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Abstract
When the response pattern in a test item deviates from the deterministic pattern, the 
percentage of correct answers (p) is shown to be a biased estimator for the latent 
item difficulty (π). This is specifically true with the items of medium item difficulty. 
Four elements of impurities in p are formalized in the binary settings and four new 
estimators of π are proposed and studied. Algebraic reasons and a simulation sug-
gest that, except the case of deterministic item discrimination, the real item diffi-
culty is almost always more extreme than what p indicates. This characteristic of 
p to be biased toward a medium-leveled item difficulty has a strict consequence to 
item response theory (IRT) and Rasch modeling. Because the classical estimator of 
item difficulty p is a biased estimator of the latent difficulty level, the item param-
eters A and B and the person parameter θ within IRT modeling are, consequently, 
biased estimators of item discrimination and item difficulty as well as ability levels 
of the test takers.
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1 � Introduction: deterministic pattern and proportion of correct 
answers as an indicator of item difficulty

One of the less discussed underlying thinking in the modern test theory is that, 
latent to each observed item, there is an unobservable theoretical (image of the) 
item which the observed pattern of responses reflects. In Rasch models (Rasch 1960 
onwards) and wider item response theory (IRT) models (Birnbaum 1968 and Lord 
and Novick 1968 onwards) as well as in nonparametric IRT (NIRT) models (Mok-
ken 1971 onwards), this latent image is a deterministically discriminating (latent) 
item. With binary items, this is called Guttman-patterned item (GP1; named after the 
legacy of Louis Guttman’s idea of scaling2; Guttman 1944, 1947, 1950). This latent 
connection is discussed, specifically, within Rasch modeling (e.g., Andrich 1985; 
Linacre 1992; 2000; Linacre et  al. 2003; Linacre and Wright 1994; 1996; Pedler 
et  al. 2011; Roskam and Jansen 1992; Van Schuur 2003). However, the phenom-
enon is not restricted to the Rasch model only. With IRT models using two or more 
parameters addition to the B-parameter (difficulty), this latent image may also be 
thought to be a perfectly discriminating item. In these settings, this latent image is 
reflected as a theoretical, non-estimable, indefinitely high estimate for the A-param-
eter (discrimination) and as a non-zero value for the C-parameter (guessing) indicat-
ing an obvious deviation from this latent image of deterministic item discrimination.

Because of the deterministic nature in the GP items, there is a fundamental dif-
ference between the Guttman model in comparison with non-deterministic or sto-
chastic Rasch-, IRT-, and NIRT models (Curtis 2004). Also recall the mathematical 
connection between Guttman pattern and Mokken pattern (Mokken 1971) through 
Loevinger’s H (Loevinger 1948) which basically measures the number of errors in 
the Mokken pattern; when H equals 1, there are no errors in the Mokken pattern, 
and it equals with the Guttman pattern (van Onna 2004).

The deterministic nature of the Guttman pattern determines two things. First, the 
extreme nature of a GP item is seen in the fact that it discriminates the higher and 
lower scoring test takers from each other in a deterministic manner (e.g., Linacre 
and Wright 1994; Metsämuuronen 2020b). Second, important for the rest part of the 
article, GP items have unambiguous item “difficulty” π.3 The latter character of GP-
items is specifically discussed and studied in the article.

1  In the article, the deterministic pattern in the items is called Guttman-patterned even if the item would 
be a polytomous one and without a connection to traditional triangle type of form of dataset usually 
related to Guttman scaling (see, e.g., Linacre & Wright, 1996; Metsämuuronen, 2016). A typical binary 
Guttman-patterned item is characterized by a string of 0  s trailed by a string of 1  s after the item is 
ordered by the score. A corresponding polytomous Guttman-patterned item is in a deterministic order 
after ordered by the score.
2  Of the other legacies of Guttman, see Zimmerman, Williams, Zumbo, & Ross (2005). They highlight 
Guttman as one of the most neglected theorists in test theory; Guttman has made contributions, among 
others, to reliability theory, factor analysis and scaling theory.
3  “Difficulty” is used here for historical reasons even though it does not make sense, for example, with 
attitude scales. Technically, the parameter of “item difficulty” B is a “location” parameter. In achievement 
testing, this “location parameter” indicates the level in the ability scale needed to solve the task correctly 
with 0.5 probability, that is, the difficulty level of the item.
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The proportion of correct answers in a test item (p = observed score in an item 
divided by the maximum possible score in the item) is the key estimator of π in the 
classical test theory (e.g., Lord and Novick 1968).4 The sample-dependent p is also 
an elementary part of the modern test theory because p is a sufficient statistic for the 
difficulty parameter B (e.g., Embretson and Reise 2000; Fox 2010). In the simplest 
case, B is a logistic function of p, and all main transformation procedures of B use 
p in some form (e.g., Guo et al. 2009). Because p is strictly related to the observed 
values in the item, the raw score X used as a sufficient statistic for the latent ability 
θ (e.g., Embretson and Reise 2000; Fox 2010; Samejima 1969; Sijtsma and Henker 
2000) is also strictly related to the response patterns forming p. In a two-parameter 
IRT-model, p is also used in estimating the item discriminating parameter A (Sijtsma 
and Henker 2000).

As an estimator of item difficulty, p appears to face two challenges. One is when 
the data consists of missing values and these are, conventionally, imputed as “wrong 
answer” with 0, this obviously changes the estimate of the true item mean. In their 
simulation, Rose et  al. (2010) noted that re-coding the missing data as “answered 
incorrectly” leads to a biased estimator that systematically over estimates the true 
item mean. The resulting bias appears to increase with the difficulty of the item. 
This aspect, however, is not focused on in this article. This article focuses on the 
more obvious challenge related to p: although p is an accurate indicator of the num-
ber of correct answers of the observed test takers, it is not accurate in indicating π if 
the item deviates from the deterministic pattern.

There are two basic sources of bias in p: either there are unexpected correct 
answers in the lower part of the ordered dataset (“lucky guessing”, “specific knowl-
edge” or “imputed outlier” in the typology by Linacre and Wright 1994; impurity 1 
in Table 1) or unexpected incorrect answers in the upper part of the ordered dataset 
(“carelessness”, “sleeping”, or “slipping” in Linacre and Wright 1994; impurity 2 
in Table 1). Obviously, both can be obtained simultaneously (impurity 3 in Table 1) 
Another source of impurity, necessary for the statistical processes based on stochas-
tic errors, are the patterns where the middle-ranged test-takers make random errors 
because of ignorance or by being careless (impurities 4 and 5 in Table 1) and sepa-
rating these necessary sources of impurity from the unwanted and unnecessary pat-
terns may be difficult. However, by modeling the probability of the test-takers giving 
the correct answer, we would conclude that the probability of a very low-achieving 
test-taker to know the correct answer in a difficult item without a random correct 
guessing would be very low and the probability of a very high-achieving test-taker 
to give an incorrect answer in an easy item would be very low.

4  Traditionally, p, or facility index or difficulty index, is calculated by using all test-takers in the data-
set. However, within the tradition related to Kelley’s discrimination index (DI; Kelley, 1939), the facil-
ity index is sometimes calculated considering only those test-takers who are used when estimating DI, 
that is, traditionally 25 or 27% of the highest and lowest performing test-takers (see, e.g., Badkur et al. 
2017; Kareliaet al. 2013; Rao, Kishan Prasad, Sajitha, Permi, & Shetty, 2016). Then, the item difficulty 
is estimated by P = (H + L)/T × 100, where H and L refer to the numbers of test-takers answering the item 
correctly in the higher and lower achieving group, respectively, and T is the total number of test-takers in 
the group together.
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We may rationalize that because the classical estimator of item difficulty p is a 
biased estimator of the latent difficulty level, the item parameters A and B and the 
person parameter θ within IRT modeling are, consequently, biased estimators of 
item discrimination and item difficulty as well as ability levels of the test takers. It 
seems obvious that the more these illogical patterns are actualized in the item, the 
less the observed B reflects the “true” π and the latent item difficulty β and the less X 
reflects the “true” θ.5

2 � Research questions

Whenever incidents of “lucky guessing” or “carelessness” in the dataset are 
obtained, relevant questions are, first, what the real item difficulty is, second, how to 
estimate that, and third, what are its possible consequences in the further processes 
of item analysis. The elements of impurities in p are formalized and four alterna-
tive solutions to estimate the “bias-corrected item difficulty” are proposed in four 
phases. First, the characteristics of GP items are discussed and defined. Second, the 
impurities in p are formalized. Third, four procedures to estimate the latent item dif-
ficulty are proposed for real-world items with non-deterministic patterns. Fourth, the 
behavior of the four estimators is studied using a simulation of a real-world dataset.

Table 1   Typology of the source of biasness in p 

Descriptors by Linacre and Wright (1994)

5  An anonymous reviewer pointed out that the concept of "difficulty" depends on the employed model. 
So, there are many possible definitions of the “difficulty” and, hence, also of the “true” item difficulty 
and “true” person parameter. In the article, the word “true” and “real” are used without quotation marks 
if the original source uses it that way (e.g., Rose et al. 2010)—otherwise mainly with quotation marks. In 
the empirical section, when the “population” is known, “true” is used without quotation marks.
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3 � Deterministic pattern and unbiased and biased item difficulty

3.1 � PES, cut‑offs, and COC

In what follows, the mechanism familiar from Kelley’s discrimination index (DI; 
Kelley 1939; Long and Sandiford 1935) used with binary items and Metsämuu-
ronen’s Generalized DI (GDI; Metsämuuronen 2017, 2020a) for binary and poly-
tomous items are used later as a tool to detect the latent item difficulty. In com-
parison with other indices of item discrimination power, the computation of DI and 
GDI embed peculiarity that they use only the extreme cases of the sorted dataset 
in the estimation. Because of the mechanism of selecting only the extreme cases 
to the analysis, the different cut-offs for the extreme groups have been actively dis-
cussed during the years.6 Forlano and Pinter (1941), for example, after studying the 
cut-offs of upper and lower 50, 33, 27, 16, and 7% of the cases, concluded that no 
method can be ranked over the other. However, they preferred 27% because it was 
a simple and rapid, rough, and ready method suggested already by Kelley (1939) as 
27% cut-off maximizes the differences in population if the item difficulty is p = 0.50. 
Traditionally, either 27% (e.g., Ebel 1967; Kelley 1939; Pemberton 1951; Ross and 
Weitzman 1964; Wiersma and Jurs 1990) or 25% (e.g., D’Agostino and Cureton 
1975; Mehrens and Lehmann 1991; Metsämuuronen 2017, 2020a) of the extreme 
test-takers of the ordered data are suggested for the calculation of DI. Notably, while 
Kelley’s DI discussed above uses fixed cut-offs, GDI uses all cut-offs and a routine 
called the procedure of exhaustive splitting (PES) (see, Metsämuuronen 2020a) dis-
cussed in what follows.

To illustrate the phenomenon that a GP item detects the item discrimination 
and item difficulty π in a deterministic manner, the procedure of exhaustive split-
ting (PES) using all possible cut-offs of the extreme cases in the ordered dataset is 
employed and the related cut-off curves (COC; Metsämuuronen 2017; 2020a; see 
also Metsämuuronen 2022) are studied. PES (Metsämuuronen 2020a) is a simple 
routine where all possible cut-offs of the dataset are used to estimate the item dis-
crimination by GDI. Although DI and GDI are used as indicators of item discrimi-
nation by Metsämuuronen (2020a) and here, PES is obviously not restricted to DI or 
GDI. In Metsämuuronen (2017), PES is used to illustrate differences in the estimates 
between point-biserial correlation and item–rest correlation (Henrysson 1963). The 
routine of PES is as follows:

1.	 Take the extreme highest and lowest observations from the sorted data and cal-
culate the indices of interest. Save the result.

6  Chronologically, e.g., by Long & Sandiford (1935), Kelley (1939), Forlano & Pinter (1941), and 
Pemperton, (1951) during the early years, by Feldt (1963), Ross & Lumsden (1964), Ross & Weitzman 
(1962), Cureton (1966a; 1966b), Ebel (1967), and D’Agostino & Cureton (1975) during the 1960s and 
1970s, and later, by Wiersma & Jurs (1990), Mehrens & Lehmann (1991), and Metsämuuronen (2017, 
2020a, 2022).



	 Behaviormetrika

1 3

2.	 Take two highest and lowest observations from the sorted data and calculate the 
indices of interest (as in 1). Save the result.

3.	 Repeat Step 2, increasing the number of observations and gradually building up 
to ½N = 50% of the observations at both extremes. When there are odd number 
of cases, the median case is not considered for the procedure. A graphical tool, 
COC, can be used to visualize the characteristics of the item (see Figs. 1 and 2).

In what follows, GDI is used as the indicator of item discrimination power 
because its form appears to have a close connection with the estimators of the 
latent π. GDI can be expressed as

Fig. 1   Cut-off curve of a hypothetical GP item

Fig. 2   Cut-off curve of NGP item with minor stochastic error
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(Metsämuuronen 2017, 2020a) where a refers to the number (or percent or pro-
portion) of cases in half of the cut-off of the ordered dataset and, traditionally with 
binary items, RU

a
 and RL

a
 are the number of correct answers in the upper and lower 

half of the cut-off of 25% or 27% of the extreme test takers and Ta refers to the total 
number of observations in the two parts together.7 Consequently, pa refers to the 
proportion of correct answers in the reduced dataset as a whole and pL

a
 is the propor-

tion of correct answers in the lower half of the reduced dataset.

3.2 � Deterministic pattern and unbiased item difficulty

Let us use a GP item with 24 respondents and four correct answers as an example of 
locating π. Ordered from the lowest to the highest test-taker based on the (unseen) 
test score, the pattern is as follows: (000000000000000000001111). The classical 
item difficulty is p = 4/24 = 0.167. After employing PES with Eq. (1) starting from 
the most extreme respondents (a = 1 or a = 0.042 or a = 4.2%) of the cases in half of 
the cut-off), the relevant figures and indices are collected in Table 2. Figure 1 shows 
the corresponding COC.

Three points are worth highlighting. First, from the visual viewpoint, COC 
detects the item difficulty (p = 0.167) at the threshold point of the curve. Also, at the 
threshold point, the item discrimination is perfect (GDI = 1) as should be because 
of the deterministic nature of the item. Second, it is not a coincident that the last 
value in Table 1 and COC is GDI50% = 0.333. When multiplying this value with ½ 
we get the value 0.333∕2 = 0.167 , that is, the item difficulty �s = 0.167, where the 
index a = s = 4 refers to the number of the elements in the string of 1 s of the extreme 
test-takers in the ordered dataset. This is formalized in Theorem 1 in what follows. 
Third, in all cut-offs after a = s, that is, a = s+ , we detect the same item difficulty of 
the GP item �s:

(See the last column of Table 1). The phenomenon is important because it can be 
generalized to any cut-off of any GP item, and this has a consequence for the non-
Guttman-patterned (NGP) items: we can detect �s of the latent GP item or any NGP 
item at any point of COC after the threshold cut-off a = s+ . This is formalized in 
Theorems 2 and 3 in what follows.

(1)GDIa =
RU
a
− RL

a

1

2
Ta

= 2
(
pa − 2pL

a

)
.

(2)�s+ =
RU
s+

− RL
s+

N
=

1

2
Ts+

N
× GDIs+ = �s.

7  For the general case, also including polytomous items, a re-redefinition is needed. Factually,RU

a
 and RL

a
 

refer to the sum of the observed values of the test takers from the highest to the ath highest and from the 
lowest to the ath lowest test-taker in the upper and lower halves of the extreme test-takers of the ordered 
data, respectively, and Ta refers to the maximum possible sum minus the minimum possible sum of the 
observed values of test takers in the specific cut-off a. (Metsämuuronen, 2020a.).
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3.3 � Non‑deterministic pattern and the biased item difficulty

A simple example of a biased estimate of the latent item difficulty is given by an NGP 
item with a minor erroneous pattern (000000000000000010000111). Using PES, the 
corresponding COC is seen in Fig. 2 with the COCs of the GP items of πs = 0.125 and 
πs+1 = 0.167 as dashed lines.

Two points are noteworthy. First, comparing Fig. 1 with a GP item and Fig. 2 with 
an NPG item, we see that, in the latter, there are more than just one unique option for 
the latent GP item with the latent π: the first threshold point (πs) suggests π = 0.125 
while the last measurement point suggests π = 0.167. Although the exact magnitude is 
not known, the latent π seems to be somewhere between πs = 0.125 and πs+1 = 0.167 
rather than uniquely p = 0.167 or p = 0.125. Second, although the observed COC (the 
solid line) does not follow all the way to the COC of one GP item, it follows the COC 
of some of the underlying theoretical GP items in each cut-off. This phenomenon 
appears to be important in estimating the latent item difficulty of the observed NGP 
item: when we know the latent GP item in each cut-off, π of these latent GP items could 
be used in estimating a plausible alternative for the “bias-corrected item difficulty” of 
the observed NGP item. This is formalized later in Theorem 2.

4 � Formalizing the elements of impurity in p

4.1 � Basic definitions related to binary dataset

The treatment uses mainly the same symbols as in Eq.  (1) with DI and GDI. When 
splitting an item in an ordered dataset into two halves (a 50% split), in the binary case, 
traditionally, the symbol T refers to the total number of test-takers usually symbolized 
by N; RU refers to the number of correct answers (1s) in the upper half (U); and RL 
refers to the number of correct answers (1s) in the lower half (L). Then,

where pU and pL refer to the proportions of correct answers in the upper (U) and 
lower (L) halves of the ordered dataset, respectively. Let us denote the number of 1s 
in the item with C and the number of 0s with Z. Then,

and, because of (5) and (6)

For a later use, we note that, because of (4),

(3)RU
/
T = pU andRL

/
T = pL,

(4)C = RU + RL,

(5)Z = T−C,

(6)C∕T = p,

(7)Z∕T = (T − C)∕T = 1 − p,
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and because of (3), (6) and (8)

Finally, the number of test-takers T can be divided into two equally long parts 
denoted by TU and TL respectively for the number of cases in the upper and lower 
halves of the ordered dataset:

4.2 � Basic definitions related to GP items

The preliminary definition concerns the location of the item difficulty π of the GP 
item. With binary items, in an ordered dataset, π is located where the leading sub-
string of 0s turns to the trailing substring of 1s. Although not being intuitively obvi-
ous, the special string of interest is the shorter of the two extreme strings of 1s and 
0s:

Definition 1  The shorter one of the extreme strings of 1s and 0s indicates the item 
difficulty π of GP items.

This definition is caused by selecting symmetric cut-offs as a basis of the treat-
ment.8 From the viewpoint of cut-offs, this specific string is denoted by the cut-off 
a = s. Either the number or the proportion of the test takers in the cut-off could be 
taken as a basis for the scale. In what follows, the proportions are used to maintain 
the connection to the traditional p value.

Definition 2  With the GP items, because of Definition 1,

(8)RU − RL =

{
C − 2RL

2RU − C
,

(9)
RU − RL

T
=

{ (
C − 2RL

)/
T = p − 2pL(

2RU − C
)/

T = 2pU − p
.

(10)TU = TL = 1∕2T = 1∕2N.

(11)𝜋s =

{
p, when p< 0.50

1 − p, when p ≥ 0.50
.

8  There are other possibilities available. Brennan (1972), for example, introduced an upper-lower item 
discrimination index based on Kelly’s DI (Brennan’s B) where the cut-off need not be symmetric. 
Although described as “generalized” coefficient, Brennan’s B is restricted to dichotomous items and uses 
a fixed cut-off (cf. GDI proposed by Metsämuuronen, 2020a). Harris and Wilcox (1980) showed that 
Brennan’s B equals algebraically to Peirce’s Theta discussed by Goodman and Kruskal (1959).



1 3

Behaviormetrika	

4.3 � Elements of impurity in p

The proportion of the correct answers includes several elements of impurity 
depending on the location of the erroneous observations (see Table  1). Two of 
these are handled explicitly in Theorem 1.

Theorem 1  With GP items, the item difficulty π is.

where, in the binary case, T refers to the total number of test-takers usually symbol-
ized by N; RU refers to the number of correct answers (1s) in the upper half (U); RL 
refers to the number of correct answers (1s) in the lower half (L); and pU and pL 
refer to the proportions of correct answers in the upper (U) and lower (L) halves of 
the ordered dataset, respectively.

Proof  Theorem 1 is proved with two lemmas; Lemma 1 handles the case of p ≥ 0.50 
and Lemma 2 the case of p < 0.50.

Lemma 1  When p ≥ 0.50,�s =
{

p − 2pL

2pU − p

Proof  Suppose a GP item with p ≥ 0.50. Then the shorter of the extreme strings of 
0s and 1s indicating the item difficulty π is the one with 0s, that is,

Because of the deterministic pattern, all test takers in the upper half of the 
ordered data set give the correct answer and, hence,

Because all 0s are in the lower half,

Because of (15), Z can be manipulated as follows:

and because of (16), (14), (15), and (8)

Therefore, when p ≥ 0.50, because of Eqs. (13), (17), (7), and (9),

(12)𝜋s =
RU − RL

T
=

{
p − 2pL, when p< 0.50

p +
(
1 − 2pU

)
, when p ≥ 0.50

.

(13)�s = Z∕T .

(14)TU = RU .

(15)TL = RL + Z.

(16)
Z = Z + TU − TU = Z + TU − TL

= TU −
(
TL − Z

)
.

(17)Z = RU − RL = C − 2RL = 2RU − C.
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This ends the proof of Lemma 1. □

Lemma 2  When p < 0.50,�s = p =

{
p − 2pL

2pU − p

Proof  Suppose a GP item with p < 0.50. Then, the shorter of the extreme strings of 
0s and 1s indicating the item difficulty π is the one with 1s, that is,

Assuming p < 0.50, there are no correct answers in the lower half of the ordered 
GP item. Then,

Because of Eqs. (6), (4), (9), and (20)

This ends the proof of Lemma 2. � □
Because of Lemma 1 and Lemma 2, when a GP item is either difficult (p < 0.50) 

or easy (p ≥ 0.50), the item difficulty equals with

where, in the binary case, T refers to the total number of test-takers usually sym-
bolized by N; RU refers to the number of correct answers (1s) in the upper half (U); 
RL refers to the number of correct answers (1s) in the lower half (L); and pU and pL 
refer to the proportions of correct answers in the upper (U) and lower (L) halves of 
the ordered dataset, respectively. Because of Definition 2 and Lemmas 1 and 2, with 
GP items,

This ends the proof of Theorem 1. □

4.4 � Notes on Theorem 1

Four points on Theorem  1 are worth highlighting. First, the elements of 2pL and (
1 − 2pU

)
 refer directly to the bias-causing elements in the p value: the former to 

(18)�s =
Z

T
=

RU − RL

T
=

C − 2RL

T
=

2RU − C

T
=

{
p − 2pL

2pU − p
.

(19)�s = C∕T .

(20)RL = 0, whenp < 0.50.

(21)�s =
C

T
=

RU

T
=

RU − RL

T
=

C − 2RL

T
=

2RU − C

T
=

{
p − 2pL

2pU − p

(22)�s =
RU − RL

T
=

{
p − 2pL

2pU − p
,

(23)𝜋s =

⎧
⎪⎨⎪⎩

�
p − 2pL

2pU − p
, when p< 0.50

�
2pL + (1 − p)

p +
�
1 − 2pU

� , when p ≥ 0.50

.
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the proportions of correct answers in the lower part of the difficult item and the lat-
ter to the proportion of incorrect answers in the upper part of an easy item. With 
GP items, 2pL =

(
1 − 2pU

)
= 0 because there are no additional correct or incor-

rect answers in the lower and upper part of the dataset outside the perfect strings of 
0s and 1s. However, if we find any correct answer in the lower part of the ordered 
dataset ( 2pL ) with a difficult item (“lucky guessing”) or any incorrect answer at the 
upper part 

(
1 − 2pU

)
 of an easy item (“sleepiness” or “carelessness”), �s ≠ p , and, 

then, p appears to be a biased estimator for the latent item difficulty. This always 
happens with NGP items. Notably, also, the more these responses break the deter-
ministic pattern, the higher get 2pL and 

(
1 − 2pU

)
 , and the further p deviates from π. 

Because the elements 2pL and 
(
1 − 2pU

)
 indicate the magnitude of the bias in p in 

relation to π, Eq. (12) may be taken as the “bias-corrected item difficulty”.
Second, when the item is a difficult one (p < 0.5), there may appear to be unex-

pected correct answers in the upper middle range of the ordered dataset (impurity 
4 in Table 1). Also, when the item is an easy one (p > 0.5), there may appear unex-
pected incorrect answers in the lower middle range of the dataset (impurity 5 in 
Table  1). Although these two patterns of impurity are not explicit in Theorem  1, 
they are implicit because they strictly affect the magnitude of p.

Third, with NGP items, always, |p| < |𝜋| because the impurity elements in Theo-
rem 1, whenever found, tend to affect p to be closer to p = 0.50 in comparison with 
π. This means that the observed p is always deflated in a sense that the magnitude 
of π is always more extreme than that of the observed p. The closer the response 
pattern is to the deterministic pattern, the less is the difference between π and p. 
Notably, the probability of such pattern-breaking responses is lower in items with 
extreme difficulty in comparison with items with medium difficulty. Hence, it is 
expected that the difference between p and π will be greater in items with medium 
difficulty than in items with extreme difficulty.

Fourth, if the outcome of RU − RL appears to be negative (leading to nega-
tive item discrimination), the estimate of π would get an out-of-range value when 
p > 0.50. Namely, if p − 2pL < 0 , then 1 −

(
p − 2pL

)
= 𝜋s > 1 . In such a case, the 

value of the estimate could be changed to 1 the same manner as is customary with 
out-of-range estimates by omega- and epsilon squared in settings related to general 
linear modeling; the negative explaining powers are replaced by 0 (see Cohen 1973; 
Okada 2017).

4.5 � Item difficulty π of GP items in the cut‑offs a = s+ 

An important characteristic of any GP item is that whichever partition of the extreme 
test-takers is considered, the reduced dataset is patterned with a string of 0s followed 
by a string of 1s when the respondents are ordered by the test score. This obviously 
means that the reduced dataset of extreme test-takers of a GP item carries the char-
acteristic of GP item. Then, Theorem 1 is valid in every cut-off of a GP item.

Let us denote the cut-offs for the reduced datasets of extreme test-takers by 
a = 1,…, s, s + 1,…, ½T = ½N and the cut-offs after the threshold cut-off a = s by a 
general subscript a = s+ . Theorem 2 relates with the phenomenon seen in Fig. 2: the 
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latent difficulty level of an item (πs) can be detected in any cut-off after the threshold 
cut-off a = s+ .

Theorem 2  With GP item, �s+ = �s.

Proof  Assume a GP item ordered by the score. Let us denote the cut-offs for the 
reduced datasets of extreme test-takers by a = 1,…, s, s + 1,…, ½T = ½N and the cut-
offs after the threshold cut-off a = s by a general subscript a = s+ . In each cut-off 
after the previous one (a + 1), the single observations of the next pair of individual 

test-takers in the upper and lower halves are denoted by OU
a+1

=

{
0

1
 and OL

a+1
=

{
0

1
 , 

respectively. 

When a = s+ ,

and

Always with GP items, when p ≥ 0.5,

and, when p < 0.5,

because there are no additional 1s or 0s outside the perfect strings of 0s and 1s. 
Hence, because of Eqs. (26) and (27), always with GP item,

and

Then, with the GP items,

This ends the proof of Theorem 2. □
Hence, the threshold cut-off a = s leading to a form 

(
RU
s
− RL

s

)
 related to Eqs. (8), 

(18), and (21) always refers—even with NGP items—to the condition where 

(24)RU
s+

= RU
s
+ OU

s+1
+ ... + OU

s+
= RU

s
+

s+∑
i=s+1

(
OU

i

)
,

(25)RL
s+

= RL
s
+ OL

s+1
+ ... + OL

s+
= RL

s
+

s+∑
i=s+1

(
OL

i

)
,

(26)OU
S+

= OL
S+

= 1

(27)OU
s+

= OL
s+

= 0,

(28)OU
s+

− OL
s+

= 0

(29)
RU
s+

− RL
s+

= RU
s
− RL

s
+
(
OU

s+1
− OL

s+1

)
+ ... +

(
OU

s+
− OL

s+

)
= RU

s
− RL

s
+ 0 = RU

s
− RL

s
,

(30)𝜋s+ =
RU
s+

− RL
s+

T
=

RU
s
− RL

s

T
= 𝜋s =

{
p − 2pL, when p< 0.50

p +
(
1 − 2pU

)
,when p ≥ 0.50

.
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Theorem  1 is valid. Further, because of Theorem  2, with GP items, 
(
RU
s
− RL

s

)
=
(
RU
s+

− RL
s+

)
=

(
RU

1

2
T

− RL
1

2
T

)
 because, after the cut-off a = s, the 

number of correct answers are fixed both in the upper half of the dataset 
RU
s
= RU

s+
= RU and in the lower half RL

s
= RL

s+
= RL . This was seen also in Table 2.

4.6 � Connection of GDI and πs

Notably, the notation used above follows the notation familiar from GDI (Eq.  1); 
the πs of an GP item latent to any NGP item can be detected strictly by knowing the 
magnitude of GDI at any cut-off after the threshold cut-off a = s.

Theorem 3  With GP item, �s+ =

1

2
Ts+

T
×

RU
s+
−RL

s+

1

2
Ts+

=

1

2
Ts+

T
× GDIs+ =

1

2
Ts+×GDIs+

N
= �s.

Proof  Strictly from Eqs. (30) and (1) it is known that, with GP items,

This ends the proof of Theorem 3. � □

4.7 � Initial numeric example of Theorems 1, 2, and 3

Theorems 1 and 2 have a strict relevance in estimating the latent π for NGP items. 
First, because of Theorem 1, the π of any latent GP item can be detected unambigu-
ously. Second, because of Theorem 2, the π of any GP item can be calculated unam-
biguously at any cut-off after the threshold cut-off a = s. Third, because, in each cut-
off, the COC of an NGP item strictly follows the COC of a known GP item, the 
latent πs can be detected in each cut-off for any NGP item. This is first illustrated 
with a hypothetic nontrivial NGP item and later by a simulation with real-world 
items.

Let us take a nontrivial NGP item with N = 24 test takers and 15 correct answers 
with the structure of (000100101011│111111001111) after ordered by the (unseen) 
test score (Table 3; Fig. 3; the bar indicates the middle point of the ordered item 
where the procedure of splitting stops). The lighter curves in Fig. 3 are COCs of the 
underlying GP items.

From the viewpoint of Theorem 1, the last point-estimate of π in Table 3 and 
in Fig. 3 is � =

(
RU
50%

− RL
50%

)/
N = 5∕24 = 0.208 referring to the threshold of the 

latent GP item with the item difficulty πs+2 in Fig. 3. From the viewpoint of Theo-
rem 2, we may take any of the cut-offs after the threshold cut-off a = s, and the 
value by �s+ =

(
RU
s+

− RL
s+

)/
T =

(
RU
s+

− RL
s+

)/
N leads us to item difficulty π char-

acteristic to the latent GP item in each cut-off. Hence, the last three estimates of 

(31)

�s = �s+ =
RU
s+

− RL
s+

T
=

1

2
Ts+

T
×
RU
s+

− RL
s+

1

2
Ts+

=

1

2
Ts+

T
× GDIs+ =

1

2
Ts+ × GDIs+

N
.
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the observed (NGP) item in Table 3 point to the latent variable characterized by 
π = πs+2 = 0.208 and next two ones to π = πs+1 = 0.167, while the cut-offs a = s to 
s + 4 point to the latent variable with π = πs = 0.125. From the viewpoint of Theo-
rem  3, the last value of GDI, as an example, leads to (
1

2
T50%

/
N
)
× GDI50% = (12∕24) × 0.4167 = 0.208 = �s+2 as well as the second 

last: 
(

1

2
T45.8%

/
N
)
× GDI45.8% = (11∕24) × 0.455 = 0.208 = �s+2.

Notably, we have several options for the latent item difficulty: πs points to 
the threshold cut-off 3/24 = 0.125, πs+1 to 4/24 = 0.167, and πs+2 to 5/24 = 0.208 
which turn to be πs = 1 – 0.125 = 0.875, πs+1 = 1 – 0.167 = 0.833, and 
πs+2 = 1 – 0.208 = 0.792 because the observed p = 0.625 > 0.5. A relevant question 
is, how to determine the most credible estimate of π? Four alternatives of esti-
mating π, or “bias-corrected item difficulty”, are discussed below with numerical 
examples.

5 � Four alternatives to estimate the latent item difficulty

5.1 � Option 1 (�
1
): estimator based on the mean of �̂

s+

The first alternative for the procedure of estimating the latent item difficulty of a 
real-world item is based on Theorem 2: the average of the suggested estimates 𝜋̂s+ 
in the cut-offs a = s, s + 1,…,1

2
T =

1

2
N, where a = 1

2
N = a50%. The latent item diffi-

culty 𝜋̂s, 𝜋̂s+1,…,𝜋̂ 1

2
T
= 𝜋̂ 1

2
N

 is suggested in each cut-off. The number of these cut-

offs is 1
2
N − (s − 1) . Then, following Theorem 2 and Definition 2, �1 is the mean 

of these point estimates:

Fig. 3   Cut-off curve for a hypothetical NGP item with N = 24 in Table 3
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where 𝜋̂a is the point estimate at a cut-off a. Variance of the estimate can be calcu-
lated as

For the item in Table 3 and Fig. 3, because p ≥ 0.50, the routine in Eqs. (32) and (33) 
suggests the latent item difficulty as

with the variance.

where 0.0011 = ((1 − 3∕24) − 0.842)2 , 0.00007 = ((1 − 4∕24) − 0.842)2 , and 
0.0025 = ((1 − 5∕24) − 0.842)2 . To calculate �1 , the threshold cut-off a = s needs to 
be detected. This can be done two ways: either by detecting strictly the shorter of the 
extreme strings or by calculating GDI and detect the last cut-off showing the perfect 
item discrimination GDI = 1. This is illustrated in Sect. 5.6.

5.2 � Option 2 ( �
2
 ): estimator based on all cut‑offs

A somewhat rougher routine based in Theorem 2 is to use all cut-offs in the estimation. 
The advance in this exhaustive alternative is that the number of point-estimates (½N) is 
the same for all items and, hence, there is no need to seek the specific threshold cut-off 
a = s. Using the same logic as in �1 , the estimator is

(32)𝜋1 =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

̄̂𝜋s+ =

1

2
N∑

a=s

𝜋̂a

1

2
N−(s−1)

=

1

2
N∑

a=s
(pa−2pLa)

1

2
N−(s−1)

, when p < 0.50

1 − ̄̂𝜋s+ = 1 −

1

2
N∑

a=s

𝜋̂a

1

2
N−(s−1)

= 1 −

1

2
N∑

a=s
(pa−2pLa)

1

2
N−(s−1)

, when p ≥ 0.50

.

(33)VAR
�
𝜋
1

�
=

∑ 1

2
N

a=s

�
𝜋̂
a
− ̄̂𝜋

s+

�2
1

2
N − (s − 1)

,

𝜋1 = 1 − 𝜋̂ = 1 − 𝜋̂s+ = 1 −
(5 × 3∕24 + 2 × 4∕24 + 3 × 5∕24)

12 − 3 + 1
= 1 −

38∕24

10
= 1 − 0.158 = 0.842

VAR
(
𝜋̂1

)
=

[5 × 0.0011 + 2 × 0.00007 + 3 × 0.0025]

10
=

0.0132

10
= 0.0013,
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Parallel to �1 , the variance of the estimate is

For the item in Table 3 and Fig. 3, because p ≥ 0.50, the routine in Eqs. (34) 
and (35) suggests the latent item difficulty as

with the variance.

where 0.0101 = ((1 − 1∕24) − 0.858)2 , for example.

5.3 � Option 3 ( �
3
 ): rough estimator based on the cut‑off of 25% or 27% 

of the test‑takers

In practical settings, the possible manual calculations of many point estimates for 
π are laborious and this may not encourage one to estimate the latent π. A simpler 
option would be to use the traditional cut-off for the DI, that is 25% (or 27%) of 
the test takers in estimation. This cut-off could be a reasonable option because it 
uses the median point estimate of the cut-offs and it also relates with the tradi-
tional cut-off of estimating DI. The suggestion based on Theorem 3 is

From Table 3, it is known that π25% = 0.125, that is, 𝜋̂3 = 1−𝜋̂25% = 0.875.

(34)𝜋2 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

̄̂𝜋 =

∑ 1

2
N

a=1
𝜋̂a

1

2
N

=

∑ 1

2
N

a=1

�
pa − 2pL

a

�
1

2
N

, when p < 0.50

1 − ̄̂𝜋 = 1− =

∑ 1

2
N

a=1
𝜋̂a

1

2
N

= 1 −

∑ 1

2
N

a=1

�
pa − 2pL

a

�
1

2
N

, when p ≥ 0.50,

(35)VAR
�
𝜋̂2

�
=

∑ 1

2
N

a=1

�
𝜋̂a −

̄̂𝜋
�2

1

2
N

.

𝜋̂
2
= 1 − 𝜋̂ = 1 − 𝜋̂ = 1 −

(1 × 1∕24 + 1 × 2∕24 + 5 × 3∕24 + 2 × 4∕24 + 3 × 5∕24)

12
= 1 −

41∕24

12
= 1 − 0.142 = 0.858

VAR
(
𝜋̂
2

)
=

[1 × 0.0101 + 1 × 0.0035 + 5 × 0.0003 + 2 × 0.0006 + 3 × 0.0043]

12

=
0.02937

12
= 0.0024,

(36)

𝜋3 =

⎧
⎪⎪⎨⎪⎪⎩

𝜋̂ = 𝜋̂25% = p25% − 2pL
25%

=

1

2
T25%

N
× GDI25%, when p < 0.50

1 − 𝜋̂ = 1 − 𝜋̂25% = 1 − p25% + 2pL
25%

= 1 −

1

2
T25%

N
× GDI25%, when p ≥ 0.50
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5.4 � Option 4 ( �
4
 ): rough estimator based on the largest cut‑off

The fourth estimator, comparable to �3 , is to use the cut-off of 50%, that is, all the 
respondents in the estimation (T50% = N). From the simplicity viewpoint, this routine 
may serve as a starting point when one is willing to have a rough idea of the latent 
item difficulty. The suggestion based on Theorem 1 is

From Table 3 it is known that π50% = 0.208, that is, 𝜋̂4 = 1 – π = 0.792.

5.5 � General evaluation of the estimators

Above, four options to estimate the latent π of a real-world item is given; sev-
eral other options of the procedures could have been offered. Anyhow, above, we 
obtained four estimates of the latent, bias-corrected item difficulty: 𝜋̂1 = 0.842, 
𝜋̂2 = 0.858, 𝜋̂3 = 0.875 , and 𝜋̂4 = 0.792 . Of these four, assumingly, �1 reaches the 
closest to the “true” latent item difficulty in the given dataset. Although no such 
actual proportion of correct answers nor GP item pointing to 𝜋̂1 = 0.842 exists in 
Table 3 and Fig. 3, the result seems quite a credible reflection of the image we obtain 
from Fig. 3: a plausible π of a theoretical latent Guttman-patterned item is some-
where close to π = 0.167 which turns to be π = 1 – π = 0.833 on p-scale. The estimate 
by �2 comes quite close to �1 so that the estimates from the cut-offs a = 1 to a = s – 1 
seem to cause the magnitude of the estimate to be lower than those by �1 and, hence, 
seemingly, 𝜋̂2 ≤ 𝜋̂1 . However, this is not a general result as seen in the comparison 
of the estimators in the larger dataset below. Of the simple estimators �3 and �4 , 
the estimate by �3 , that is, the median estimate of all estimates 𝜋̂a , comes close the 
“true” estimate 𝜋̂1 while the estimate by �4 comes closer the original p = 0.625. The 
simpler routines offer us a simple access to assess how far the observed structure of 
the item is from the pattern of a GP item.

5.6 � Numerical example of the computing of the estimators with a small 
real‑world dataset

As a simple numerical example of computing the estimators of the latent item dif-
ficulty and, consequently, the form of the latent item in the real-life settings, let 
us consider a random sample of n = 26 test takers of mathematics test of origi-
nally 30 items of N = 4,023 grade 9 students (FINEEC 2018). Of the 30 items, 
seven are selected in Table  4a just as examples of the process and the outcomes. 
Table 4b shows the estimates of GDI in different cut-offs a using PES, and Table 4c 
shows the estimates of 𝜋̂a . For example, the value GDI in item V2 highlighted in 
Table  4b, is obtained by ((1 + 1 + 1)−(0 + 0 + 1))∕3 = 0.667 and the correspond-
ing 𝜋̂3 = 1 − ((1 + 1 + 1)−(0 + 0 + 1))∕26 = 1 − 2∕26 = 0.923; these are high-
lighted in Table 4c. Notably, Table 4b is needed only for detecting the perfect item 

(37)𝜋4 =

{
𝜋̂ = 𝜋̂50% = p − 2pL, when p < 0.50

1 − 𝜋̂ = 1 − 𝜋̂50% = 1 −
(
p − 2pL

)
, when p ≥ 0.50.
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discrimination and, consequently, the specific threshold as to compute the estimate 
by π1. Table  4d collects the estimates for the latent, “biased-corrected item diffi-
culty”. In Table  4a, a rough weighting system was used to make the order in the 
score (X) as unambiguous as possible (see Table 4a).

Item V1 is taken here as an example of the calculation of the estimates. Knowing 
that p > 0.50, based on Eq. (32) and Table 4c, the estimate by �1 for V1 is computed 
as the mean of the estimates from the threshold cut-off for the last GDI = 1 in PES 
(as) onwards including the estimate for the cut-off itself:

The estimate by �2 for V1 is computed as the mean of all estimates using Eq. (34) 
and Table 4c:

The point-estimate of 25–27% cut-off by �3 for V1 is read from the clos-
est cut-off to 0.27 (a = 7). using Eq.  (36) and Table  4c, this leads to an estimate 
𝜋3 = 1 − 𝜋̂27% = 0.885 . Finally, the point-estimate of 50% cut-off by �4 for V1 is 
read from the cut-off 0.50 (a = 13), that is, using Eq. (37) and Table 4c, the estimate 
is 𝜋4 = 1 − 𝜋̂50% = 0.885.

We note that the item V1 in the sample was, factually, a Guttman-patterned item 
to start with. Hence, the original p detects this correctly as do the estimators �1 , 
�3 , and �4 . The estimator �2 seems to overestimate this sample estimate slightly. 
However, all the estimates above are notably lower than the population estimate 
(π1 = 0.946) estimated from the original dataset of 4,022 test takers using the proto-
col π1 (Eq. 32). The population value, the “true” latent item difficulty or “true” π is, 
notably, more extreme than the traditional p value (0.885). This and the fact that the 
estimate by �2 is closer to the “true” π than the other estimators are discussed with a 
larger simulation discussed in what follows.

Three notes are made concerning Tables 4a and 4d. First, estimators by the pro-
cedures of Eq.  (32), (34), (36) and (37) tend to produce estimates that are more 
extreme than the traditional estimate (see Figs. 4 and 5). More extreme estimates are 
expected because each “illogical” observation in the dataset, after being corrected 
by the process, leads to a more extreme outcome. The observed item characteristic 
curves (ICCs; see the discussion of the graph format in Metsämuuronen 2022) in 
Fig. 5 are obtained using five groups of ability levels with five cases in each plus two 
additional groups in the extremes with two cases.

𝜋1 = 1 − ̄̂𝜋s+ = 1 −

∑ 1

2
N

a=s 𝜋̂a

1

2
N − (s − 1)

= 1 −
(0.885 + 0.885 + ... + 0.885 + 0.885)

13 − 3 + 1

= 1 −
9.731

11
= 0.885.

𝜋
2
= 1 − ̄̂𝜋 = 1 −

∑ 1

2
N

a=1
𝜋̂
a

1

2
N

= 1 −
(0.962 + 0.923 + ... + 0.885 + 0.885)

13
= 0.893.
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Second, with item V28 with a difficulty level of very close to p = 0.50, all the 
sample estimates seem to be far off the population value. This is caused by the fact 
that when the difficulty level is very close to p = 0.50 and the sample size is small, 
even one case may turn the p-value from p < 0.5 to p > 0.5 or vice versa, and this 
may have a radical effect to the outcome if the p-value is used as a switch element in 
the process. This issue is discussed further in the next section with a larger dataset.

Fig. 4   Population and sample estimates

Fig. 5   Observed ICCs and shift in the estimate of the latent item difficulty
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Third, by taking the estimate by �1 a credible estimate of the item difficulty, 
Table  4a shows the latent, deterministically discriminating images of the selected 
items. We notice that the procedure makes, factually, suggestions which of the 
observations should be changed as being illogical from the ability level viewpoint.

Table 4a and related discussion is, obviously, just an example of how the esti-
mates are computed and what kind of output we may expect in the process. Next 
section studies the characteristics of the estimators using a larger dataset.

5.7 � Numerical simulation of the estimators with a larger real‑world dataset

As a larger numerical example of the difference between p and π and the estimators 
of π in a real-world dataset, a test with 30 binary items with multiple choice ques-
tions (MCQ) from a mathematics test with 4,023 test-takers (FINEEC 2018) is used. 
The original item difficulties varied 0.24 < p < 0.95 with average p = 0.63. The esti-
mates from this dataset are taken as “true p” and “true π”. The true p is the p value 
in the “population”. The true π is calculated using the protocol π1 (Eq. 32) in the 
“population” as above. A rough weighting systemic was used to make the order in 
the score (X) as unambiguous as possible: before summing up, each item (gi) was 
weighted by 1∕pi , that is, X =

∑k

i=1
wigi =

∑k

i=1

gi

pi
 . The logic corresponds with the 

logic of Rasch and IRT models: demanding items have more effect on the score than 
the less demanding items. Consequently, instead of 30 categories in the unweighted 
score the weighted score included 3571 categories. Notably, a two-parameter logis-
tic model would have given roughly the same number of categories. Pearson correla-
tion between the scores is r = 0.994. Figure 6 summarizes the differences between 
the true p and π.

As expected from Theorems 1 and 2, the estimates by π1 are more extreme than 
those by p. The correlation between the true p and π is reasonably high: r = 0.760 for 
all items and r = 0.521 for items with p > 0.50. The nearer p is to p = 0.50 the further 
the response pattern deviates from the pure Guttman-pattern. This is caused by the 

Fig. 6   Relation of p and π in the population (N = 4022)
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fact that, with a medium item difficulty, the probability to obtain patterns that break 
the deterministic pattern is much higher than with items of extreme item difficulties.

From the viewpoint of estimating the person parameter θ using Rasch and IRT 
modeling, the order of the item difficulties is an important character of a set of test 
items because it defines the weight of an individual item in the summing process. 
Notably, both Somers delta (D; Somers 1962) and Goodman–Kruskal gamma (G; 
Goodman and Kruskal 1954), which indicate the probability of the pairs of cases in 
two variables to be in a same order (e.g., Van der Ark and Van Aert 2015) as well as 
the proportion of logically located cases in one variable after they are ordered by the 
other (Metsämuuronen 2021), show insignificant association between the true p and 
π. With the items with p > 0.50 (k = 27), although the covariance between the true p 
and π is reasonably high (r = 0.521, p < 0.001), the proportion of the items with the 
same order in both p and π is insignificantly low (D = G = 0.217; p = 0.225).

If we take π as a less biased estimator of the latent item difficulty, the order of 
the item difficulties obtained by p is radically biased too. This may mean that p is 
a remarkably less sufficient estimator of the latent item difficulty than traditionally 
has been considered within Rasch and IRT modeling. Larger, systematic simulations 
may enrich our knowledge of the matter.

From the original dataset, 20 random samples of size n = 2000, 1000, 500, 200, 
100, 50, and 26 were picked and 20 × 7 = 140 estimates were calculated for each item 
by the estimators �1 , �2 , �3 , and �4 . The average estimates are collected in Fig. 7 for 
the items with p > 0.50 to highlight the essential patterns. The datasets are available 
in CSV format at http://​dx.​doi.​org/​10.​13140/​RG.2.​2.​34357.​35042 and in SPSS for-
mat at http://​dx.​doi.​org/​10.​13140/​RG.2.​2.​12546.​96968.

Four points are highlighted. First, although single estimates in the samples may 
be lower or higher than the true π, the average estimates of all estimators tend to be 
less extreme than the true value. Partly, the phenomenon is related to the sample 
size: the deviance between the true π and the estimated values tends to be wider 
with smaller sample sizes. The reason is mainly mechanical: the higher is the sam-
ple size, the more probable it is to find response patterns that break the deterministic 
pattern which causes the estimate to be more extreme.

Fig. 7   Comparison of the estimates by different estimators of π (items with p > 0.50)

http://dx.doi.org/10.13140/RG.2.2.34357.35042
http://dx.doi.org/10.13140/RG.2.2.12546.96968
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Second, the estimates related to the means of point estimates (π1 and π2) are 
closer the true π than the single point estimates of 25% and 50% of the test-takers. 
Of the first two, as a surprise, the estimator that uses all cut-offs in estimation (π2) 
tends to give estimates that are closer to the true π for items with a medium item 
difficulty. The point estimates related to the median cut-off of 25% (π3) are quite 
near the estimates by π1 and π2. The point estimates related to the whole dataset (π4) 
are the furthest from the true π with all items although the difference is not wide 
for items with extreme p to start with; in these items there are less possibilities to 
obtain additional 1s and 0s outside the perfect strings obtained from the extreme 
test-takers.

Third, when the item difficulty is around p ≈ 0.5 slightly higher or lower, the 
sample may appear to show opposite direction than the population in item difficulty. 
Small samples are more prone to this phenomenon. Then, the outcome of 1 – (p 
– 2pL) may cause a radical deviance between the population value and the estimate. 
In the simulation, 108 of the estimates (2.5%) were found to be obvious outliers in 
comparison with the true value. Of these, 52% came from samples with n = 50 and 
n = 26. A reflection of this phenomenon is seen in the 4th item in Fig. 7 where all 
estimates differ from the true value in an obvious manner.

Fifth, out of 4200 estimates in the simulation, two point-estimates by π3 and 
nine by π4 showed an out-of-range value ( 𝜋̂ > 1). In estimators π1 and π2 such outli-
ers were not found. The mechanics of this phenomenon is related to negative item 
discrimination discussed with Theorem 1. When RU < RL, (p – 2pL) < 0 and, then, 
consequently, 1 – (p – 2pL) = π4 > 1. Although the number and magnitude of out-
of-range estimates in the samples is small (all estimates < 1.040), the phenomenon 
must be noted. A possible solution is that, whenever obtained, the values 𝜋̂ > 1 can 
be replaced by 𝜋̂ = 1 unless the real reason for the phenomenon is “miskey” (as 
typologized by Linacre and Wright 1994), that is, if the wrong answers are marked, 
mistakenly, as the correct ones leading to mechanical negative item discrimination.

6 � Discussion

6.1 � Results in a nutshell

This article had three starting points. First, latent to each test item there is a theo-
retical (image of an optimal) item that the observed pattern of responses reflects. As 
often is the case in Rasch-, IRT-, and NIRT modeling settings with binary items, this 
latent item is thought to be an item with a deterministic pattern with the item diffi-
culty π. Second, the classical parameter used for the item difficulty (p) can locate 
the item difficulty unambiguously only with Guttman-patterned, deterministic items; 
with non-GP items, there are several options for the latent π. Third, it is known that 
the cut-off-curve of any NGP item at any cut-off a follows the COC of some of the 
latent GP items. The task is, then, to estimate which of the latent GP items would be 
the most credible (latent) image of the observed, manifested item.
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Two of the four elements of impurity in p were formalized in the article while the 
other two are implicit in the formulae. Theorem 1 shows that the item difficulty of a 

GP item can be reached by 𝜋 =

{
p − 2pL, when p< 0.50

p +
(
1 − 2pU

)
,when p ≥ 0.50

 where the elements 

of impurity, 2pL and 
(
1 − 2pU

)
 , are explicit. For real-world items with a non-deter-

ministic pattern, this means that if we find any correct answers in the lower half of 
the ordered dataset ( 2pL ) of a difficult item (that is, the pattern of “lucky guessing”) 
or any incorrect answer in the upper half of the ordered dataset 

(
1 − 2pU

)
 of an easy 

item (that is, the pattern of “carelessness” or “sleepiness”), p is a biased indicator of 
the “real” item difficulty. Four estimators of the latent π, or “bias-corrected item dif-
ficulty”, are discussed and studied in this article. A simulation indicates that p in the 
sample may be a radically misleading indicator of π, especially, when the item is of 
medium item difficulty with p ≈ 0.50.

6.2 � Some reflections of the biasness in p within the Rasch‑ and IRT modeling

Because p can locate the latent item difficulty π correctly only with GP items, we 
may reason that the higher is the number of erroneous patterns of 1 s and 0 s in the 
data structure the less p reflects the latent π. The simulation shows that, specifically, 
with items with a medium item difficulty, p may deviate radically from π. Because p 
is used as a sufficient starting point for the estimation of the B parameter in Rasch- 
and IRT modeling, B seems to be radically biased with items of medium item diffi-
culty. Further, if p is a biased indicator of the item difficulty implying that the 0s and 
1s in the dataset are not logically patterned, it seems that the total score is a biased 
estimator of the latent ability because it is based directly on the correct and incorrect 
responses in the data. From the real-world dataset we know that the order of the item 
difficulties may differ radically depending on whether the (biased) p or (unbiased) 
π is used as the indicator of the order. If we take π as a less biased estimator of the 
latent item difficulty, the order of the item difficulty obtained by p may be radically 
biased. This may have some consequences in using p as a sufficient estimator of 
latent item difficulty in Rasch and IRT modeling.

Another, related question is how are the patterns of “lucky guessing” or “care-
lessness” in the dataset and the proposed procedures of estimating the bias-corrected 
estimators of item difficulty related to the difficulty parameter in the three-parameter 
logistic model with the guessing parameter? Four points are discussed here. First, 
technically, the proposed methods suggested to be used to estimate the latent or 
“real” item difficulty are not dependent on the response patterns. However, as dis-
cussed above, the patterns of “lucky guessing” and “carelessness” always seem to 
lead the procedures to react so that the magnitude of the estimates of the “biased-
corrected” p are more extreme than those of observed p values. Second, the concept 
of “guessing” within three-parameter IRT modeling seems to be widely understood 
incorrectly; in many cases, the high “guessing” plainly indicates that the item is an 
easy one. Then, factually, there was not necessarily “guessing” per se. To give a 
blunt example, assume we have 1000 test takers of which only one gave the incor-
rect answer and this case was the lowest scoring test-taker. In this case, we need to 
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conclude that no “guessing” was obtained in the dataset nor obvious “lucky guess-
ing”. In this case, however, the “guessing” parameter C in the three-parameter IRT 
model would indicate that that “guessing” is (misleadingly) quite high. Hence, third, 
with an easy item, it would be important to make a difference between a real cor-
rect answer and a “lucky guessing”—separating these is not an obvious task as dis-
cussed above. The practicalities related to “lucky guessing” with an easy item in 
the sense discussed in the article are related to the fact whether we obtained at least 
one correct and one incorrect answer in the dataset within those test takers that are 
ranked lower than the potential case with a “lucky guessing” (see impurity 1 and 3 
in Table 3). Fourth, consequently, maybe the new way of thinking the item difficulty 
would lead to a new thinking of item discrimination and guessing?

Although using p in estimating A, B, and θ has a long and steady history 
in IRT- and Rasch models, it feels valuable to try to use estimates that would 
reflect as close as possible the “real” latent item difficulty in the process. A rel-
evant question is, how the “bias-corrected item difficulty” π could or should be 
used in the item analysis and measurement modeling? Some ideas are discussed 
in what follows.

6.3 � Options for the further studies

The results obtained in this article provide a new kind of tool that can be used, 
first, in locating the bias-corrected item difficulty and, second, detecting a plau-
sible cut-off in the dataset for estimating the item discrimination in the settings 
related to DI and GDI. This may open possibilities on building up firmer bridges 
between the classical test theory and Rasch- and IRT modeling (cl., Bechger 
et al. 2003, Macdonald and Paunonen 2002).

The procedures presented in the article raise several questions and ideas for 
further development of both the older and the new paradigms. Some questions 
concerning Rasch- and IRT modeling were already raised above. Two sets of 
questions can be asked concerning the topic discussed in this article.

First, what are the strict consequences of the results to Rasch- and IRT modeling? 
Should we change the procedures in some way to consider the biasness in p? Would 
it be possible, maybe even valuable, to utilize the “bias-corrected item difficulty” in 
the estimation processes? From this viewpoint, using π4 = p – 2pL as a rough estima-
tor instead of p could be an option worth studying further. Second, if the p-value is 
severely biased, it means that some values in the dataset are not logical and there 
may be a need to consider what is the effect of this on the test score. What are the 
consequences of the results in person parameter that depends on the total score, 
which now has revealed to be biased, too? Third, studies of the optimal weighting 
mechanism would be beneficial in respect of the new set of estimators; the order of 
the cases is a crucial matter in determining the latent item difficulty. If the p value is 
biased, also the person parameter θ is biased. What would be an optimal procedure 
to find the most credible order of the cases to start the process?



1 3

Behaviormetrika	

Obviously, larger simulations of the estimators of π would enrich our knowl-
edge. Maybe new, better estimators could or should be developed? It may be 
valuable to create enhanced procedures to estimate A, B, and θ using 𝜋̂ instead of 
p. After this, comparisons with the new kind of estimators of “bias-corrected” B 
and θ should be compared with the traditional ones.

6.4 � Some known limitations of the approach

Four main limitations of the procedure may be worth highlighting. First, estimat-
ing the latent π using the procedures proposed in this article are strictly based on 
the “correct” or plausible order of the test-takers. In the article, a simple weight-
ing system based on the biased p was used. It led to a reasonable solution from 
the viewpoint that it was possible to give almost all test-takers their unique rank 
instead of being bound to 30 categories based on the unweighted score. Relevant 
questions are, how do we know which order of the item difficulties would be the 
“most correct” option to lead us to the plausible estimates of person parameters?; 
and, Could we consider some alternative ways to solve the original ranking in the 
initial phase?

Second, the formulae in Theorems 1and 2 lead to a kind of “purified” dataset 
where all responses caused by “lucky guessing” and “carelessness” are omitted 
from the dataset and the estimation of the latent item difficulty is done without these 
cases. Because of this, the routines in Eqs. (32), (34), (36), and (37) tend to lead to 
a situation in which the “bias-corrected item difficulty” is always more extreme—
sometimes radically—than the original p indicates. This is relevant for items with 
medium item difficulties where we expect to see many patterns deviating from a pure 
deterministic pattern. A relevant question is, could there be some lighter possibilities 
that would not exclude all the cases that break the deterministic pattern to also leave 
some stochastic error in the dataset? Would it be possible to derive the elements of 
impurity other than discussed in this article, or to estimate the π in some other way 
to make possible to estimate the latent item difficulties so that the estimates are not 
that extreme? Maybe just the extreme cases with clear guessing or sleepiness should 
be omitted from the analysis? The mechanism presented in this article does not pro-
vide these tools although those may be possible to develop.

Third, when the response pattern follows the so-called “special knowledge” pat-
tern (see Linacre and Wright 1994) one needs to be cautious. In this pattern, there 
are several theoretically pathological cases characterized by a pattern where in the 
middle of the sequence, test-takers with a higher score fail to give the correct answer 
while some test-takers with a lower score but with the “special knowledge” give cor-
rect answers, all the estimators �1 , �2 , �3 , and �4 may fail to locate a plausible π.

Fourth, the approach in this article was restricted to binary items. To derive 
the Theorems 1 and 2 for polytomous items seems possible because Eq. (1) can 
be used also with polytomous items (see examples in Metsämuuronen 2020a). 
Although the derivations would not be that simple as they are in the binary case 
those would be a valuable to do.
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