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ABSTRACT
Matter distribution models of the Milky Way galaxy are usually stationary, although there are known to be wave-like perturbations
in the disc at ∼10 per cent level of the total density. Modelling of the overall acceleration field by allowing non-equilibrium is a
complicated task. We must learn to distinguish whether density enhancements are persistent or not by their nature. In this paper,
we elaborate our orbital arc method to include the effects of massless perturbations and non-stationarities in the modelling. The
method is tested by modelling of simulation data and shown to be valid. We apply the method to the Gaia Data Release 2 (DR2)
data within a region of ∼0.5 kpc from the Sun and confirm that acceleration field in the solar neighbourhood has a perturbed
nature – the phase-space density along the orbits of stars grow in the order of h � 5 per cent per Myr due to non-stationarity.
This result is a temporally local value and can be used only within the time frame of a few Myr. An attempt to pinpoint the origin
of the perturbation shows that the stars having larger absolute angular momentum are the main carriers of the local perturbation.
As they are faster than the average thin disc star, they are either originating further away and are close in their pericentre or they
are perturbed locally by a fast comoving perturber, such as gas disc inhomogeneities.
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1 IN T RO D U C T I O N

Although in general galaxies are not isolated in space and are thus
dynamically interrelated, their mass distribution models are usually
stationary (see e.g. a review by Rix & Bovy 2013) or related to some
specific aspect of galaxy, e.g. phase-space spirals in Widmark et al.
(2021). The stationarity assumption is a widely used approximation
as the periods of stellar oscillations in a typical galaxy are less than a
Gyr. Stationary models often allow us to describe the internal velocity
distribution quite satisfactorily (Cappellari et al. 2013; Leung et al.
2018; Zhu et al. 2018).

Although stationary modelling can provide satisfactory results in
modelling, there are slow changes in discs shaped by minor mergers
(Abadi et al. 2003; Villalobos & Helmi 2008; Moster et al. 2010; Bird,
Kazantzidis & Weinberg 2012). Stellar haloes may be formed as due
to disruption of several tens of dwarf galaxies (Johnston et al. 2008),
assembly of the dark halo from subhaloes created fluctuating overall
potential influencing visible components of galaxies (Carlberg 2019;
Vasiliev, Belokurov & Erkal 2021). In addition to these minor events
in case of the Milky Way (MW) galaxy there have been in the past
by at least one significant merger (Helmi et al. 2018). Although most
of these ancient marks of the mergers are smoothed out by now, the
traces remain still visible in action space.

Recent observations give a strong hint that there are time-
dependent perturbations of the density in our Galaxy and conven-
tional dynamics modelling need improving (Haines et al. 2019;
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Salomon et al. 2020). Systematic vertical motions in the stellar disc
and north–south asymmetry were found by Widrow et al. (2012),
Williams et al. (2013), Carlin et al. (2013), and Yanny & Gardner
(2013), Gaia satellite has also revealed a rather complex structure of
the MW galaxy in 6D phase space. For example, Ramos, Antoja &
Figueras (2018) found from Gaia Data Release 2 (DR2) data that the
phases of stars are not well mixed for all orbits. Antoja et al. (2018),
Kawata et al. (2018), and Trick, Coronado & Rix (2019) also found
similar arcs and ridges.

Observations of systematic vertical motions imply that MW disc
is undergoing compression and expansion perpendicular to the plane
(Banik, Widrow & Dodelson 2017). These perturbations can be
caused by the passages of globular clusters, dwarf galaxies, dark
matter subhaloes, passing spiral arms, etc.

The main obstacle regarding the modelling of perturbed systems
arises from collisionless Boltzmann equation:

∂f

∂t
+

3∑
i=1

∂f

∂vi

dvi

dt
+ ∂f

∂xi

dxi

dt
= 0. (1)

Here f is the phase-space density and i indexes components of
velocity and position vectors vand x. It contains one observable
variable (phase-space density) and its spatial derivatives. But it
also contains a time derivative, which is not directly observable,
and accelerations (gravitational potential gradient components) that
are also not observable. Hence there is only one equation and two
unknowns, making the equation unsolvable. The presence of dark
matter and too dim objects in mass distribution does not also allow
the Poisson equation to constrain the acceleration field.
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Time derivatives indicate that it would be correct to handle the
potential as a function of time �(x, t) and it may change noticeably
model results derived within a stationary model. It is also necessary
to estimate how reasonable the assumption of a stationary potential
is or within what time-scale one can handle integrals of motions to be
constant for a particular stellar orbit. For example, by modelling the
MW bar with Gaia DR2 data Kipper et al. (2020) estimated that due
to torque from the central bar the angular momentum of the Sun Lz

might change within one orbital period about 30 per cent. It indicates
that in barred galaxies Lz is not as good integral of motion as one
would like it to be. Conventional models should be handled as an
approximation only. Slow changes of the angular momentum Lz and
radial action JR were derived from N-body simulations by Wozniak
(2020), although they derived slower diffusion of these values.

Modelling of individual galaxies via N-body simulations (e.g.
made to measure) is in some sense free of a stationarity assumption,
but these models are rather time-consuming, and their spatial and
mass resolution is yet moderate (Syer & Tremaine 1996; de Lorenzi
et al. 2007; Long & Mao 2010; Zhu et al. 2014).

In our earlier paper (Kipper, Tempel & Tenjes 2019), we presented
a method to calculate gravitational potential derivatives (accelera-
tions) in sufficiently small regions of a galaxy if one knows phase-
space coordinates of a large number of stars in these regions. In
a later paper (Kipper et al. 2020), the method was applied for the
MW galaxy in the solar neighbourhood (SN) using Gaia DR2 data.
The model included a non-axisymmetric central bar but assumed
stationarity. In this paper, we improve the method by allowing non-
stationarity, i.e. that the phase density is a function of time. As the
observational data we use Gaia DR2 phase-space coordinates.

It is not our aim here to describe the secular evolution of galaxies,
although, in principle, it is not excluded. Although a perturbation
can last for an extended period, we model only a short time interval.
This interval is determined both by the size of the studied region
and the average speed of stars in that region. Extrapolation of the
derived results for longer time-scales than few Myr is not justified. To
emphasize this short-timed characterization, we mainly use the word
perturbation to describe the system’s time evolution/non-stationarity.
The selected small region of the MW is in the SN and used stars have
all six phase-space coordinates from the Gaia DR2.

In Section 2, we characterize the advancements we did in mod-
elling compared to Kipper et al. (2020) in more detail. Section 3
checks the validity of the improvements with mock data. Thereafter,
in Section 4, we present what we learned about the SN using
this approach. The paper ends with discussion (Section 5) and
conclusions (Section 6).

2 A DVA N C E M E N T S O F TH E M E T H O D

The improvements of the method presented by Kipper et al. (2020)
are related to both dynamics and statistics. We describe them in
subsequent sections. However, we provide a concise recap of the
method we build our improvements.

The orbital arc method developed in Kipper et al. (2020) relies on
seeking of consistency between assumptions and data. The data in
our case is the distribution of stars in a specific region. First, we start
selecting observed positions and velocities of a localized sample of
stars and consider them as initial conditions for orbit calculations.
We take the initial conditions, assume an acceleration with some free
parameters and calculate small arcs of orbits for all the stars within
the selected region. Coefficients in the acceleration field are found
by demanding that the acceleration field in orbit calculations would
distort the phase-space distribution of stars in the least way compared

to the phase-space distribution constructed from initial conditions
(observed values). By distorting we mean a changing the phase space
by repositioning a star infinitely many times along its orbital arc,
or more precisely, we smooth the star over its short piece of orbit
uniformly in time. This procedure assumes stationarity. If the system
is stationary, then the smoothed distribution and the data distribution
would match, i.e. the likelihood for the statistical inference found
by evaluating initial conditions of the same stars with the distorted
phase-space distribution would be maximal. The inference gives us
the acceleration field that best matches the stationarity of the data
distribution.

2.1 Improved description of kinematics

Modelling the distribution and kinematics of stars in SN, Bennett &
Bovy (2018) found that on top of the smooth distribution there are
also wavy motions with the amplitude of about 10 per cent. Hence,
about 10 per cent of the stellar density in the SN has perturbed nature.
If we intend to model the MW with an accuracy greater than this, we
must find a way to cope with these perturbations. At first sight, the
easiest way is to model the MW by using data that are distributed over
a much larger area than the SN and average out these perturbations.
The smoothed distribution can be modelled using tools designed to
model stable and stationary systems. This would provide a global
MW model, and on top of this model, a perturbation model can be
constructed. A drawback of it is the necessity to have a large amount
of data over a large region, and the unknown perturbations might be
too large-scale to average out (e.g. the bar). Also, it hinders to find the
details of the calculated acceleration field: recovered details cannot
be finer than the scale that the data were averaged out. In case of
some form of perturbations, such as bar, the system can be modelled
in a rotating frame to avoid the perturbations and time dependence,
but it introduces an additional free parameter.

This section will augment the orbital arc method (Kipper et al.
2019, 2020) to include the modelling of a region in the Galaxy
being in a perturbed state. In this paper, we only aim to model
perturbations that do not contain a significant amount of mass and
are dominantly density perturbations leaving potential and acceler-
ation field untouched. This approach is justified as the potential is
essentially determined by a large amount of matter distributed over
all galaxy, not locally.1

The orbital probability density function (oPDF) formalism from
Han et al. (2016) demonstrated that in a stationary galaxy the relation
between a time interval (dt) and probability of finding a star in
corresponding orbital segment (dP) is

dP ∝ dt . (2)

If we intend to model a galaxy in a perturbed state, this simple
proportionality does not hold anymore and if we want to use this
kind of relation, we should add a perturbation term in order to cope
with it:

dP ∝ [1 + h′(t)] dt . (3)

Here, the h
′
(t) term describes the perturbation of the dynamical state

of a galaxy. Yet, adding a random term to equation (3) does not make
it more correct or more apt to describe the underlying structure of a
galaxy; so why would it work?

1As ∇2� = 4πGρ density fluctuations determine only the second derivative
of the potential fluctuations.
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Non-equilibrium dynamics 5561

Let us imagine a galaxy consisting of only one densely populated
orbit (i.e. a stellar-stream-like entity). We assume the stars are
positioned along the orbit according to equation (2). Initial conditions
and acceleration field fully determine orbit’s shape. In case of orbital
arc method, we may take any star from the orbit and infer the
underlying acceleration field by matching proposed orbits with the
rest of the stars in our hypothetical galaxy. As the orbit was populated
with the assumption of stationarity, the matching required by the
orbital arc method is expected to be perfect.

Let us keep this hypothetical galaxy, but let us populate the orbit
according to a perturbed/non-stationary state: some parts of the
orbit have an elevated number density of stars. Again, orbital arc
calculations can reproduce the shape of the orbit similarly well as
the neighbouring points have the same kinematics as the previous
case. The only differences are different number densities along the
orbit. Thus, the number density of stars along an orbit depends both
on the unperturbed velocities along the orbit and on the perturbations.
An illustration in Fig. 1 shows this concept visually.

The stellar part of a galaxy contains a multitude of orbits over-
lapped with each other. Even in case of summing over all the orbits in
our selected region, the shapes of orbits give us the velocity gradients
in the region – the orbit shapes determine dv/dx and due to fixed
initial conditions df/dv is fully determined by acceleration field too.
The non-stationarity does not influence the shapes of the orbits, but
their population density or df/dx directly while not affecting velocity
gradients. The orbital arc is built to minimize changes to phase-space
density, hence also to keep their gradients unchanged. We conclude
that the reconstruction of phase-space density has different basis
when we consider the sources of non-stationarity (influences only
df/dx) and gravitational potential (influences df/dv directly and df/dx
indirectly). A test with a simulation shows that it is a viable approach.

A more formal way to introduce this extra term to the oPDF in
equation (3) comes from the collisionless Boltzmann equation. We
start from and follow the work of Han et al. (2016). The classical
Boltzmann equation (1) written using the integrals of motion is

∂f

∂t
+

5∑
k=1

,
∂(f Q̇k)

∂Qk

+ ∂(f λ̇)

∂λ
= 0. (4)

Here, the Qk characterizes integrals or constants of motion and λ is the
affine parameter characterizing position on the orbit. The parameter
λ need not to have a specific interpretation – it is necessary only
that in order to determine uniquely position on the orbit, λ must be
growing monotonically along the orbit.

The definition of integral of motion means Q̇k = 0 and thus
equation (4) is simply

∂f

∂t
+ ∂(f λ̇)

∂λ
= 0. (5)

The assumption ∂f/∂t = 0 leads to stationarity, which is not our aim
at present. The simplest assumption not leading to stationarity is
that ∂f/∂t ≡ const = A (assumption of a constant is only our first
attempt here). For example, this form can describe an approaching
overdensity toward a studied region in rotation-dominated disc. Let
us make this substitution and integrate equation (5) with respect to
λ:

Aλ + f λ̇ = B, (6)

where B is the integration constant. Solving the latter for f gives

f = (B − Aλ)
dt

dλ
. (7)
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Figure 1. An illustration of the modification to the orbital arc method to
model non-stationarities. The top panel shows the distribution of Keplerian
orbit when the stars are populated in it according to orbital probability
density function (oPDF) in equation (2). The black cross shows the focal
point of the Keplerian orbit. The middle panel shows the distribution of
stars positioned non-stationarily. The bottom panel shows the distributions
of their x-coordinates, which do not match. The update to the method has
the basis that the stellar initial conditions and acceleration provide identical
orbit shape. However, non-stationarity affects phase space/population along
the orbit without affecting velocity gradients.

The projection of phase-space density while fixing the integral of
motions provides the probability density of finding a star along the
orbit. Following the approach of Han et al. (2016) again and use
equation (7), we find

dP

dλ
|Q ∝ f (Q, λ) = (B − Aλ)

dt

dλ
. (8)

In the left-hand side |Q means for a given Q value. Multiplying by
dλ gives time span star spends in a segment of an orbit. When
characterizing the position along the orbit with time2 we may
substitute λ → t. Writing instead of (−A/B) → h we have a similar

2Other types of characterizations are possible, but in order to infer time
evolution we selected time as the affine parameter.
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expression to equation (3) with h
′
(t) = ht,

dP ∝ (1 + ht) dt . (9)

The practical application requires normalization of probability, hence
we substituted the equality to proportionality. Equation (9) is derived
for an orbit, i.e. h = h|Q. For applications we use an approach where
the h depends only on one integral of motion: Lz. We have implicitly
assumed that t = 0 is the time of observations.

To give an interpretation of h and the perturbedness, let us look at
equation (7). Averaging equation (7) over the studied region, we have
〈f〉 = 〈B〉 − 〈At〉 = B as the time-dependence averages out. The time-
dependence averages out since t = 0 is defined as the time of Gaia
observations and deviations from it are symmetrical (on average star
can move forward and backward the same amount before exiting the
studied region) and cancel out. The term A was defined A ≡ ḟ , or
〈A〉 = 〈ḟ 〉. By normalizing the intercept term in equation (8) to one
(required by normalization of probability) gives the interpretation of
h to be h ≈ 〈ḟ 〉/〈f 〉 or the averaged relative perturbedness.

2.2 Improving statistical description

The orbital arc method is based on the assumption that the overall
probability to find an observed point at position p(q)dq comes from
the sum of i orbital densities; each described by probability to find
a star in the orbital point pi[q(λ)|ϑ]. We denote q as an element of
phase-space density, λ characterizes position along the orbit, and
ϑ the acceleration field parameters. The underlying acceleration
parameters are determined by maximizing the likelihood function
with respect to the ϑ,

L′
g =

∏
j∈S

p(qj ) =
∏
j∈S

Z−1
∑

i

pi[q|ϑ]Kg(qj , q). (10)

Here the S is a set of stars in the region indexed by j, Z is the
normalizing constant, and Kg is the kernel converting orbital arcs
into a smooth probability distribution. More details are elaborated in
Kipper et al. (2019).

The paper Kipper et al. (2020) had a drawback in statistical
modelling that having a grid-based approximation of probability pro-
duced slightly distorted p values. In order to estimate and suppress it,
we made multiple modelling and averaged the posterior distributions.
We improve upon this by making multiple grids and p estimations,
and each likelihood evaluation we average the likelihoods, i.e.

L =
G∑

g=1

L′
g. (11)

Here L′
g is a likelihood function defined by equation (10) but

implemented with different grids in kernel K. The g indexes the
likelihoods, and G is the number of grids averaged per likelihood
evaluation. A more thorough description is provided in Kipper et al.
(2021) in the context of modelling galaxy evolution.

The second improvement comes from the necessity of indepen-
dence that the likelihood evaluation point cannot be included in the
calculation of p. This is reached by requiring

i = j (12)

in the summing over i in equation (10). In case the number of
stars/point approaches infinity, this does not produce any practical
bias, but in the case where the number of stars is lower, it might. A
test on Gaia data showed that this effect is detectable and significant
when the modelling is done with a fine grid.

x (kpc)

y 
(k

pc
)

−10 −5 0 5 10

−
10

−
5

0
5

10

1
2

3

4

5

6
7

8

9

10

11

12

Figure 2. Sizes and positions of selected regions (green circles) for a
simulated galaxy from Garbari et al. (2011) together with isodensity contours.

In the next section, we make a set of tests on a simulation. These
tests showed that these modifications produced unbiased estimator
for the acceleration field parameters.

3 VA L I DAT I N G T H E I M P ROV E D M E T H O D O N
A SI MULATI ON

Applying the method on a mock or a simulation gives us a possibility
to test that the underlying method and its implementation are robust
and correct. For the testing, we chose the simulation of an MW-like
galaxy from Garbari, Read & Lake (2011). The aim is to test the
assumption of non-stationarity and modifications made to improve
its statistical implementation.

3.1 The mock data

We selected 12 small spheroidal regions to model: all of them at
the distance of 8 kpc from the galactic centre. Here and onward we
denote the regions as solar region (SR). This designation is usually
used with the corresponding number of a region. In Fig. 2 positions
of these regions together with isodensity contours of the simulated
galaxy are shown. SRs have half-height of 0.35 and radius of 1.0 kpc.
SRs are larger to compensate lower number density of stars in these
regions, which otherwise would reduce the precision of modelling.

We calculated the pattern speeds for R = 1.5–4.5 kpc of the simu-
lated galaxy by solving one of the intermediate results in Tremaine–
Weinberg method derivation (Tremaine & Weinberg 1984):

∂

∂x
(�vx) + ∂

∂y
(�vy) + �py

∂�

∂x
− �px

∂�

∂y
= 0. (13)

Here, � is the surface density, x, y are Cartesian coordinates, and �p

is the pattern speed. Pattern speed in this bar region is rather constant
at the value of �p = 37.0+6.0

−5.4 km s−1 kpc−1. The uncertainty of
20 per cent is expected for the Tremaine–Weinberg method due to
fluctuating nature (Hilmi et al. 2020).
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3.2 Data sampling and systematic uncertainties

3.2.1 Sampling noise

For the method testing, the mock data should mimic the subsequent
application as adequately as possible. The main differences with
observations are that mock data are not limited by object brightnesses,
the data have no uncertainties, they have perfect selection function,
and have significantly smaller number density of stars. The brightness
limit aspect was tested in Kipper et al. (2020) and is not covered here.
The observational uncertainties are minimal as we constructed the
observational data set using a very close set of stars (maximum
distance is about half of a kiloparsec – kpc).

Thus, we test here only the sensitivity of the modelling due to the
smaller number of stars compared to the observational application
sample. This is essential as the model’s accuracy is limited with the
number of stars to construct the probability density function (PDF)
in equation (10). An average SR contain about 60 000 stars. This
is significantly less than the observational sample of 400 000 stars.
We point out that we chose the larger region in simulation than in
observational application to elevate the number of stars to be more
comparable. To test how sensitive the method is to reducing the size
of the sample, we modelled 10 subsamples of the SR1, each having
25 per cent less stars than the parent sample. The test results are
in Fig. 3. It is seen a significant change of calculated aR values for
different subsamples. One notice also that all of them differ within
uncertainties from the actual value. As all other possible causes
have been checked and have smaller influence, we conclude that
the reason is sampling. This is confirmed also by looking at the top
panel of Fig. 13 where we can see significant high-frequency noise in
acceleration, being also a side effect of sampling. In real observations
the number density of stars is about an order of magnitude larger and
one may expect the sampling effects to be significantly smaller. In
any case, we cannot leave this discrepancy unattended and consider
these differences as the cause of systematic uncertainty described in
the next section.

3.2.2 Systematic uncertainties

In the previous section, we concluded that sampling could cause
an offset between actual values and the modelled ones. To cover the
possible offset, we describe it as systematic uncertainties (see Fig. 3).

Let us consider an abstract one-dimensional statistical inference
problem modelled with the Markov chain Monte Carlo (MCMC)
approach (Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009;
Feroz et al. 2019) similar to the MULTINESTwe use in this paper. Let
us have a point x and its proposed change to x + 	x. The change is
accepted in Monte Carlo based on the log likelihood differences of
these points,

	 logL = −1

2

x2

σ 2
stat

+ 1

2

(x + 	x)2

σ 2
stat

= 1

2

x	x + 	x2

σ 2
stat

. (14)

We assumed a normal distribution with a standard deviation of σ stat

here as most uncertainties in our preliminary modellings suggested it
to be a valid approximation. If there is also a systematic component
in uncertainties, the real likelihood difference should be

	 logL′ = 1

2

x	x + 	x2

σ 2
stat + σ 2

sys

, (15)

where also a systematic uncertainty of the modelling σ sys is added.
We may write

	 log L′ = C 	 log L, (16)

aR (NK=7)

a R
 (

N
K
=

14
)
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Figure 3. The sensitivity of the recovered acceleration to the sampling.
10 subsamples of SR1 each containing 75 per cent of the total sample are
modelled and calculated acceleration values are presented with black colour.
The blue circle shows the modelling results of the total sample and the green
point the actual values from the gravitational potential. The x-axis is the
recovered acceleration with coarser kernel function Kg having N2

k histogram
bins. In the y-axis is the finer grid results. As either the uncertainty or error
do not depend on the gridding, we conclude that the grid K details do not
influence modelled results.

where C is the correction to include systematic uncertainty with the
value

C = σ 2
stat

σ 2
stat + σ 2

sys

=
(

1 + σ 2
sys

σ 2
stat

)−1

. (17)

The advantage of including the systematic uncertainties in likelihood
calculations is the ability to model all systematic uncertainties
simultaneously and to preserve more accurate posterior distribution
than adding systematic component.

Numerical values of C are calculated based on comparing mod-
elling results and corresponding actual values (see Section 3.6.1).

3.3 Selection of acceleration field

To apply the method to the data, we must first assume a sufficiently
flexible form of the acceleration field. As the sizes of the studied
regions are small (their radii are about 1 kpc) the acceleration field can
be described in a very concise way. We chose a Taylor-expansion-like
forms:3 average components of the field with added correction terms
in directions where acceleration components change significantly:

aR = AR + AR,R 	R, (18)

aθ = Aθ, (19)

az = Az + Az,z z. (20)

Here we used usual cylindrical coordinates,

	R = R − Rcnt, (21)

and Rcnt corresponds to the centres of regions. We have denoted (aR,
aθ , az) as the acceleration vector components. Capital letters AR, Aθ ,
Az are average acceleration components within a region (zero terms

3As most functions can be expanded to the Taylor series, comparison with
global MW models can be done simply by expanding the global MW
acceleration field into a Taylor series around the SN and by comparing
thereafter expansion coefficients with our fitted values.
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Figure 4. The adequacy of the used functional form of the acceleration field to describe potential. To avoid cluttering the figure, we plotted a subsample of
2000 points out of ∼60 000. Panel (a) shows the true potential as a function of radius; the narrowness of the correlation shows that just this dependence is the
dominant source of potential variance. Panels (b)–(d) show the residuals of the true and best-fitting potential 	� = � − �pred. In panel (b) we show the radial
dependence; panel (c) shows tangential dependence with Y defined as R	ϕ; and panel (d) describes residuals in the vertical direction.

of expansion), and AR, R, Az, z characterize the radial and vertical
changes with radius and height above the plane. The acceleration
field (18)–(20) is irrotational, hence eligible to describe the fields
generated by gravity.

Acceleration field in form of equations (18)–(20) corresponds to
the potential

� = �0 + AR0R + 1

2
AR,R(	R)2 + AθR	θ + Azz + 1

2
Az,zz

2.

(22)

We made the adequacy test for the functional form based on SR1
that contained 63 646 stars. We determined are the linear terms
in expansion (18)–(20) sufficient to describe adequately potential
changes in simulation data. We compared values taken from sim-
ulation (�) and calculated from the best-fitting test model (�pred).
Results of the test are shown in Fig. 4. Panel (a) shows the range of
the true gravitational potential values �, which cover 11 353 km2 s−2.
Panels (b)–(d) describe the residuals of the potential fit 	� = � −
�pred. As the residuals cover the range of only 63 km2 s−2 we may

conclude that our used functional form describes gravitational field
with an accuracy of 0.6 per cent. We point out that the simulation did
not contain a gas disc that may amplify the importance of vertical
acceleration changes.

3.4 Modelling in a rotating reference frame

There is a technique to convert non-stationary modelling into station-
ary by modelling the stellar system in a rotating reference frame (e.g.
Jung & Zotos 2015). Let us denote the angular speed of the reference
frame as �fit. In case �fit = �p, and a single pattern speed is sufficient
to describe all the non-stationarity, then the exercise reduces to a
stationary one. Although this technique is efficient in describing bar-
induced non-axisymmetry, we are using it for another purpose.

When the star moves in the studied region, it spends there about
≈3 Myr. In case the acceleration is ≈6000 km2 s−2 kpc−1, the change
of stars velocity is 18 km s−1. For studying more subtle effects from
acceleration (e.g. the acceleration caused by the bar), the changes
of velocity are about 3 Myr × 200 km2 s−2 kpc−1 ≈ 0.6 km s−1. De-
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tecting distribution shifts of this small is troublesome. In case we are
modelling the system in a rotating reference frame, stars take longer
to pass the studied region, the subtle acceleration effects increase,
and we can make more robust inferences.

When modelling in the rotating reference frame with angular
velocities �fit, then the time average star spends in the studied region
increases by a factor of �star

�star−�fit
, where we have denoted the angular

speed of an average star with �star. The changes of acceleration
from a component moving with �p would decrease by the factor

of �p−�fit
�p

. In case the angular speed of the asymmetry and the
angular speed of the star are similar, then the overall effect from
time dependence of the potential remains the same. In subsequent
sections, we provide modelling results and their dependence on the
rotation of the reference frame.

3.5 Selection of the non-stationarity description

The novelty of the present analysis is an introduction of a non-
stationarity in the orbital arc method. More specifically, while
calculating small orbital arcs in a selected region and thereafter
calculating probabilities to find a star in these orbits we introduced
the term ht in equation (9). For every orbit the constant h has a certain
value. In a selected region there are a multitude of orbits and probably
many different values of h. For example, we cannot assume that halo
and disc are similarly perturbed at SN; hence we must implement a
possibility that certain orbital parameters may determine h values.
Thus, although h is assumed to be a constant for a given orbit, while
looking to the whole region h is a function of orbits. We assume that
h is a smooth function of integrals of motion, particularly the angular
momentum Lz integral. The choice of angular momentum as the
dependent variable is motivated by the results of Antoja et al. (2018)
where they show substructure comes forth by analysing rotational
velocities (in case of small regions, rotational velocity and angular
momentum Lz have almost one-to-one relation). The functional form
for h we selected in a way that most stars are populating their orbits
stationary, but some with a certain angular momenta have elevated
to non-stationarities:

1 + ht = 1 + h(Lz)t = 1 + hLz exp

[
− (Lz − Lz0)2

L2
zσ

]
t . (23)

The Lz0 describes the angular momentum value around which orbits
are populated most non-stationarily. The σLz

shows the spread of
the non-equilibrium orbits, and the hLz

shows the maximum level of
non-stationarity of orbits.

3.6 Implementation of mock modelling and conclusions

To test the limits of the method, we modelled the mock data
repeatedly with parameters emphasizing different aspects of the
model. These aspects include the rotation of the reference frame
(selection of �fit), description of non-stationarity (selection of h),
and inclusion of systematic effects (selection of C).

First two aspects are interrelated. The average angular speed of the
region is �star ≈ 25 km s−1 kpc−1. To increase the time stars spend in
the region the �fit should be as close to 25 km s−1 kpc−1 as possible.
But let us look closer. If �fit = 0 all the stars in the disc region enter
the region from one side and exit from the other. Once �fit approaches
�star, the stars exit the studied region in a random direction. If �fit >

�star stars move in the region in reverse compared to the region
that stands still. But now issue arises in the interpretation of h in
the modelling. We wish to keep the interpretation h ≈ (∂f/∂t)/f, but
this relation does not hold well if �fit = 0 as the orbit extrapolation

‘meet’ different sets of stars for �fit values. Only in case the h is a
very smooth function of integrals of motion, the relation still holds.

Thus, we selected priors for the parameters in analytical form of
h (equation 23) accordingly. The Lz0 had to be within the 10 and
90 percentiles of the stellar angular momenta so that in case of zero
perturbations, there would be no degenerate solutions in ranges where
there are no stars. The width of the distribution for angular momenta
of the non-equilibrium was between Lzσ 100 and 700 km s−1 kpc,
and the hz value was ±50 Gyr−1. During the mock data modelling,
we did not reach these prior limits.

3.6.1 Conclusions from the acceleration modelling

We made five different fittings of mock data. In each case we had 12
regions. The results are given in Figs 5 and 6. Overall, it seems that
calculation of aR is more biased and is more difficult to fit, hence we
mostly emphasize our analysis based on aR. The analysis based on
aθ is very similar.

First, we modelled SRs in a non-rotating reference frame (�fit =
0 km s−1 kpc−1) without considering systematic errors (C = 1) and
assuming stationarity (h = 0). These results are depicted as red circles
in Figs 5 and 6. One can see that in four cases (2, 3, 5, and 8), the fit is
quite good, and the model and actual value differences are within 1σ

uncertainties. In addition, in three cases (6, 9, and 12) differences are
within 2σ uncertainties. In regions 1, 4, 7, and 11 the uncertainty is
clearly underestimated. Let us look at the positions where the regions
situate from Fig. 2. In a strongly barred galaxy, we would expect that
regions that are 180◦ shifted should give a mismatch that matches
the initial ones exactly. This matching will only happen if the bar or
its induced non-equilibrium is the cause of the offset. In our case,
the region pairs that are 180◦ off are 1–7, 2–8, etc. For the pair 4–10,
region 4 has a high mismatch, while the other is ≈2σ offset. For the
1–7 pair, also one offset is significantly higher than the other, for the
pair 11–5, the offsets also do not match at all. As these offsets do
not match, we conclude that it is more likely that the origin of these
offsets is not physics related but noise and sampling related.

Next, based on the non-rotating stationary modelling, we estimated
the level of systematic uncertainties that statistical uncertainties do
not cover. We applied the recipe described in Section 3.2.2 to estimate
that likelihood ratios should be multiplied by a certain constant C. The
numeric values of C are calculated based on comparing modelling
results without systematic uncertainties (C = 1, red circles) and
their distances to the actual values (green lines). Using C as a
free parameter we selected C values that cover the offset best. In
Table 1, we present the C value calculated based on acceleration
component differences from actual value A − A

′
and σ stat values to

fit the expectation E(A − A′)2 = σ 2
stat + σ 2

sys. Since the values differ
for different parameters, we select the value in between of most
important parameters we would like to recover precisely: AR and Aθ .
Then we adopted the value C = 0.13 and calculated accelerations
again. Corresponding accelerations are depicted by orange circles.

Next, we test the influences of the speed of the reference frame.
In the figures, we show the modelling with condition �fit = �p =
37 km s−1 kpc−1 with light blue circles and results are clearly better
for the regions that had previously substantial offset from the actual
value (see especially regions 1, 4, 6, 7, and 10). The only exceptions
are regions 5, 8, and 9.

For the next test, we add the non-equilibrium possibility to
the modelling (h = 0). We depict the non-equilibrium models as
dark blue circles in the figures. Comparing the results with the
corresponding stationary version (orange circles), we do not see
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Figure 5. The recovery of radial acceleration aR from modelling simulated data. For each region, we present a set of results from different modellings with 1σ

and 2σ uncertainties. For each region, from the left, corresponding points are: (1) non-rotating reference frame in stationary modelling to estimate systematic
uncertainties; (2) the test how well the inclusion of systematic uncertainties works; (3) modelling in case of the reference frame corresponding to the patter
speed; (4) non-stationary modelling where the relation h ≈ (∂f/∂t)/f holds well; and (5) modelling with the best-fitting parameter set.
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Figure 6. Same as Fig. 5, but calculated based on recovery of aθ .

Table 1. The C values calculated based on different
acceleration components. Values over 1 indicate that
the statistical uncertainty was overestimated from the
modelling.

Variable AR Az, z Aθ AR, R Az

C 0.088 2.26 0.20 0.57 3.3

significant changes. We conclude that in the R ≈ 8 kpc regions, the
non-equilibrium has less significance than effects from acceleration.
An alternative explanation is that the number density of stars is
too little to model in such depth that the non-equilibrium starts to
dominate over acceleration components in a small region. The third
explanation is that the functional form of h is not sufficiently diverse
to describe actual non-equilibrium. In the next section, we will dissect
the recovered non-equilibrium values more thoroughly.
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Figure 7. The fitted hLz parameter values and uncertainties for modelling
in both non-rotating and rotating reference frames. One can notice a bias
toward lower absolute values, which is expected to be ≈3.6 times compared
the rotating and non-rotating frames (see main text).

In the last test run, we adapted �fit = 18 km s−1 kpc−1 to maximize
the time star spends in the studied region, included non-stationarity
and used the C = 0.13 value (magenta circles). We could recover the
actual values well in nine cases. In the case of the three problematic
regions (4, 7, and 11) the �fit = �p gives better results in two cases,
while in SR11, the �fit = 18 km s−1 kpc−1 is better. Overall, we
conclude that we can adequately recover acceleration in most cases,
and if the mismatch is caused by sampling noise, we do not expect
similar problems in the observational application.

3.6.2 Conclusions from the non-equilibrium modelling

We included the non-equilibrium term h for �fit = 18 and for �fit =
0. In both cases, we calculated a set of parameters that describes
the systems underlying non-equilibrium. Before discussing derived
results we would like to note what to expect when modelling non-
equilibrium in a rotating reference frame.

Let us imagine a density gradient caused by non-equilibrium.
Densities are proportional to time (oPDF) and time in a studied
region is determined by the region’s size and the velocities. As we
use at present angular velocities let us denote the 	ϕ as the angular
size of the studied region. Then for an average star, it would take
t0 = 	ϕ/�star to leave the region. In a rotating reference frame, the
time would be tr = 	ϕ/(�star − �fit), indicating that times and hence
also density gradient would be increased by a factor of ≈�star/(�star

− �fit). As times needed to produce a gradient would change by this
factor, the h values should also be modified by the same amount.
These considerations are not rigorous, nor are they intended to be,
as not all motions in the disc are rotation dominated, especially in a
rotating reference frame where �fit → �star. In case of �fit = 18 that
is used in simulations the factor �star/(�star − �fit) is ≈3.6.

In Fig. 7, we provide the amplitude values of the function h(Lz) (see
equation 23) for �fit = 0 and �fit = 18. We see that the �fit = 18 based
values are closer to zero line than the �fit = 0 based values. Based
on the considerations from the previous paragraph, this is expected.
But we see also that most of the values are in fact zeros within the
error. This means that in the simulation, the regions at R = 8.3 kpc
are not sufficiently perturbed to recover the perturbation from such
a small region. Thus, the levels of non-equilibrium are smaller than
|(∂f /∂t)f −1| � 0.03 Myr−1 or 3 per cent Myr−1.

The hLz
is just one parameter describing the non-equilibrium

function h. The entire function is shown in Fig. 8 in case of the
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Figure 8. Distribution of h as a function of angular momentum Lz for the
mock SR3. The blue colours describe the median value, ±1σ and ±2σ

regions. These regions are calculated by constructing single lines of posterior
parameter samples and selecting their quantile lines. Hence, they do not have
to follow the equation (23).
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Figure 9. The medians of the function h for all regions as a function of
angular momentum Lz. Region numbers are in the circles on top of each line.
The top panel shows results for modelling in case of �fit = 0, and the bottom
one for �fit = 18 km s−1 kpc−1. The differences of ∼3.6 times are expected
due to the rotation of the reference frame.

region SR3 (non-rotating frame). We picked this region as it had a
large hLz

value. The median and uncertainty corridor is constructed
by calculating all the h(Lz) function lines from the MCMC posterior
points and estimating quantiles of each Lz value. It is seen that h
values are negative in this region.

In Fig. 9, we show the median lines of all the regions, not just one
as in Fig. 8. Again, we see that h values depend strongly on the �fit

values as described earlier in this section. The ones that are modelled
with �fit = 0 are the ones that have the interpretation h ≈ (∂f/∂t)f−1.
We see from the top panel, that h values make a decreasing trend
between SR8 and SR12. A similar trend is seen also between SR1
and SR6 (except for SR3). It seems that over half of the galaxy,
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the phase-space density grows due to non-equilibrium and over the
other half, it decreases (see Fig. 2). This trend is similar to the m =
1 asymmetry, but for ∂f/∂t. The �fit = 18 modelling semiconfirms
it, but one should keep in mind that 1:1 relation between �fit = 18
and �fit = 0 holds only in case of zero-dispersion dynamics, which
is not the case. Because of weak statistical significance, we are not
able to make any firm conclusions about it.

4 N O N - S TAT I O NA R I T Y O F T H E MI L K Y WAY
I N T H E SO L A R N E I G H B O U R H O O D F RO M GAIA
D R 2 DATA

In Kipper et al. (2020) we used the orbital arc method to calculate
the acceleration field in the solar neighbourhood (SN). The model
was a stationary one. In this paper (see Section 2), we improved the
method to include also possible non-stationarities of the galaxy. Here
we remodel the SN region to find out how perturbed region we are
living in. Test of the method with mock data presented in Section 3
confirmed us that the method allows us to conclude that the method
is reliable.

For the solar velocity we use the latest values that are based on Gaia
Early Data Release 3 (EDR3) reflex motion minimization (Malhan,
Ibata & Martin 2020); the values are V�,R = 8.88 km s−1, V�,θ =
241.91 km s−1, and V�,z = 3.08 km s−1.

4.1 Implementation of the modelling with Gaia data

We use a similar data set as in Kipper et al. (2020): the region is a
flux-limited (in J band up to 10.25m) oblate spheroid, with semiheight
of 0.4 kpc and radius 0.494 kpc containing 525 264 stars from Gaia
DR2 (Gaia Collaboration 2016, 2018) with STARHORSE (Anders
et al. 2019) distance estimations. The size of the region determines
the time-scale for how long the non-stationarity estimates can be
handled as valid and be extrapolated. The average velocity of stars
in the region is about ≈240 km s−1 and the diameter of the region
is ≈1 kpc, causing stars to be in the region for �4 Myr. This is the
maximum time interval the derived estimates for the non-equilibrium
parameter h should be used.

To use the orbital arc method, one needs as an input all six
phase-space coordinates of stars. As the Gaia observations provide
at present radial velocities for only a moderate number of stars it
observes, this causes a selection bias. For stars with mg � 4m about
50 per cent of stars have a measured radial velocity, while for stars
with �11m the completeness is ∼80 per cent (see Katz et al. 2019). In
addition, there is a significant direction dependence. In the previous
paper (Kipper et al. 2020), we used a match with the Two Micron All-
Sky Survey (2MASS) magnitudes that are not attenuation sensitive
and constructed data set for modelling is based on these.

In the previous paper, we adapted a flux-limited approach by
choosing a superposition of volume-limited samples. We added a
similar cut to cope with the bright-end selection: we removed all the
stars that are fainter than some bright-end J-band magnitude limit
(JBE). The validity of this procedure is the same as when cutting
the dim end of the sample, and the reasoning is more thoroughly
covered in Kipper et al. (2020). Removal of the bright end is done
in the same way in modelling: the orbit is integrated until the star
exits the studied region or its brightness is not between the used
magnitude limits. Although it provides the same overall results, the
accuracy of the model is more diminutive. As an illustration we
present in Fig. 10 two (oversimplified) cases: one where an orbit
runs through the region intact and the case where the brightness limit
‘cuts’ the orbit into two. In the right-hand panel, we provide the
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Figure 10. An illustration of a side effect of the bright-end sample cut. The
left-hand panel shows how the brightness limit splits an intact orbit (the
red one) into two (green and blue ones) by getting too close to the Sun so
that apparent magnitude increases. The stars are populated along the orbit
(but shifted for illustration purposes) to mimic the non-equilibrium density
population. The right-hand panel shows the probability density functions
(PDFs) along the y-direction, dashed line as the slope data were generated
with. Differences of slopes are apparent due to not normalization to 1. One can
notice higher uncertainties in case the orbit is split (the wavy sampling noise
do not cancel out sufficiently), causing an overall hindrance in modelling.

density distributions and the corresponding uncertainty corridor for
both cases, along with the actual slope we generated the data. As the
split orbital PDF distribution has higher uncertainties than the unsplit
one, the overall modelling through these is more uncertain, and the
overall accuracy of the model is reduced. We used two different limits
JBE: 9m (default) and 7m (denoted as less conservative). The former
sample contains 352 656 stars and latter one 481 464 stars.

As the selection function has a significant impact on data distri-
bution, we added a supplementary way to cope with it. For the orbit
calculations, we multiplied the h with a term hselection, which is an
inverse of the fraction of stars observed compared to completeness,
hence after division, we get the incompleteness-corrected orbital
populations. Based on the Katz et al. (2019) results, we approximated
it to be a linear function of apparent magnitude hselection = hs0 + hs1m.
Hence, a stellar orbit is populated with the density

ρ ∝ dt(1 + h)(hs0 + hs1m), (24)

where m is the apparent magnitude of that orbital point.4 Again, due
to the normalization of PDF of each orbit, we selected hs0 to be
1. The parameter describing the selection (hs1) is a free parameter
in modelling. We expect it not to be confusable with physical non-
equilibrium as it influences orbital densities with spherical symmetry
around the Sun, compared to along the rotation for non-equilibrium.

The modelling is done in a similar manner as we tested the method
with mock data (Kipper et al. 2019), although the statistical inference
at present is done with a finer grid using 302 = 900 grid cells G =
32 times. We set a limit that no cell should have less than 10 stars
to avoid too small grid cells, and high relative Poisson noise. The
likelihood is maximized using MULTINEST (Feroz & Hobson 2008;
Feroz et al. 2009, 2019) code with 100–500 live points. We modelled
the region with parameter C = 0.13 from equation (16), which might

4Apparent magnitude is determined based on solar location, and the absolute
magnitude of the star that’s orbit is being calculated.
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Table 2. Calculated accelerations and perturbation levels in solar neighbourhood (SN). In the first two columns assumed angular velocity
of the reference frame and limiting J-band magnitude are given, in subsequent five columns acceleration field coefficients are given, in the
last column perturbation amplitude parameter hLz is given.

�fit JBE AR Aθ Az AR, R Az, z hLz

(km s−1 kpc−1) (m) (km2 s−2 kpc−1) (km2 s−2 kpc−1) (km2 s−2 kpc−1) (km2 s−2 kpc−2) (km2 s−2 kpc−2) (Gyr−1)

0 9 −6502+605
−539 −304+331

−360 223+169
−237 494+1670

−1544 −3012+1671
−1709 −13+49

−43

0 7 −6462+273
−238 −348+196

−200 191+129
−121 262+1237

−1333 −2789+1196
−1193 79+59

−52

20 9 −6354+198
−198 −245+124

−118 106+94
−102 −237+1065

−899 −2888+714
−788 −7+17

−22

40 9 −6253+231
−237 119+178

−219 −93+136
−135 −895+1001

−745 −3073+954
−976 −15+22

−43
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Figure 11. The two main components of recovered acceleration field. The
horizontal axis shows radial, and vertical axis shows tangential acceleration
components. Different colour lines show modelling results in different
reference frames or selection limits. We provide both 1σ and 2σ uncertainties.

give overestimated uncertainties in case the cause of uncertainties is
sampling noise.

As the SN region is quite far from the bar, the acceleration field
should be sufficiently well described with a simple analytical form.
Hence, we select the form (18)–(20) to describe the acceleration
field. For the non-equilibrium term, we used the same form as in
simulation data equation (23).

We used three different reference frames when modelling: �fit =
{0, 20, 40} km s−1 kpc−1. These values provide results where we em-
phasize the recovery of non-equilibrium parameters or acceleration
parameters. The values differ slightly from the ones we used in
mock analysis since the velocities of MW are slightly larger. We
chose the �fit = 20 km s−1 kpc−1 since MW stellar angular velocity
is ≈29 km s−1 kpc−1 and based on the mock results we chose the
�fit to be less than this value, but still large enough to increase the
time stars spend in the region in a rotating reference frame.

4.2 The non-stationarities in the solar neighbourhood

Modelling the SN by including non-stationarities, we can update the
values of acceleration and assess the importance of non-stationarities.
We show the calculated acceleration field in Table 2 and the main
components of it in Fig. 11.

For the radial acceleration AR we found the weighted mean
of all the radial accelerations in Table 2 to be 〈AR〉 =
−6360 km2 s−2 kpc−1. All different implementations of the mod-
elling (mostly the angular speed of the reference frame �fit) give
consistent results. Derived 〈AR〉 corresponds to the circular velocity
of 228.4 km s−1, which is slightly less than the usual ones from
the literature (e.g. vc = 238 ± 9 km s−1 from Schönrich 2012). The

main reason is the difference of the used solar motion, Malhan
et al. (2020) compared to Schönrich (2012), being 10.33 km s−1.
Taking this into account the circular velocities are consistent with
each other. The radial acceleration derived in Kipper et al. (2020)
was −6214 km2 s−2 kpc−1. The main difference between these
results is the inclusion of non-equilibrium. We can conclude that
the equilibrium assumption gives in the SN case the difference by
∼2 per cent for radial acceleration.

The average tangential acceleration 〈Aθ 〉 is −201 km2 s−2 kpc−1.
Contrary to the radial accelerations, the tangential ones varied clearly
more between different modelling implementations. In order to find
out which implementation is a preferred one, let us remind our tests
with mock data. In Fig. 6, we provide the recovery precision for
different modelling settings. Comparing the cases where �fit is 0, 18,
or 37 km s−1 kpc−1, the results are mostly similar, but still in some
cases differ. The differences are largest for cases where the rotation
of the frame matches the bar pattern speed: mostly �fit = �bar has a
similar, better, or significantly better fit than others; however, in two
cases (regions SR6 and SR7) fits are worse or significantly worse.
Based on the mock analysis, we saw that the average consistency
is improved when �fit is close to stellar velocity. Taking this into
account, we favour the results with �fit = 20 km s−1 kpc−1, i.e.
Aθ = −245+124

−118 km2 s−2 kpc−1. If the torque from the bar causes this
acceleration, then this acceleration corresponds to the mass of the
bar of 1.3 × 1010 M� (see details from Kipper et al. 2020 with the
assumed bar density profile from Wegg, Gerhard & Portail 2015).

Let us introduce the parameter hs1 describing a mismatch due
to apparent magnitude cut caused by the selection function. The
numeric value we model for the hs1 is quite uncertain but has an
average ≈−0.01. In modelling, the value does not drop below −0.025
but can be as high as 0.1 in the posterior sample. For the interpretation,
the average numeric value hs1 the bright-end and dim-end selection
(extreme values) gave number density differences of 1.5 per cent or
3.5 per cent, depending on the used apparent magnitude limit for
selection. From the vast range of acceptable values to the modelling
and no correlation between acceleration parameters and hs1, we
conclude that the selection function did not contribute significantly
to the modelling.

While describing the mock data modelling (Section 3.4) we
mentioned that when handling �fit and function h one needs to
distinguish two separate cases: one where the �fit = 0 and the other
where �fit = 0. In the first case it is possible to use the interpretation
h ≈ f−1∂f/∂t giving a physical interpretation to the perturbations.
In the non-zero cases, the interpretation is not valid, and the non-
equilibrium part is only used to sieve out acceleration effects from
all of the effects. We provide the resulting non-equilibrium function
in Fig. 12. In the top panel, we show the �fit = 0 cases. One can
see that the levels of non-equilibrium needed to make the data in
the region self-consistent can be quite large compared to the one in
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Figure 12. The levels of calculated non-equilibrium function h(Lz) in SN.
Dotted thin lines show ±2σ , dashed ones ±1σ , and continuous line gives
the median values similar to Fig. 8. The top panel shows the results where
h ≈ ∂f/∂t interpretation holds, the bottom ones where it does not (and is even
reverse, see Section 3.6.2).

the simulated galaxy (see Fig. 9). It is also seen that the level of
the detected non-equilibrium is dependent on the sample brightness
limit – the brightness limit determines the sample size and the extent
of stellar orbits (see Fig. 10 for clarification). If we do not use
a bright-end cut at all, the level of perturbations increases even
more. Although both selectional effects and real non-equilibrium can
produce the same outcome, we favour the real non-equilibrium since
the selection effects induced by magnitude limits produce spherically
symmetric over- or underestimation of densities. In contrast, a non-
equilibrium population along the orbit would produce linear ones
along the rotation direction. Therefore these effects are independent
and distinguishable when the observer is in central parts of the region.
Overall we consider our main results based on the �fit = 0 modelling
with less conservative selection. We consider these not being biased
by brightness and having clear physical interpretation.

The derived h-values in cases of real MW data and of mock
simulation data are different in their magnitude. For observations,
the levels of non-equilibrium are larger than simulations. We used
the simulation of Garbari et al. (2011) that contained dark matter
and stellar particles and neither mergers nor gas particles. The
lack of these two contributions can explain the excess of h in
observations. We can see from the Fig. 12 that the maximum of h is
around Lz ≈ −2100, which translates to rotation speeds of the non-
equilibrium orbits ≈255 km s−1, which is faster than the circular
speed equivalence of this region (≈230 km s−1). It indicates that
these stars that have a non-equilibrium population along the orbits
originate further away on average, and in the studied region, they are
closer to their pericentre than apocentre. An alternative interpretation
would be that non-equilibrium is induced by the gas disc that rotates
faster than average stellar disc (due to asymmetric drift). The disc
gas comoves with faster moving stars, and the non-equilibrium could
be induced by gas distribution inhomogeneities.

5 D ISCUSSION

In this paper, we demonstrate the capabilities and perspectives of
inclusion of non-stationarities in modelling of the MW galaxy. First,
based on our tests on simulation data, we conclude that the inclusion

of non-stationarity to the modelling does not produce any additional
inaccuracies to the model and helps to derive the acceleration field
in perturbed states of a galaxy. Applying the developed modelling
method to Gaia data in SN demonstrates the ability of the method to
detect perturbations, calculate their properties, and possibly pinpoint
their possible origin.

The applications in this paper studied regions of size 0.5–1.0 kpc.
We selected the small regions in order to have a minimally simple
form to the acceleration. Would the regions be larger, the acceleration
field should be more complex. In the mock application, the functional
form is adequate to cover the gravitational potential changes (see
Fig. 4), only in the case of radial acceleration, there is hint to a
systematic trend in order to have additional acceleration term. We
did not include it in present case since the systematic effects describe
deviations in the order of ±20 km2 s−2, while the overall potential
changes are ∼10 000 km2 s−2. Would a dense gas disc be present,
then the acceleration would have more abrupt changes in the vertical
direction. This would favour an additional term to a simple linear
approximation.

Although selecting larger regions poses some calculation diffi-
culties due to more complicated acceleration field form, it provides
also advantages. Selecting a larger region allows orbital arcs to be
longer when passing through the region, and inference allows larger
number density of orbits. Since the density of orbits is larger, the
causal connection between different parts of the regions is tighter, and
inference of non-equilibrium (∂f/∂t) is more robust. Larger regions
also pose tighter constraints on the stability of the gravitational
potential, which we will dissect in the next paragraphs.

In principle, in a non-stationary system gravitational potential is
a function of time. However, in this paper we assume that density
perturbations are small and do not contain significant amount of mass.
Thus, we assume that potential and acceleration fields formulae do
not contain time component (see Section 2.1). We are modelling only
non-stationarity of the density. Thus we assess now how accurate
this assumption is using the simulated data. When calculating stellar
orbits in a selected region potential changes in time because the
position of the region changes with respect to the overall asymmetries
of the galaxy. Fig. 13 shows the acceleration components as a function
of the position in the galaxy, more specifically, as a function of the
position angle measured at R = 8.3 kpc. We see that accelerations
change by up to ∼300 km2 s−2 kpc−1 as a star circles the entire galaxy.
As the region limits the extent of stars position range, corresponding
accelerations vary less. Let us estimate expected acceleration changes
due to change of the potential.

The radius of the studied region is about 1 kpc and semiheight
0.35 kpc. The average rotational speed in the SRs is ≈210 km s−1,
indicating that it takes 	t ≈ 3 Myr for a random star in the studied
region to reach the boundary of the region. This estimate includes
reducing sizes due to the flattened geometry of the region but ignores
the dispersion component of the velocities.

Let us denote �p as the angular speed of the asymmetries that
cause changes of acceleration. For bar, it is �p ≈ 37 km s−1 kpc−1

(see Section 3.1). The angle (measured from the centre of the galaxy)
from the bar tip changes by the time an average star passes the studied
region 	θ = �p	t ≈ 6◦. The corresponding value for the SN region
of the MW is 	θobs = 3◦. It is smaller due to smaller extent of the
SN region. The top left-hand part of the top panel of Fig. 13 shows
these values as the lengths of horizontal bars. The bottom panel of
the figure shows how much accelerations change with this rotation
angle. There is a significant dependence where the studied region is
located in the mock galaxy. Although there is a dependence, the order
of magnitude is low compared to the mean radial acceleration. The
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Figure 13. The position dependence of acceleration components over the
simulated galaxy. The top panel shows the mean-subtracted acceleration as
a function of angle measured at the centre. We can see that the acceleration
components can deviate from axisymmetry up to levels 300 km2 s−2 kpc−1.
The change of studied region position with respect to these asymmetries
causes the potential to be time dependent. The top left-hand part shows
the expected change of position (	θ ) when a star passes through the studied
region. The bottom panel shows the change of acceleration with the time a star
passes through the studied region. It is in the order 	a � 50 km2 s−2 kpc−1.

absolute mean of the components describes how much change for
the acceleration (	a) we expect when the star passes the studied
region. For simulations 	aR ≈ 33 and 	aθ ≈ 26 km2 s−2 kpc−1,
and when assuming similar acceleration distribution for MW than
the simulation has, then the corresponding values are 	aR ≈ 17
and 	aθ ≈ 15 km2 s−2 kpc−1. The reduced size of the studied region
is the cause of the less sensitivity to the time dependence of the
potential. These values show that the time dependence can cause
acceleration changes in the order of 33/6000 ≈ 0.5 per cent, which
we consider insignificant for this type of modelling and conclude
that the orbital arc method is insensitive to the gravitational potential
time variations in case of small regions of interest.

The case of consistent stationary systems density and velocity
changes are interrelated and must be consistent. If the density
changes cannot be modelled consistently with corresponding velocity
changes, they are presumably caused by non-equilibrium. Another
cause for density changes without corresponding velocity changes
is due to observational selection function. Our preliminary testings
show that confusing these two reasons in modelling is possible and
can cause biased results.

6 C O N C L U S I O N S

An application to the SN we came to the following conclusions.

(i) The developed method gives consistent results for the radial
acceleration (−6360 km2 s−2 kpc−1, corresponding to circular

velocity 228 km s−1; see Table 2) compared to previous circular
velocity estimates 238 km s−1 (Schönrich 2012). While other studies
have used data spread over large regions, we estimated the same
quantity based on the data within 0.5 kpc, assuming solar velocity
from Malhan et al. (2020).

(ii) When looking at the angular momentum distribution of the
non-stationarity function h(Lz), we see that all perturbed stars are
populating faster (presumably thin disc) orbits.

(iii) When studying the angular momentum Lz of the perturbed
stars we found them to be near Lz ≈ 2100 km s−1 kpc. As this is
larger than the angular momentum corresponding to the circular
speed of SN (≈1900 km s−1 kpc), hence they must be nearer to their
pericentre than compared to their circular speed. We propose that
their origin is from larger radii. An alternative is that the stars that
rotate faster are sensitive to comoving perturbations by a component
that rotates faster than the stellar disc. This source of acceleration is
presumably inhomogeneities of gas disc.

(iv) Compared to Kipper et al. (2020) we updated the local tangen-
tial acceleration estimate to include non-equilibrium. The tangential
acceleration estimate is −245 km2 s−2 kpc−1 (see Table 2), which
would indicate the updated bar mass estimate is 1.3 × 1010 M�.

In the case of precision modelling of the disc of MW with
future Gaia DR3+data, we can describe the major source of non-
stationarity nearby. In the case of modifying equation (23) to a sum
of perturbations, we can cover most sources of non-stationarity.

As for future applications, the orbital arc method provides an
invaluable addition to contemporary halo studies, where interactions
are searched in action space. The action space has the sensitivity to
mergers smoothed out long ago, while detection of non-stationarities
provides information on freshly happening events. By the freshly
happening influences, we mean the non-stationarities produced by
substructure: perhaps there is a dark matter subhalo, which produces
dynamical friction and the wake alongside it. The wake by itself
is a non-stationarity (not bound system) hence detectable at shorter
time-scales. Applying this methodology in the MW halo opens new
and exciting opportunities to search for. There are also already more
known areas that localized acceleration field could shed light on, such
as the mass of Magellanic Clouds could be determined by precision
acceleration field, or exact shape of MW dark matter halo in case the
observations with an excellent data quality are be made of outer halo.
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analysis and posterior distribution of the modelling can be acquired
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