis of schizophrenia 
(Fischer et al., 2012). have been associated with smaller bilateral or left 
amygdalar volumes. However, conflicting findings exist: Better emotion 
regulation skills (Pagliaccio et al., 2014) have been associated with 
smaller bilateral amygdalar volumes, and smaller right amygdalar vo-
lumes have been related to a higher impulse control in toddlers 
(Graham et al., 2018), and a lower fearfulness in girls (van der Plas 
et al., 2010). Hence, the repercussions of the volume alterations remain 
to be determined. 

In summary, the results of our exploratory study suggest that ma-
ternal EPDS scores of the early second trimester are related to smaller 
amygdalar volumes in boys and girls, controlling for prenatal maternal 
anxiety. Amygdalar development in boys compared to girls might be 
more vulnerable to depressive symptoms in the third trimester. The 
predictive value of depressive symptoms in the late second trimester 
was limited in our sample, as reflected in comparably weak associations 
not only with amygdalar volumes, but also with maternal postnatal 
depression. No significant associations with the chronicity of exposure 
to depressive symptoms were detected. 

Our results are in contrast to findings observed for pregnancy-re-
lated anxiety in an overlapping sample where pregnancy-related an-
xiety of the late second trimester was associated with significantly 
larger amygdalar volumes in girls compared to boys 
(Acosta et al. 2019). Altogether, our current data together with pre-
vious work suggest that the effects of maternal prenatal anxiety, de-
pression and cortisol on offspring brain development are potentially 
different. Future studies should elucidate the underlying biological 
pathways. 

4.1. Limitations 

The sample size of our study was rather small, reducing statistical 
power, limiting the generalizability and interpretation of our results. 
The sample size also did not allow us to investigate different trajectories 

of pre- and postnatal depressive symptoms. A replication of our study 
results is warranted. While we controlled for postnatal depressive 
symptoms and anxiety, other aspects of the postnatal environment such 
as the early caregiving behavior can shape child's development 
(e.g.,Tyrka et al., 2013). Furthermore, a recent study revealed that 
maternal prenatal depressive symptoms interact with infant genotype 
on amygdalar volumes (Qiu et al., 2017). However, it was beyond the 
scope of this study to take genetic factors and caregiving behavior into 
account. 
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