
This is a self-archived – parallel published version of an original article. This

version may differ from the original in pagination and typographic details.

When using please cite the original.

This is a post-peer-review, pre-copyedit version of an article published in

Veerasamy A.K., Laakso MJ., D’Souza D., Salakoski T. (2021) Predictive Models as Early

Warning Systems: A Bayesian Classification Model to Identify At-Risk Students of

Programming. In: Arai K. (eds) Intelligent Computing. Lecture Notes in Networks and

Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_14

The final authenticated version is available online at

https://link.springer.com/chapter/10.1007%2F978-3-030-80126-7_14

https://doi.org/10.1007/978-3-030-80126-7_14
https://link.springer.com/chapter/10.1007%2F978-3-030-80126-7_14

Predictive Models as Early Warning Systems:
A Bayesian Classification Model to Identify

At-Risk Students of Programming

Ashok Kumar Veerasamy1(B), Mikko-Jussi Laakso1, Daryl D’Souza2,
and Tapio Salakoski1

1 University of Turku, Turku, Finland
askuve@utu.fi

2 RMIT University, Melbourne, Australia

Abstract. The pursuit of a deeper understanding of factors that influence stu-
dent performance outcomes has long been of interest to the computing education
community. Among these include the development of effective predictive models
to predict student academic performance. Predictive models may serve as early
warning systems to identify students at risk of failing or quitting early. This paper
presents a class of machine learning predictive models based on Naive Bayes
classification, to predict student performance in introductory programming. The
models use formative assessment tasks and self-reported cognitive features such as
prior programming knowledge and problem-solving skills. Our analysis revealed
that the use of just three variables was a good fit for the models employed. The
models that used in-class assessment and cognitive features as predictors returned
best at-risk prediction accuracies, compared with models that used take-home
assessment and cognitive features as predictors. The prediction accuracy in iden-
tifying at-risk students on unknowndata for the coursewas 71% (overall prediction
accuracy) in compliance with the area under the curve (ROC) score (0.66). Based
on these results we present a generic predictive model and its potential application
as an early warning system for early identification of students at risk.

Keywords: Early warning systems · Formative assessment tasks · Predictive
data mining models · Problem Solving Skills

1 Introduction

Programming is fundamental to computer science (CS) and cognate disciplines, and typ-
ically offered as a non-CS major. However, the difficulty of learning to program steers
non-CS students away from programming courses, and to select alternative courses [1].
Many students fail or perform poorly in programming even as CS education has seen
improvements in methods of teaching programming [2] with failure rates continuing to
be the range 28–32% [3, 4]. Accordingly, the pursuit of a better understanding of factors
that influence student performance outcomes has long been of interest, and includes
the development of early-prediction models to predict academic performance, in turn to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Arai (Ed.): Intelligent Computing, LNNS 284, pp. 1–22, 2021.
https://doi.org/10.1007/978-3-030-80126-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80126-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-80126-7_14

2 A. K. Veerasamy et al.

identify potentially at-risk students [5–7]. However, the predictor variables and associ-
ated machine learning algorithms are typically influenced by contextual variations such
as class size and academic settings [8, 9]. In addition, it is widely accepted that parsi-
mony is important in model building [10, 11]. This paper proposes a genre of simple,
parsimonious predictive model(s), which account for variations in academic setting,
such as academic environment and student demography. The models also assume that
concepts taught early in semester typically impact on understanding of latter concepts;
hence analysing results of early formative assessments may provide opportunities to
assess student-learning outcomes and to identify poorly motivated learners, early in the
semester.

This study adopted the Naive Bayes classification for our proposed predictive model.
K-fold cross-validation was used to evaluate model. An additional objective was to
explore the relationship among the selected predictor variables and propose a genre of
parsimonious predictive model(s) for incorporation in an early warning system (EWS),
to identify at-risk students early and to facilitate appropriate interventions. Towards these
objectives, the paper addresses the following research questions (RQs).

RQ1. Which measures provide the most value for predicting student performance:
perceived problem-solving skills, prior programming knowledge, selected formative
assessment results?
RQ2. How suitable is the Naive Bayes classification based model for incorporation in
an early warning system, to identify students in need of early assistance?

The remainder of the paper is organized as follows. Relatedwork (Sect. 2) surveys lit-
erature relevant to previouswork. Researchmethodology (Sect. 3) describes themethods
used to address our research questions. Data analysis and results (Sect. 4) presents our
findings, which we discuss in depth in discussion (Sect. 5). Finally, conclusion (Sect. 6)
summarizes our findings and presents limitations in terms of how well the foregoing
research questions are answered; we also identify some related future work directions.

2 Related Work

This section highlights important past contributions of relevance to the work reported
in this paper, including: predictors of academic performance; modelling of predictors;
Naive Bayes classification and early warning systems.

2.1 Predictors of Student Performance

We limited our study to three variables for predicting student academic performance:
problem-solving skills, prior programming knowledge and formative assessment per-
formance. Problem solving is a metacognitive activity, which reveals the way a person
learns and experiences different aspects of the problem-solving process [12]. It is con-
sidered as a basic skill for students in study and work [13, 14]. Student problem-solving
skills can predict student study habits and academic performance [15]. Studies have

Predictive Models as Early Warning Systems 3

also revealed that there is a relationship between problem-solving proficiency and aca-
demic achievement [16, 17]. Marion et al. [18] noted that programming should not be
considered as just a coding skill but as a way of thinking, decomposing and solving
problems, implying that problem solving may impact student performance in program-
ming courses. Research in the discipline of computer science has also highlighted that
many students lack problem-solving skills [19, 20].

Another important variable is prior knowledge, which is defined as an individual’s
prior personal stock of information, skills, experiences, beliefs and memories. Prior
knowledge is one of the most important factors that influence learning and student
performance [21, 22]. Studies have been conducted on the impact of prior knowledge
in programming courses, sometimes with mixed results [23–25]. Reviews of computing
educational studies have found that both prior knowledge and problem-solving skills are
required skills for CS students [24, 26].

Formative assessment is an effective instructional strategy to measure student-
learning outcomes [27, 28]. Formative assessment tasks take place during the course
of study and instructors often examine selected formative assessment task results to
observe and assess student improvement. Students are aware that completing formative
assessment tasks may lead to improved final grades [29]. For example, homework is a
type of formative assessment task to test comprehension [30]. Educators use homework
to identify where students are struggling, in order to assist them and to address their
problems [31]. There have been several studies conducted on the impact of homework
on student performance [31, 32]. Veerasamy et al. [31] reported that marks achieved in
homework and class demonstrations have a significant positive impact on final exam-
ination results. Similarly, computer-based or online-tutorials have positive effects on
student academic performance in economics, mathematics and science courses [33, 34].
Moreover, several models have included formative assessment scores to predict student
performance [6, 7].

2.2 Predictive Data Mining Modelling for Student Performance in Computing
Education

Predictive modelling employs classifiers or regressors to formulate a statistical model
to forecast or predict future outcomes. Predictive models have been employed in several
studies to automatically identify students in need of assistance in programming courses,
based on early course work [7, 35–38]. For example, Porter et al. [36] used correlation
coefficient and visualization techniques to predict student success at the end of term,
examining clicker question performance data collected in peer instruction classrooms.
Liao et al., [38, 39] conducted studies by using student clicker data as input, collected in
a peer instruction pedagogy setting to identify at risk CS1 students. In a later study [7],
they explored the value of different data sources as inputs to predict student performance
in multiple courses; these inputs included the collected clicker data, take-home assign-
ment and online quiz grades, and final grades obtained from prerequisite courses. They
employed Linear regression, Support vector machine and Logistic regression machine
learning algorithms in these studies respectively for prediction of student performance
in computing education. However, the earlier study [39] did not provide sufficient detail
why Linear regression was selected over other machine learning techniques. The use of

4 A. K. Veerasamy et al.

clickers and the peer instruction pedagogy raised concerns about whether this approach
could be applied to courses that did not employ instrumented IDEs, or the peer instruc-
tion pedagogy as per later studies [7, 38]. In addition, they may not have had access
to grades attained in the prerequisite courses for analysis [7]. The methodologies used
in the aforementioned studies cannot be applied to online distance courses. Substantial
student collaboration effort is required from students located at different geographical
locations, and it may be challenging for instructors to obtain or access relevant data for
predictive analysis. In addition, it is not yet clear which machine learning algorithms are
preferable in this context.

2.3 Predictive Modelling with Naive Bayes Classification

Naive Bayes classification (NBC) is a supervised machine-learning algorithm for binary
and multi-class classification problems. It is a simple statistical classifier and based on
Bayes’ probability theorem. NBC models considered as an effective choice for predict-
ing student performance [40], and their use has demonstrated improved performance
over other classification methods [41]. For example, Agrawal et al. [42] analysed var-
ious machine learning classification algorithms and inferred that NBC is effective for
student final exam performance prediction. However, Bergin et al. found that although
Naive Bayes had the highest prediction accuracy for predicting novice programming
success, there were no significant statistical differences between the prediction accura-
cies of Naive Bayes and Logistic regression, Support vector machine, Artificial neural
network and Decision tree classifiers, in predicting introductory programming student
performance [43]. In addition, the study reported in this paper, we explored various other
machine-learning techniques, such as Random forest, C5.0 and Support vector machine,
for predicting student performance. It was identified that NBC provided better overall
prediction and at-risk balanced accuracy across our datasets compared to other machine
learning models. So, we deployed Naive Bayes classification for this study.

Most of the studies around predictive model development and validation used K-fold
cross-validation to evaluate model performance [7, 40, 43]. Borra et al. [44] measured
the prediction error of the model by employing estimators such as leave-one-out, para-
metric and non-parametric bootstrap, as well as cross-validation methods. They reported
repeated K-fold cross-validation estimator and parametric bootstrap estimator outper-
formed the leave-one-out and hold-out estimators. As such, in this study, we developed
the Naive Bayes based classification model and used K-fold- cross-validation for model
evaluation.

2.4 Early Warning Systems (EWS) in Education

The term “early warning system” (EWS) is not new and has attracted attention to sup-
port instructors and students [45, 46]. The EWS acts as a student progress indicator,
enabling educators to support students who perform progressively poorly, before they
drop out; for example, Krumm et al. [46] designed a project called Student Explorer as
a part of learning management system (LMS) for academic advising in undergraduate
engineering courses. They examined the accumulated LMS data to identify students who

Predictive Models as Early Warning Systems 5

needed academic support and identified factors that influenced academic advisor deci-
sions. Higher educational institutions are placing greater emphasis on improving student
retention, performance and support, and hence they have begun to urge educators to use
EWSs, such as Course Signals and Student Explorer, to implement effective pedagogi-
cal practices to improve student performance [46–48]. However, these EWSs have some
shortcomings. First, academic advisors surmise that using EWSs in academic settings
is time consuming. Second, many instructors have difficulties in integrating EWSs into
their regular work practices as existing EWSs do not appear to be user-friendly. Third,
studies also confirmed that identifying a reliable set of predictors to develop early warn-
ing systems/early prediction tools is a challenging task [49, 50]. Fourth, EWSs that
have been designed for online courses or which rely heavily on learning management
systems (LMS) data, and not on student cognitive and performance data, may not be
suitable as data sources [46, 47]. Moreover, in programming, several learning activities
take place outside of the LMS [51]. Hence, EWS tools and strategies developed on the
basis of student cognitive and performance data, best serve the early identification of
at-risk students, in order to support their timely learning [45].

In summary, this paper contributes the following: (i) Development of a simple
model(s) with explanatory predictor variables selected on the basis of prior work;
(ii) Adoption of the NBC algorithm with K-fold cross-validation, to develop predictive
models and to explore the predictive capabilities of selected variables; (iii) Identification
of models with reliable sets of predictors, which may be suitable in (academic) early
warning systems, for courses that utilise assessment tasks and a final exam.

3 Research Methodology

The aim of this study was establish a predictive model to predict student final pro-
gramming grades in introductory programming courses. This study used Naive Bayes
classification based predictive modelling with the following inputs: student perceived
problem-solving skills; prior knowledge in programming; and formative assessment in
the form of homework and demo/tutorial exercise scores, for the first four weeks of
semester. Student final exam grades represented the output of the model.

3.1 Description of the Course and Data Sources

The initial data collected for model development was derived from assessment activities
of university students enrolled in two classroom-based courses: Introduction to Pro-
gramming and Algorithms and Programming, both offered during the autumn semester
of 2016. The dataset collected in the autumn semester of 2017 was then employed as the
unknown data set to test the performance (for generalization) of our predictive models.
Introduction to Programming is offered in English and Algorithms and Programming
in Finnish, and both courses are designed for students with no prior knowledge in pro-
gramming. The duration of the courses is 11 weeks and 8 weeks respectively, for Intro-
duction to Programming and Algorithms and Programming. Both courses use ViLLE
as the learning management system (LMS) to support technology-enhanced classes.
ViLLE is mainly used for programming students, to deliver and manage course content,

6 A. K. Veerasamy et al.

such as lecture notes, formative and summative assessment tasks for programming stu-
dents. Student academic data was collected via ViLLE, and SPSS (version-25) and R
(version-3.5.1) were used for statistical analysis.

Table 1. Dataset details

Course *Training set/enrolled (2016) *Test set/enrolled (2017)

Introduction to programming 64/93 68/94

Algorithms and programming 170/248 172/258

*Students who participated in the problem-solving skills and course entry surveys, and completed
formative assessment tasks and the final exam only selected for training and testing

Table 1 provides dataset details including course names and numbers of students
enrolled in each year, as well as the numbers of students selected for training and
test/unknown data sets. The data collected via LMS for the year 2016 (n1 = 64 +
170) was used for feature selection, training and testing the models, for evaluation. The
dataset collected in the year 2017 (n2 = 68 + 172) was then employed for final testing
(generalization performance) in order to propose models developed for the purpose of
early warning systems.

3.2 Instruments and Assessments

Our study included two surveys, for self-assessment of problem-solving skills and prior
programming knowledge, denoted the problem-solving skills and prior programming
knowledge instruments, respectively. These surveys were conducted via the LMS at the
start of the semester.

The problem-solving inventory (PSI) questionnaire contained 32 Likert-type ques-
tions to measure individual self-perception of problem-solving ability. The total score
ranged from 32 to 192, with higher scores indicating poorer self-reported problem-
solving skills. The PSI was developed by Heppner and Peterson [52]. The actual PSI
questions were in English, devised by Heppner [52] translated into Finnish for Algo-
rithms and Programming students, whose native language was Finnish. Moreover, this
instrument was used in our prior study [53] to identify the relationship between PSI and
academic performance of novice learners in an introductory programming course.

The prior programming knowledge (PPK) survey instrument was devised as part
of a study by Veerasamy et al. [54] and comprised a 5-point (0 to 5) Likert scale of
closed response questions for students. Each point was presented to students with a clear
description to accurately self-assess their prior knowledge. In addition, students were
asked to mention the names of programming languages they had learned and in which
they had previously written at least 200 lines of code. Student responses to the PPKwere
crosschecked to measure the validity and reliability of the PPK survey. Later, these five
points were collapsed in to three groups, identified as “0: no knowledge”, “1–2: basic
knowledge” and “3–5: good knowledge”. Moreover, our prior study [54] confirmed the
feasibility of using the PPK instrument to predict student academic performance.

Predictive Models as Early Warning Systems 7

A set of weekly homework exercises (HE)was provided for both courses, weekly, for
8weeks. Each set of homework exercises averaged 5–10 questions, comprising objective
type, code tracing, visualization and coding exercises. All exercises were delivered to
students via the LMS, wherein they could submit their answers online, which were
mostly automatically graded by LMS. The possible total HE scores for Introduction to
Programming and Algorithms and Programming was 890 and 317, respectively.

Demo exercises (DE) for Introduction to Programming were dispatched to students
weekly via the LMS, for 10weeks throughout the semester. Each set of exercises had 4–7
coding questions. In a DE session (in the classroom), student solutions to questions for
students who had completed them, and who were ready to submit, were discussed by the
lecturer; selected students, subsequently selected randomly via the LMS, demonstrated
their answers in class. No marks were awarded for class demonstrations. However,
students who completed the DEs were instructed to enter their responses directly into
the lecturer’s computer, to record the number of DEs completed by them [31]. The
possible total DE score for Introduction to Programming was 750.

Tutorial exercises (TT) for Algorithms and Programming were provided to students
weekly for 8 weeks throughout the semester. In a tutorial session students were given
coding exercises via LMS to work online in the classroom. Students were allowed to
submit their answers online, individually or as group submissions, which were automat-
ically graded by ViLLE. However, a few coding exercises were manually graded by the
lecturer, with scores entered into the LMS in order to assess students’ programming abil-
ity. The possible total TT score for Algorithms and Programming was 650. Introduction
to Programming did not offer tutorials for students.

BothHE andDEwere hurdles for Introduction to Programmingwith students having
to attain at least 50% overall for HE and 40% over DE, in order to pass these components
and the course. Similarly, all HE and TTwere hurdles for Algorithms and Programming;
students were required to secure at least 50% overall in each component and to have
completed the end semester online-assignment in the LMS, to qualify to sit for the final
exam. Both DE and TT sessions were conducted in the classroom, partially supervised
and assisted by lecturer.

The final exam (FE) is an online summative assessment conducted at the end of the
course of study. This final exam is conducted electronically via the LMS. The final exam
is hurdle for Introduction to Programming and students are required to secure at least
50% (*) to pass this hurdle, in order to attain a grade for the course. However, the final
exam is not a hurdle for Algorithms and Programming. Students attain 80% or more in
the selected assessment components to get the maximum of two credit points and course
grade 2. To obtain grades of 3 to 5, students must secure at least 50% or more in the
selected assessment components and should get at least 62% or more in the final exam
(Table 2).

The final exam grade (FEG) for the course was calculated based only on final exam
scores. Table 2 shows the details of the grade calculation used for this study, to predict
final exam grades for both courses.

Figure 1 and Fig. 2 present the grade-wise student distribution for Introduction to
Programming and Algorithms and Programming. In this study, we defined students at-
risk if they secured grades 0 or 1 in the final exam, and denoted their grade as “ZERO”.

8 A. K. Veerasamy et al.

Table 2. Grading criteria table: Introduction to Programming & Algorithms and Programming

Introduction to Programming Algorithms and Programming

Final exam marks Grade Final exam marks Grade

0 to 49 0* 0 to 44 0*

50 to 59 1* 45 to 55 1*

60 to 69 2** 56 to 66 2**

70 to 79 3** 67 to 77 3**

80 to 92 4** 78 to 88 4**

93+ 5** 89+ 5**

*The actual grades 0 and 1 are considered as “at-risk” for this study and denoted as grade “ZERO”;
**grades 2 to 5 are considered as “not-at-risk”

Fig. 1. Grade wise distribution chart- Introduction to Programming

Predictive Models as Early Warning Systems 9

Fig. 2. Grade wise distribution chart- Algorithms and Programming

This is because; students who secured a passing grade were not likely to succeed in sub-
sequent courses. Hence, this study tags students who received a fail grade or a marginal
pass as at-risk students, in order to check the at-risk student prediction accuracy of the
model (Fig. 1 and 2).

Thirty-two (25+ 7) students secured grade “ZERO” in the year 2016 and 16 (11+ 5)
in the year 2017 for Introduction to Programming (Fig. 1). Forty-four (30+ 14) students
secured grade “ZERO” in the year 2016 and 32 (19+ 13) in the year 2017 forAlgorithms
and Programming (Fig. 2). Similarly, we defined students as not-at-risk who secured
grades 2–5. In total, 32 students secured grades 2–5 in the year 2016 and 52 students
in the year 2017, for Introduction to Programming; 126 students secured grades 2–5 in
the year 2016 and 140 students in the year 2017, for Algorithms and Programming. The
distribution of data is not unimodal.

3.3 Predictive Model

The goal of this study was to build a predictive model that most accurately predicts the
desired output value for new input (course) data. Two (courses) x 15 predictive models
were developed to measure the influence of selected predictor variables in prediction
accuracy. In order to evaluate the prediction accuracy of themodels,we used 5-fold cross-
validation to ensure that the training and testing sets (year 2016) contained sufficient
variation to arrive at unbiased results. In turn, this would avoid overfitting and allow
us to establish how well the model generalized to unknown data (year 2017). We used
the wrapper method (forward selection) to determine whether adding a specific feature
would statistically improve the predictive performance of the model. In addition, the
process was continued until all available variables were successively added to a model,

10 A. K. Veerasamy et al.

to identify the best set of variables for model development. The prediction accuracy
of each of the 30 predictive models was examined by calculating the overall model
prediction accuracy, the at-risk student prediction accuracy sensitivity and specificity,
and area under the curve score (ROC curve), for each model. The following prediction
accuracy measures were applied via R coding, to evaluate the performance of all models
(in training and testing) to answer our research questions.

Model prediction accuracy (MPA): MPA was calculated as the number of correct
predictions made by NBC, divided by the total number of actual values (and multiplied
by 100) to get the prediction accuracy.

At-risk student prediction accuracy sensitivity (ATSE): The ATSE represents the
percentage of at-risk students who are correctly identified by the model. The ATSE was
calculated as:

ATSE = TAR

TAR + FNR
× 100

where TAR (True At-risk) is the number of predictions for grade “ZERO” that were
correctly identified; and FNR (False Not At-risk) is the number of at-risk students who
are incorrectly identified as not-at-risk students by themodel. TheATSE value represents
the percentage of at-risk students who are correctly identified by the model.

At-risk prediction accuracy specificity (ATSP): ATSP represents the percentage of
not-at-risk students who are correctly identified by the model. The not-at-risk prediction
accuracy was calculated as:

ATSP = TNR

TNR + FAR
× 100

where TNR” (True Not-At-risk) is the number of correctly identified predictions for
grades “2–5; and FAR (False At-risk) is the number of not-at-risk students who are
incorrectly identified as at-risk students by the model for all trials. The ATSP value
represents the percentage of not-at-risk students who are correctly identified by the
model.

Area under the ROC (receiver operating characteristics) curve (AUC): The AUC
curve is a performance measurement for binary or multiclass classifiers. The AUC value
lies between 0.5 and 1, inclusive, where 0.5 denotes a bad classifier and 1 denotes an
excellent classifier. The higher theAUC, the better themodel is at distinguishing between
student at-risk and not-at-risk. The AUC was used to evaluate the diagnostic ability of
the NBC model.

We defined the prediction accuracy of identifying at-risk and not-at-risk values, as
follows: below 50% is considered poor; 50% - 69% moderate; 70%-79% good; and
80 and above as very good. As such, models with lowest predictive performances were
dropped for tests on unknowndata. Themodels returned the highest prediction accuracies
(top threemodels X 2 courses) were then employed for testing unknown data (year 2017)
for generalization.

Predictive Models as Early Warning Systems 11

4 Data Analysis and Results

We used SPSS for data pre-processing and RStudio to perform the NBC analysis (IBM,
2013). The data pre-processing was conducted as follows. First, all numerical data was
scaled for standardization. For example, we converted the actual homework, demo and
tutorial exercise scores (for the first four weeks of semester) to percentage scores. Next,
the scaled data was stored as csv files to implement our NBC-based algorithms on these
pre-processed datasets.

Table 3. The Models Developed for Feature Selection: Naive Bayes Classification - Introduction
to Programming

Model# Feature Type Model equation

#1 PSI Cognitive variables PSI → FEG

#2 PPK PPK → FEG

#3 PSI, PPK PSI, PPK → FEG

#4 HE Formative assessment tasks HE → FEG

#5 DE DE → FEG

#6 HE, DE HE, DE → FEG

#7 PSI, HE Cognitive variables and
formative assessment tasks

PSI, HE → FEG

#8 PSI, DE PSI, DE → FEG

#9 PSI, HE, DE PSI, HE, DE → FEG

#10 PSI, PPK, HE PSI, PPK, HE → FEG

#11 PSI, PPK, DE PSI, PPK, DE → FEG

#12 PPK, HE PPK, HE → FEG

#13 PPK, DE PPK, DE → FEG

#14 PPK, HE, DE PPK, HE, DE → FEG

#15 PSI, PPK, HE, DE PSI, PPK, HE, DE → FEG

PSI: Problem solving skills; PPK: Prior programming knowledge; HE: Homework exercise; DE:
Demo exercise; FE: Final exam; FEG: Final exam grade

We developed 15 predictive models for each of the two courses, with the follow-
ing combinations of predictor variables to measure the differences between predictive
capabilities of formative assessments and other variables to answer RQ1.

Models #1 – #15 were developed to predict final exam grades for Introduction to
Programming and Models #16 – #30 were developed to predict final exam grades for
Algorithms and Programming. Models #1 – #3 and #16 – #18 were developed using
cognitive factors as input variables to predict final exam grades both courses. Models #4
– #6 and #19 – #21were developed using formative assessment tasks as input variables to
predict final examgrades for both courses.Models #7–#15and#22–#30weredeveloped
using both formative assessment tasks and cognitive factors as predictor variables to

12 A. K. Veerasamy et al.

predict student final exam grades for both courses. The models (#1 – #2, #4 – #5) and
(#16 – #17, and #19 – #20) were developed with single features for both courses to
examine the models’ overall prediction accuracies, at-risk prediction accuracies, not-at-
risk prediction accuracies and AUC results of those models, in order to determine the
most valuable combination of predictors for model development. Tables 3 and 4 show
NBC models developed for feature selection.

Table 4. Themodels developed for feature selection: Naive Bayes classification - Algorithms and
Programming

Model# Feature Type Model equation

#16 PSI Cognitive variables PSI → FEG

#17 PPK PPK → FEG

#18 PSI, PPK PSI, PPK → FEG

#19 HE Formative assessment tasks HE → FEG

#20 TT TT → FEG

#21 HE, TT HE, TT → FEG

#22 PSI, HE Cognitive variables and
formative assessment tasks

PSI, HE → FEG

#23 PSI, TT PSI, TT → FEG

#24 PSI, HE, TT PSI, HE, TT → FEG

#25 PSI, PPK, HE PSI, PPK, HE → FEG

#26 PSI, PPK, TT PSI, PPK, TT → FEG

#27 PPK, HE PPK, HE → FEG

#28 PPK, TT PPK, TT → FEG

#29 PPK, HE, TT PPK, HE, TT → FEG

#30 PSI, PPK, HE, TT PSI, PPK, HE, TT → FEG

PSI: Problem solving skills; PPK: Prior programming knowledge; HE: Homework exercises; TT:
Tutorial exercise; FE: Final exam; FEG: Final exam grade

We were interested in identifying the most valuable features in predicting student
performance for both courses. As such, we examined the resultant AUC for each feature
when used for model development and final testing. Figure 3 and Fig. 4 present the
resultant AUC for training and unknown (testing) datasets, when using each feature
individually to predict student final exam grades for both courses.

Predictive Models as Early Warning Systems 13

Fig. 3. Performance of models with single feature: Introduction to Programming

Fig. 4. Performance of models with single feature: Algorithms and Programming

The DE feature returns the best AUC out of all other features, and followed by
PSI. This implies that DE and PSI are powerful predictors of student performance in
Introduction to Programming (Fig. 3). On the other hand, the cognitive features (PPKand
PSI) returned the best AUC out of all other features for Algorithms and Programming,
although AUC results on the unknown dataset were varied (Fig. 4).

As noted, one of the objectives of this study was to determine whether our model(s)
could be used as early warning system(s) for instructors to identify students in need of
academic support (RQ2). Therefore, we selected top three models (for both courses) that
returned higher prediction accuracies in the year 2016 (Table 5). Then these selected

14 A. K. Veerasamy et al.

models were employed on the dataset collected in the year 2017 (unknown data) to
determine howwell these models would work on unknown data (Table 6) and to propose
the models that with good predictive power as early warning systems.

Table 5. The overall and at-risk student prediction accuracies on training set: 2016

Model# Overall
prediction
accuracy
(MPA)

At-risk
prediction
accuracy
(ATSE)

Not-At-Risk
prediction
accuracy
(ATSP)

Area under the
curve (AUC)

Course

#8 79.69 81.25 78.12 0.79 Introduction to
Programming#11 75.00 81.25 68.75 0.78

#5 76.56 78.12 75.00 0.74

#29 65.21 61.36 69.05 0.65 Algorithms and
Programming#30 65.26 59.09 71.43 0.64

#28 61.24 61.36 61.11 0.59

Table 5 shows the top three selected models for each of the two courses for the year
2016, which had higher prediction accuracies (AUC scores). TheK-fold cross-validation
results for the training set revealed that model #8 with PSI and DE only, as predictors,
returns the best prediction accuracy (MPA: 80%, ATSE:81, ATSP:78, AUC:0.79) for
Introduction to Programming. Similarly, model #29 developed with continuous assess-
ments tasks (HE and TT) and the cognitive variable (PPK) only, as predictors, returned
the best prediction accuracy for Algorithms and Programming (MPA: 65%, ATSE: 61%,
ATSP: 69%, AUC: 0.65).

Table 6. Top three models’ performance on test dataset for the year 2017

Model# Overall
prediction
accuracy
(MPA)

At-risk
prediction
accuracy
(ATSE)

Not-At-Risk
prediction
accuracy
(ATSP)

Area under the
curve (AUC)

Course

#8 70.91 93.75 48.08 0.66 Introduction to
Programming#11 67.79 87.50 48.08 0.63

#5 68.99 93.75 44.23 0.65

#29 49.65 0 99.29 0.41 Algorithms and
Programming#30 49.65 0 99.29 0.41

#28 49.65 0 99.29 0.41

Table 6 shows the models’ unknown data test results (year 2017) of top three models
for each of the two courses. The results were mixed. On average, the at-risk prediction

Predictive Models as Early Warning Systems 15

accuracy for identifying students who needed support for Introduction to Programming,
was 91.67% (Models #8, #11, and #5) in compliance with AUC scores (0.66). However,
the not-at-risk prediction accuracy, for identifying student who did not need support,
was statistically poor (46.80%). On the other hand, on average, the at-risk prediction
accuracy, for identifying students who needed support for Algorithms and Programming
was 0% (Models #29, #30, and #28), which is statistically insignificant and addressed
below.

5 Discussion

Themain objective of this studywas to construct a predictivemodel with as few predictor
variables to predict final programming exam performance of students in order to identify
at-risk students early. The validation and unknown data test results for models (Fig. 3)
with a single feature as predictors for Introduction to Programming revealed that demo
exercises were the most influential factor (AUC: 0.65) in determining student final exam
performance. On the other hand, prior programming knowledge returned the best AUC
(0.63) and may serve as a predictor of student success in Algorithms and Programming
(Fig. 4). These results imply that models developed and tested with combination of demo
and problem solving skills may yield better prediction accuracies thanmodels developed
with other features for Introduction to Programming. Similarly, the unknown dataset
results for models with single features as predictors for Algorithms and Programming
(Fig. 4) revealed that models with cognitive features (prior programming knowledge and
problem solving skills) may yield better prediction accuracies than other models.

Our statistical results of prediction accuracies computed across all K-fold cross-
validation (training) and unknown data tests for Introduction to Programming yielded
good results (Tables 5 and 6). That is, it is possible to identify at-risk students in the first
four weeks, based on student prior programming knowledge, problem solving skills, and
formative assessment results. Hence, these results answered our RQ1. The overall model
prediction accuracy and at-risk prediction accuracy of the top three models (year 2016)
selected for Introduction to Programming were very good and congruent with single
feature based model results (Fig. 3 and Table 5). In addition, the unknown data test
results (year 2017) reveal that the models selected based on high prediction accuracies
can be proposed as early warning systems for Introduction to Programming (Table 6).

On the other hand, the unknown dataset test results on identifying at-risk students
for Algorithms and Programming produced insignificant results (Table 6) and were not
congruent with results of models tested with single features (Fig. 4). These results raised
the following points. First, unlike for Introduction to Programming, the grade computa-
tion for Algorithms and Programming is slightly different. The final exam need not be
sat to pass Algorithms and Programming, which would have influenced the predictive
performance of the models (#28-#30). Second, registration to attend the final exam is
allowed as late as the last lecture week, which would have affected the student per-
formance in the final exam. Moreover, if a student did not secure 50% or more in the
final exam they were still able to attain at least a grade 1 score, by securing 80%-94%
in the formative assessment tasks. Third, as per standard rules, students could opt to
sit the final exam to improve their final course grades despite the scores* they attained

16 A. K. Veerasamy et al.

in selected formative assessments. However, post preliminary anecdotal results showed
that students who secured adequate scores in formative assessments (*50% or more but
below 95%), who were therefore eligible to sit for final exam, achieved higher grades
than students who achieved grade 1 or 2 via formative assessment scores. Therefore,
the differences between student final exam grades and grades achieved through selected
formative assessment scores warrants further analysis, in order to improve the model’s
predictive performance for Algorithms and Programming.

Moreover, these results persuaded us to redefine our research question, RQ2: (i)
Might our proposedmodelwith these predictor variables be deployed in an earlywarning
system to support instructors and students? (ii)Might our proposedmodel be transformed
as a generic predictive model for other courses that with continuous formative assess-
ments and final exam, to predict student performance early in the semester? As noted,
several studies attempted to establish early warning systems to identify at-risk students
and allow for more timely pedagogical interventions [46–48]. In the same vein, we also
attempted to develop a model with the aim of using it for all introductory programming
courses. The at-risk prediction accuracy for at-risk student training and unknown data
test results (81% and 94%) (#8) of this study supports the contention that our proposed
model may be deployed as an early warning system to predict students who need early
assistance. In addition, these (Tables 5 and 6) results also revealed that, it is possible to
predict student who need support early based on problem-solving skills and formative
assessment (demo exercise) scores, secured in the first four weeks of the semester (Fig. 3
and Table 6). Hence, these results imply that our model may be adapted as an early warn-
ing system in programming courses assessed with continuous assessment and final exam
components, to predict student academic performance and to identify students who need
support.

The model may be used by instructors to categorize students as, for example, “at-
risk”, “marginal”, “average”, “good”, “very good”, and “excellent”, based on predicted
final exam grades, and accordingly to reshape their pedagogical practices. In addition,
instructors may deploy this model as part of their student academic monitoring system
to get actionable data for analysis and to support students in personalised ways. For
example, after identifying less-motivated learners via thismodel, instructorsmay counsel
them about strategies to improve their performance.

Students too may use the model(s) in the following ways. First, the results of these
modelsmaybe delivered as real-time feedback to learners, to persuade or encourage them
to devote attention to specific learning activities, in order to improve their performance
before they reach a critical juncture. Second, students may perceive these results as
ongoing performance indicators to shore up their own learning goals to improve learning
and academic performance. Third, the detection of early warning signs could persuade
students towards alleviating their learning. Therefore, we conclude that the results of
these models may help students to alter their learning behaviors, and to better understand
their performances, shortcomings and successes.

As noted earlier, most previous studies to develop predictive models reported that
their models have generalizability problems, due to the following factors: (a) unsuitabil-
ity of research methods due to technical, cultural, or ethical reasons; (b) course specific
predictor variables for the model developed; and (c) cognitive factors. Keeping these

Predictive Models as Early Warning Systems 17

problems in mind, we developed our model with transformable predictor variables to
test for other courses and on unknown data. Take first the student perceived general
problem-solving skills. Many studies have reported the importance of measuring stu-
dent general problem-solving abilities [16, 55]. Our research findings (Fig. 3) also sug-
gested that being aware of the problem-solving skills of incoming freshmen would help
instructors to review their problem-solving based instructional methods, to develop and
to enhance students’ metacognitive, computational thinking skills [53]. Based on these
results, we recommend that student perceived problem-solving skills should most likely
be included as one of the predictive variables in mathematical models for predicting
student performance.

Consider now the second variable, prior programming knowledge. Although student
perceived problem-solving ability plays an important role in student learning, prior
subject knowledge remains the central variable in student learning and performance
[56]. In addition, the results of this study and our past work [54] suggest that prior
knowledge can be considered as appropriate for predicting at-risk students (Tables 5 and
6). However, our unknown data test results of models (#28-#30) produced insignificant
results, which needs further analysis. Despite these mixed results this variable may be
adapted to predict student academic performance.

As noted, predictive models developed for predicting student performance have at
least one assessment task as a predictor variable. The overall prediction accuracy of
the models (Tables 5 and 6) confirms that a formative assessment task can have pre-
dicting influence of student performance, early in the semester. Therefore, we con-
clude that formative assessment tasks may be considered as a significant predictor for
measuring student progress early. However, the selection of predictor variables associ-
ated with assessment tasks varies from course to course. For example, in this study we
chose homework and demo/tutorial exercises for our predictive model, based on earlier
research findings [31] to predict student performance. However, our feature selection
and unknown data test results suggest that the models developed with in-classroom
assessments (DE/TT) have higher prediction accuracies (MPA, ATSE and ATSP) than
models developed with outside-classroom assessments, a result that needs further analy-
sis. Therefore, it is important to select suitable or discipline specific formative assessment
tasks to measure student-learning outcomes, to track ongoing performance of students.
However, it should be noted that courses that do not have continuous assessments and
only a final exam may use cognitive factors only, as predictor variables as post analysis.

Based on the past research findings and results of our study (Fig. 3 and Tables 5 and
6 for Introduction to Programming) we have argued that our proposed generic predictive
model may be deployed for other programming and non-programming courses, if the
goal of instructor is to predict student performance and to identify lowmotivated learners
early in the semester.

18 A. K. Veerasamy et al.

Fig. 5. Generic predictive model for student performance prediction

6 Conclusions, Limitations and Future Work of the Study

Our research study showed that student perceived problem-solving skills, prior program-
ming knowledge, and formative assessment tasks were significant in predicting student
final exam grades for Introduction to Programming. However, the unknown dataset test
results for Algorithms and Programming were statistically insignificant. The results
showed that student perceived problem-solving skills, prior programming knowledge
and formative assessments, captured in a predictive model, was a good fit of the data.
Furthermore, the models developed with a combination of in-class assessment variables
and cognitive features yielded better at-risk prediction accuracies than other models,
developed with a combination of take-home assessment variables. The overall success
of the models was good, which persuaded us to update our research questions (Tables 5
and 6). The model may be used as an early warning system for instructors to identify
students needing early assistance. Therefore, we presented the generic form of predictive
model (Fig. 5), and how thismodel could be applied and developed in future research, for
early identification of at-risk students in other courses that use continuous assessment
tasks and a final exam. The results of the study will be used in future work, to build
an accurate predictive model for student academic performance in other programming
courses.

Despite our promising results, this study has several limitations that influence the
overall generalizability and interpretation of the findings. First, the data used in this
study was collected within one institution. From a statistical point of view, it is true that
sample size influences research outcomes. However, a number of studies on predictive
models suggest that sample size for analysis is often determined by the research question
or the analysis intended, although bigger samples are better to define the reliability and
validity of the research [57]. As such, in future we plan to include data from multiple
courses collected over multiple semesters. Second, although this study used multiclass
classification, we mainly focused on examining at-risk class accuracies and did not
analyse other classes of the dataset prediction accuracies individually. However, as noted
(Fig. 1 and 2), all other classes (grades 2 to 5) were considered as not-at-risk for this
study to proceed further. Third, we measured student prior programming knowledge
on a broad level. Therefore, it is unknown whether the participants responded honestly
to the survey. Fourth, although the average prediction accuracy on test data was good,
the predictive performance of the model might be influenced by the course assessment
nature, which means that the resulting model may not work well to predict unknown

Predictive Models as Early Warning Systems 19

data. Fifth, we used the first four weeks of assessment for analysis. However, learning
is dynamic and so a learner might do well in the beginning weeks of the semester and
may not perform well in second half of the semester. Hence, there is a need to monitor
and track student progress throughout the course period, in order to be better informed
about providing continuous academic support. Therefore, we plan to extend our study to
predict student performance based on assessment results collected in different weeks of
the course, to determine if these results better inform instructors to monitor and evaluate
student-learning outcomes. For example, if the duration of the course period is 12 weeks,
then the prediction will be deployed in three cycles based on the first, middle, and final
four weeks of the course.

In spite of these limitations, we contend that our models can be applied to other
courses with continuous formative assessments and a final exam to predict student
performance. Moreover, in this work, we proposed a prediction methodology using
Naive Bayes classification for early identification of students that need support. This
generic model introduced in this research paper provides a guide for future work. For
example, to identify at-risk students in accounting, the predictor variables used in this
study may be adapted as generic predictors to fit course specific data mining predictive
models, for student performance. That is, prior programming knowledge can be trans-
formedas prior knowledge in accounting tomeasure student prior accountingknowledge,
with selected formative assessment tasks to predict student performance. The possible
research, notionally, is predicting accounting student performance using prior accounting
knowledge and selected ongoing formative assessment task results. Similarly, problem-
solving skills may be used to measure student perceived problem-solving abilities of
accounting students. Moreover, this model may be deployed to seek answers to the fol-
lowing research questions: (i) Does prior knowledge influence student learning? (ii) How
does student prior knowledge in the topic/subject impact classroom teaching and learn-
ing? (iii) What kind of support activities might be provided to at-risk students identified
by this model? (iv) Does the prediction accuracy of the model vary significantly based
on the predictive algorithms used? Apart from the above, the proposed model of this
study might be used for further research including some more significant factors that are
more widely used in predictive models for predicting student performance. For exam-
ple, psychological variables such as self-belief, self-regulated learning and self-efficacy,
as well as and educational variables, such as prior GPA, and other academic variables
available obtainable from the LMS may be included to enhance the prediction accuracy
of model.

Acknowledgments. The authors wish to thank all members of ViLLE research team group and
Department of Future technologies, University of Turku, for their comments and support that
greatly improved the manuscript. This research was supported fully by a University of Turku,
Turku, Finland.

References

1. Ali, A., Smith, D.: Teaching an introductory programming language. J. Inf. Technol. Educ.:
Innov. Pract. 13, 57–67 (2014)

20 A. K. Veerasamy et al.

2. Holvikivi, J.: Conditions for successful learning of programming skills. In: Reynolds, N.,
Turcsányi-Szabó, M. (eds.) KCKS 2010. IAICT, vol. 324, pp. 155–164. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15378-5_15

3. Watson, C., Li, F.W.B. Failure Rates in introductory programming revisited. In Proceedings of
the 2014 Conference on Innovation & Technology in Computer Science Education (Uppsala
2014), pp. 39–44. Association of Computing Machinery (2014)

4. Bennedsen, J., Caspersen,M.: Failure rates in introductory programming: 12 years later. ACM
Inroads 10(2), 30–36 (2019)

5. Castro-Wunsch, K., Ahadi, A., Petersen, A.: Evaluating neural networks as a method for iden-
tifying students in need of assistance. In: Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (Seattle 2017), pp. 111–116. ACM (2017)

6. Conijn, R., Snijders, C., Kleingeld, A., Matzat, U.: Predicting student performance fromLMS
data: a comparison of 17 blended courses using moodle LMS. IEEE Trans. Learn. Technol.
10(1), 17–29 (2017)

7. Liao, S.N., Zingaro, D., Alvarado, C., Griswold, W.G., Porter, L.: Exploring the value of dif-
ferent data sources for predicting student performance inmultiple CS courses. In: Proceedings
of the 50th ACM Technical Symposium on Computer Science Education, Minneapolis, MN,
USA, pp. 112–118. ACM (2019)

8. Pawlowska, D.K., Westerman, J.W., Bergman, S.M., Huelsman, T.J.: Student personality,
classroom environment, and student outcomes: a person–environment fit analysis. Learn.
Individ. Differ. 36, 180–193 (2014)

9. Costa, E.B., Fonseca, B., Santana, M.A., Araújo, F.F., Rego, J.: Evaluating the effectiveness
of educational data mining techniques for early prediction of students’ academic failure in
introductory programming courses. Comput. Hum. Behav. 73, 247–256 (2017)

10. Roberts, S.A.: Parsimonious modelling and forecasting of seasonal time series. Eur. J. Oper.
Res. 16, 365–377 (1984)

11. Vandekerckhove, J., Matzke, D., Wagenmakers, E.-J.: Model comparison and the principle
of parsimony. In: Busemeyer, J.R., et al. (eds.) The Oxford Handbook of Computational and
Mathematical Psychology. Oxford University Press, New York (2015)

12. D’zurilla, T.J., Nezu, A.M., Maydeu-Olivares, A.: Social problem solving: theory and assess-
ment. In: Chang, E.C., et al. (eds.) Social problem Solving: Theory, Research, and Training.
American Psychological Association, Washington, DC (2004)

13. White, H.B., Benore, M.A., Sumter, T.F., Caldwell, B.D., Bell, E.: What skills should stu-
dents of undergraduate biochemistry and molecular biology programs have upon graduation?
Biochem. Mol. Biol. Educ. 41(5), 297–301 (2013)

14. Kappelman, L., Jones, M.C., Johnson, V., McLean, E.R., Boonme, K.: Skills for success at
different stages of an IT professional’s career. Commun. ACM 59(8), 64–70 (2016)

15. Heppner, P.P., Krauskopf, C.J.: An information-processing approach to personal problem
solving. Counsell. Psychol. 15(3), 371–447 (1987)

16. Adachi, P.J.C., Willoughby, T.: More than just fun and games: the longitudinal relationships
between strategic video games, self-reported problem solving skills, and academic grades. J.
Youth Adolesc. 42(7), 1041–1052 (2013)

17. Bester, L.: Investigating the problem-solving proficiency of second-year quantitative tech-
niques students: the case of Walter Sisulu University. University of South Africa, Pretoria
(2014)

18. Marion, B., Impagliazzo, J., St. Clair, C., Soroka, B., Whitfield, D.: Assessing computer
science programs: what have we learned. In: SIGCSE 2007 Proceedings of the 38th SIGCSE
Technical Symposium onComputer Science Education, Covington, Kentucky, USA, pp. 131–
132. ACM (2007)

19. Ring, B.A., Giordan, J., Ransbottom, J.S.: Problem solving through programming: motivating
the non-programmer. J. Comput. Sci. Coll. 23(3), 61–67 (2008)

https://doi.org/10.1007/978-3-642-15378-5_15

Predictive Models as Early Warning Systems 21

20. Uysal, M.P.: Improving first computer programming experiences: the case of adapting a web-
supported and well- structured problem-solving method to a traditional course. Contemp.
Educ. Technol. 5(3), 198–217 (2014)

21. Svinicki, M.: What they don’t know can hurt them: the role of prior knowledge in learning.
POD network, Nederland, Colorado (1993)

22. Hailikari, T.: Assessing university students’ prior knowledge implications for theory and
practice. Helsinki (2009)

23. Watson, C., Li, F.W.B., Godwin, JL.: No tests required: comparing traditional and dynamic
predictors of programming success. In: Proceedings of the 45th ACM Technical Symposium
on Computer Science Education, pp. 469–474. ACM (2014)

24. Longi, K.: Exploring factors that affect performance on introductory programming courses.
University of Helsinki, Helsinki (2016)

25. Hsu, W.C., Plunkett, S.W.: Attendance and grades in learning programming classes. In:
Proceedings of the Australasian Computer ScienceWeekMulti Conference, Canberra (2016)

26. Sabin,M., Alrumaih, H., Impagliazzo, J., Lunt, B., Zhang,M.: Information technology curric-
ula 2017: curriculumguidelines for baccalaureate degree programs in information technology.
ACM and IEEE, New York (2017)

27. Bloom Benjamin, S., Hastings, J.T., Madaus, G.F.: Handbook on Formative and Summative
Evaluation of Student Learning. McGraw-Hill Book Company, New York (1971)

28. Lau, A.M.S.: ‘Formative good, summative bad?’ – a review of the dichotomy in assessment
literature. J. Furth. High. Educ. 40(16), 509–525 (2016)

29. VanDeGrift, T.: Supporting creativity and user interaction in CS 1 homework assignments. In:
46th ACM Technical Symposium on Computer Science Education, Kansas City, pp. 54–59.
ACM (2015)

30. Rajoo, M., Veloo, A.: The relationship between mathematics homework engagement and
mathematics achievement. Aust. J. Basic Appl. Sci. 9(28), 136–144 (2015)

31. Veerasamy, A.K., D’Souza, D., Lindén, R., Kaila, E., Laakso,M.-J., Salakoski, T.: The impact
of lecture attendance on exams for novice programming students. Int. J. Mod. Educ. Comput.
Sci. (IJMECS) 8(5), 1–11 (2016)

32. Fan, H., Xu, J., Cai, Z., He, J., Fan, X.: Homework and students’ achievement in math and
science: A 30-year meta-analysis, 1986–2015. Educ. Res. Rev. 20, 35–54 (2017)

33. Fujinuma, R., Wendling, L.: Repeating knowledge application practice to improve student
performance in a large, introductory science course. Int. J. Sci. Educ. 37(17), 2906–2922
(2015)

34. Thong,L.W.,Ng, P.K.,Ong, P.T., Sun,C.C.: Performance analysis of students learning through
computer-assisted tutorials and item analysis feedback learning (CATIAF) in foundation
mathematics. Herald NAMSCA, vol. 1, p. 1 (2018)

35. Ahadi, A., Lister, R., Haapala, H., Vihavainen, A.: Exploring machine learning methods to
automatically identify students in need of assistance. In: Proceedings of the Eleventh Annual
International Conference on International Computing EducationResearch, Omaha,Nebraska,
USA, pp. 121–130. ACM (2015)

36. Porter, L., Zingaro, D., Lister, R.: Predicting student success using fine grain clicker data. In:
Proceedings of theTenthAnnualConference on InternationalComputingEducationResearch,
Glasgow, Scotland, United Kingdom, pp. 51–58. ACM (2014)

37. Quille, K., Bergin, S.: Programming: predicting student success early in CS1. A re-validation
and replication study. In: Proceedings of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, Larnaca, Cyprus, pp. 15–20. ACM (2018)

38. Liao, S., Zingaro, D., Thai, K., Alvarado, C., Griswold, W., Porter, L.: A robust machine
learning technique to predict low-performing students. ACM Trans. Comput. Educ. 19(3),
18:1–18:19 (2019)

22 A. K. Veerasamy et al.

39. Liao, S.N., Zingaro, D., Laurenzano, M.A., Griswold, W.G., Porter, L.: Lightweight, early
identification of at-risk CS1 students. In: Proceedings of the 2016 ACMConference on Inter-
national Computing Education Research, Melbourne, VIC, Australia, pp. 123–131. ACM
(2016)

40. Hamoud, A.K., Humadi, A.M., Awadh, W.A., Hashim, A.S.: Students’ success prediction
based on Bayes algorithms. Int. J. Comput. Appl. 178(7), 6–12 (2017)

41. Devasia, T., Vinushree, T.P., Hegde, V.: Prediction of students performance using educational
data mining. In: 2016 International Conference on Data Mining and Advanced Computing
(SAPIENCE), Ernakulam, pp. 91–95. IEEE (2016)

42. Agrawal, H., Mavani, H.: Student performance prediction using machine learning. Int. J. Eng.
Res. Technol. (IJERT) 4(3), 111–113 (2015)

43. Bergin, S., Mooney, A., Ghent, J., Quille, K.: Using machine learning techniques to predict
introductory programming performance. Int. J. Comput. Sci. Softw. Eng. 4(12), 323–328
(2015)

44. Borra, S., Di Ciaccio, A.: Measuring the prediction error. A comparison of cross-validation,
bootstrap and covariance penalty methods. Comput. Stat. Data Anal. 54, 2976–2989 (2010)

45. Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an “early warning system” for
educators: a proof of concept. Comput. Educ. 54, 588–599 (2009)

46. Krumm, A., Joseph Waddington, R., Teasley, S., Lonn, S.: A learning management system-
based earlywarning system for academic advising in undergraduate engineering. In: Larusson,
J.A., White, B. (eds.) Learning Analytics, pp. 103–119. Springer, New York (2014). https://
doi.org/10.1007/978-1-4614-3305-7_6

47. Arnold, K.E., Pistilli, M.D.: Course signals at Purdue: using learning analytics to increase
student success. In: Proceedings of the 2nd International Conference on Learning Analytics
and Knowledge, Vancouver, British Columbia, Canada, pp. 267–270. ACM (2012)

48. Pistilli, M., Willis, J., Campbell, J.: Analytics through an institutional lens: definition, theory,
design, and impact. In: Larusson, J.A., White, B. (eds.) Learning Analytics, pp. 79–102.
Springer, New York (2014). https://doi.org/10.1007/978-1-4614-3305-7_5

49. Ya-Han, H., Lo, C-.L., Shih, S-.P.: Developing early warning systems to predict students’
online learning performance. Comput. Hum. Behav. 36, 469–478 (2014)

50. Pedraza, D.A.: The relationship between course assignments and academic performance: an
analysis of predictive characteristics of student performance. Texas Tech University (2018)

51. Marbouti, F., Diefes-Dux, H.A.,Madhavan, K.:Models for early prediction of at-risk students
in a course using standards-based grading. Comput. Educ. 103, 1–15 (2016)

52. Heppner, P.P., Petersen, C.H.: The development and implications of a personal problem-
solving inventory. J. Counsell. Psychol. 29(1), 66–75 (1982)

53. Veerasamy, A.K., D’Souza, D., Lindén, R., Laakso, M.-J.: Relationship between per-
ceived problem-solving skills and academic performance of novice learners in introductory
programming courses. J. Comput. Assist. Learn. 35(2), 246–255 (2019)

54. Veerasamy, A.K., D’Souza, D., Linden, R., Laakso, M.-J.: The impact of prior programming
knowledge on lecture attendance andfinal exam. J. Educ. Comput. Res. 56(2), 226–253 (2018)

55. Özyurt, Ö.: Examining the critical thinking dispositions and the problem solving skills of
computer engineering students. Eurasia J. Math. 11, 2 (2015)

56. Chakrabarty, S., Martin, F.: Role of prior experience on student performance in the introduc-
tory undergraduate CS course. In: SIGCSE 2018 Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, Baltimore, Maryland, USA, pp. 1075–1075.
ACM (2018)

57. Austin, P., Steyerberg, E.: The number of subjects per variable required in linear regression
analyses. J. Clin. Epidemiol. 68(6), 627–636 (2015)

https://doi.org/10.1007/978-1-4614-3305-7_6
https://doi.org/10.1007/978-1-4614-3305-7_5

	Predictive Models as Early Warning Systems: A Bayesian Classification Model to Identify At-Risk Students of Programming
	1 Introduction
	2 Related Work
	2.1 Predictors of Student Performance
	2.2 Predictive Data Mining Modelling for Student Performance in Computing Education
	2.3 Predictive Modelling with Naive Bayes Classification
	2.4 Early Warning Systems (EWS) in Education

	3 Research Methodology
	3.1 Description of the Course and Data Sources
	3.2 Instruments and Assessments
	3.3 Predictive Model

	4 Data Analysis and Results
	5 Discussion
	6 Conclusions, Limitations and Future Work of the Study
	References

