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Abstract

Traditionally measured skills with arithmetic are not related to later algebra success at levels
that would be expected given the close conceptual relation between arithmetic and algebra. However,
adaptivity with arithmetic may be one aspect of arithmetic competences that can account for additional
variation in algebra attainment. With this in mind, the present study aims to present evidence for the
existence and relevance of a newly acknowledged component of adaptivity with arithmetic, namely,
adaptive number knowledge. In particular, we aim to examine whether there are substantial individual
differences in adaptive number knowledge and to what extent these differences are related to arithmetic
and pre-algebra skills and knowledge. Adaptive number knowledge is defined as the well-connected
knowledge of numerical characteristics and relations.  A large sample of 1065 Finnish late primary
school students completed measures of adaptive number knowledge, arithmetic conceptual knowledge,
and arithmetic fluency. Three months later they completed a measure of pre-algebra skills. Substantial
individual differences in adaptive number knowledge were identified using latent profile analysis. The
identified profiles were related to concurrent arithmetic skills and knowledge. As well, adaptive
number knowledge was found to predict later pre-algebra skills, even after taking into account
arithmetic conceptual knowledge and arithmetic fluency. These results suggest that adaptive number
knowledge is a relevant component of mathematical development, and may help account for disparities
in algebra development.

Keywords: adaptive number knowledge; algebra; pre-algebra; mathematical development; latent profile
analysis
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1. Introduction

In the transition from arithmetic to algebra, it is yet unclear exactly what types of basic skills
are needed for later success. Traditional skills of calculation – the rapid algorithmic solving of typical
problems – have been deemphasized in many circles of mathematics education. Indeed, it is not clear
that basic whole-number arithmetic calculation skills (e.g. 5 + 12 = ?) have a strong impact on later
success with algebra when compared with other aspects of mathematical development such as rational
number knowledge (Siegler et al., 2012), despite their logical connection.

Instead, many researchers of children’s mathematical development have turned their concern to
an alternate form of mathematical knowledge and skills. This new form sits in contrast to the static and
calcified knowledge, with little transferability to new situations, referred to as routine expertise.
Instead, a more malleable and interconnected set of knowledge and skills that is easily applied to new
situations, referred to as adaptive expertise, is desired (Baroody, 2003; Hatano & Oura, 2003).

Within the frames of whole-number arithmetic, a core feature of adaptive expertise is adaptivity
with arithmetic problem solving strategies. Adaptivity (which this study will focus on) refers to
choosing and using the arithmetic problem solving strategy that is the most situationally-appropriate
strategy for that person who is solving that particular problem (Verschaffel, Luwel, Torbeyns, & Van
Dooren, 2009). Adaptivity with arithmetic has been linked with later success with mathematics,
including algebra (Kieran, 1992). In particular, one cornerstone of adaptivity has been well-researched
over the past twenty years, namely, the flexible switching between multiple strategies (e.g. Lemaire &
Siegler, 1995; Torbeyns, Ghesquière, & Verschaffel, 2009). However, given that flexibility in terms of
strategy choice may only make up a portion of what entails full adaptivity (Threlfall, 2009; Verschaffel
et al., 2009), it is just as important to look more generally at what makes adaptivity with whole number
arithmetic possible. This more general view of adaptivity with whole number arithmetic may also
include the well-connected knowledge of numerical characteristics and relations, or adaptive number
knowledge (McMullen et al., 2016). Thus, the present study aims to examine the nature of individual
differences in adaptive number knowledge in late primary school students and how adaptive number
knowledge is related to arithmetic and pre-algebra knowledge and skills.

1.1. Adaptive number knowledge

If adaptivity with arithmetic requires the choosing of the most appropriate strategy at the time,
for that person, one must be able to flexibly switch between numerous problem solving strategies
(Siegler & Lemaire, 1997). However, one must also be able to recognize the relevant numerical
characteristics and relations within the problem that would suggest the most appropriate strategy. The
well-connected network of numerical characteristics and relations that defines adaptive number
knowledge is required for this recognition to happen (Threlfall, 2009). Previously, procedural
flexibility has been suggested to be a necessary, but not sufficient, component of adaptivity (Threlfall,
2009; Verschaffel et al., 2009).  Recently, McMullen and colleagues (2016) have argued that the
advanced representation of numerical relations, which constitutes adaptive number knowledge, is a key
requirement for adaptivity with arithmetic problem solving in varying situations.
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The existence of a set of solution strategies to be drawn from when confronted by an arithmetic
problem has been called into question (Threlfall, 2002, 2009). As an alternative, it is suggested that
when students are faced with an arithmetic problem they formulate a solution strategy in-situ. Research
in various domains of mathematical development suggest that there are large individual differences in
the types of knowledge that students rely on, with some more reliant on procedural knowledge and
others relying more on conceptual knowledge (Bempeni & Vamvakoussi, 2015; Hallett, Nunes, &
Bryant, 2010). Within the realm of adaptivity with arithmetic, it is also possible that students rely on
these different meta-strategies in different ways, with some students more reliant on choosing from a
set of existing strategies, while others are actively using idiosyncratic strategies developed during the
problem solving process.

With the in-situ creation of strategies, it is clear that one must first recognize the different
relations and characteristics of the numbers that exist in the problem in order to determine the most
effective solution strategy. Expert mathematicians were found to rely on “nice” numbers that had
specific features and relations (such as the proximity of 59 to a multiple of 20) instead of standard
algorithms when mentally solving arithmetic problems (Dowker, 1992). Likewise, even if these
solution strategies come from an existing repertoire, as suggested by some research (Hickendorff, van
Putten, Verhelst, & Heiser, 2010; Torbeyns, de Smedt, Ghesquière, & Verschaffel, 2009), the adaptive
choice of the most appropriate strategy still requires recognizing the characteristics of the numbers
present (e.g. numbers close each other across decades, like in 41 - 39). For example, there are larger
individual differences in flexible strategy use with adaptive composition (e.g. 4 + 7 + 6 = 10 + 7 = 17)
than other strategies (Canobi, Reeve, & Pattison, 2003). One reason for this may be the need to focus
on the numerical relations in order to recognize the opportunity to use this strategy. In general, the lack
of connection between students’ knowledge of potential solution strategies and their actual use (Blöte,
Klein, & Beishuizen, 2000), especially when not explicitly guided to do so (Gaschler, Vaterrodt,
Frensch, Eichler, & Haider, 2013), suggests that it is not sufficient to know about a strategy. Instead,
students must be able to independently recognize when a particular strategy is appropriate, in relation
to their own skills with that strategy, the socio-cultural context in which the problem exists, and the
numerical features of that particular problem (Verschaffel et al., 2009).

1.2. Arithmetic knowledge and skills

There are two components of adaptive number knowledge that have been roughly defined
previously, ‘numerical knowledge and skills’ and ‘arithmetic calculation knowledge and skills’
(McMullen et al., 2016). These closely connected features of mathematics learning inform the extent
and interconnectedness of students’ knowledge of numerical characteristics and relations, which
describes their adaptive number knowledge.

The numerical knowledge and skills that impact a students’ adaptive number knowledge include
knowledge of the natural number system, including its base-ten structure. This includes the ability to
recognize important and useful arithmetical relations between numbers and determine the key
characteristics of numbers that would be useful for problem solving (Geary, Hoard, Byrd-Craven, &
DeSoto, 2004). For example, these relations and characteristics include the amount of factors a number
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has (e.g. 24 has more factors than 25), its proximity to other useful or “nice” numbers (e.g. 123 is close
to 112), and estimates of multiples of the number. In particular, precision in magnitude representation
and estimation is expected to play a key role in adaptive number knowledge (Gallistel & Gelman,
1992; Siegler & Lortie-Forgues, 2014). In general, such skills are closely related to advanced number
sense, as defined in much work on the later development of mathematical competences (Mou et al.,
2016). Adaptive number knowledge expands this notion by integrating numerical skills and knowledge
with calculation skills and knowledge.

The relation between adaptive number knowledge and students’ arithmetic calculation
knowledge and skills has been tentatively established in a previous study (McMullen et al., 2016). In
particular, ninth graders’ arithmetic fluency and conceptual knowledge have been found to be related to
their adaptive number knowledge. Arithmetic fluency reflects the ability to rapidly work with the four
arithmetic operations in a conventional form, and can be seen as a procedural fluency that mainly
requires recall or algorithmic solution strategies (Rittle-Johnson, Siegler, & Alibali, 2001; Schneider,
Rittle-Johnson, & Star, 2011). This ability to rapidly and accurately complete one-step arithmetic
problems informs adaptive number knowledge by allowing for the quick assessment of potential
arithmetic relations between numbers, for example in recognizing useful multiples (e.g. 12 and 3 are
related through 3 x 4 = 12). Arithmetic conceptual knowledge – including knowledge of the order of
operations, the commutativity principle, and the associativity principle – has also been shown to be
related to adaptive number knowledge (McMullen et al., 2016). In order to have strong adaptive
number knowledge, students must know the allowances and constraints of how numbers and operations
can be used in arithmetic. This is particularly true with more complex arithmetic relations, such as
using both additive and multiplicative operations to relate numbers (e.g. 30 • 2 – 1 = 59).

1.3. Adaptive Number Knowledge and Pre-algebra Skills

Previous research suggests that there is a relation between students’ adaptive number
knowledge and their arithmetic fluency and knowledge (McMullen et al., 2016). Similarly, procedural
flexibility with algebra has been found to be related to both procedural fluency and conceptual
knowledge (Schneider et al., 2011). It has been suggested that procedural flexibility may allow for
more successful transfer to novel situations (Carpenter, Franke, Jacobs, Fennema, & Empson, 1998;
Star & Rittle-Johnson, 2008). This relation hints at the possibility that adaptive number knowledge may
be related to pre-algebra skills (cf. Kieran, 1992). While the term pre-algebra has no widely agreed
definition, in this article we operationalize it as including tasks where students have to deal with
equivalence and solve for unknown numbers (Herscovics & Linchevski, 1994: McNeil & Alibali,
2005). Having well developed adaptive number knowledge suggests being able to manipulate
arithmetic relations in complex ways, often using inverse and multi-step relations. These skills are
similar to what is need to be able to solve for unknowns in basic algebraic sentences. Taking the above
example of the relation between 12 and 3, having well developed adaptive number knowledge would
suggest being able to see numbers as a system of relations and recognize not only what 12/3 is, but also
what times 3 equals 12, and 12 divided by what equals 3 (and knowledge how these three relations are
related to each other).
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It has been argued that the transition from arithmetic thinking to algebraic thinking requires
similar shifts in thought processes than other major transitions in mathematics (Carraher, Schliemann,
& Brizuela, 2001). This cognitive gap may cause particular difficulties with understanding algebra, as
thinking algebraically requires considering relations instead of quantities (Nunes, Bryant, & Watson,
2006). However, students have been shown to be successful with solving missing-value problems
before formal algebra instruction, when the missing values are not represented as an “unknown”
(Herscovics & Linchevski, 1994). Thus, others have argued that algebra learning is not constrained by
readiness defined developmentally, but by a lack of preparation for reasoning algebraically (Carraher,
Schliemann, Brizuela, & Earnest, 2006). The problem is that traditional arithmetic instruction is
focused too narrowly on computation that limits the understanding of relations between numbers and
operations that are necessary for algebraic reasoning (Schliemann, Carraher, & Brizuela, 2006).

It is precisely these numerical and operational relations that are expected to unify adaptive
number knowledge and algebraic reasoning. Anghileri and colleagues (2002) found that when students
were given the opportunities to explore division calculation strategies on their own they were able to
show  signs  of  algebraic  thinking.  Likewise,  the  use  of  more  mathematically  advanced  mental
calculation strategies was linked with better skills with algebraic symbols (Britt & Irwin, 2008). These
results suggest that that the role of relational thinking in algebra, as opposed to a calculational or
operational approach (McNeil, Rittle-Johnson, Hattikudur, & Petersen, 2010; Nunes et al., 2006), is
strongly related to the role of numerical characteristics and relations in our view of adaptive number
knowledge. Thus, it is expected that adaptive number knowledge will be related to pre-algebra skills,
especially in solving missing-value problems, which require a more advanced understanding of
arithmetic operations and having a relational view of equations (e.g. McNeil et al., 2010).

1.4. The Present Study

There has been a long tradition of examining procedural flexibility in the frames of adaptivity
with arithmetic problem solving (Heinze, Star, & Verschaffel, 2009; Hickendorff et al., 2010; Siegler
& Lemaire, 1997; Torbeyns, Ghesquière, et al., 2009). While these studies have been successful in
outlining the calculation procedure components of adaptivity (conceptualized as flexibility), there
seems to be a need to also examine the nature of the numerical knowledge that is required for
adaptivity with arithmetic. While there is some evidence for individual differences in the spontaneous
use of more adaptive problem solving strategies (Gaschler et al., 2013; Haider, Eichler, Hansen,
Vaterrodt, & Frensch, 2014), these studies rely on relatively broad measures, basing their conclusions
of strategy use on overall differences in the speed of task completion over many items. As well, the
relations between components of early adaptivity with arithmetic, such as procedural flexibility or
adaptive number knowledge, and algebra skills have not been systematically examined.

Previous research suggests that individual differences in adaptive number knowledge can be
captured with a task in which participants create arithmetic sentences using a set of given numbers to
equal a target number (Brezovszky et al., 2015; McMullen et al., 2016). These individual differences
were found among primary school, lower secondary school, and university students (McMullen et al.,
2016). However, these studies had relatively small samples, which did not allow for broad conclusions
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to be drawn nor robust statistical techniques to be used. The present study aims to further this
examination, by looking at individual differences in adaptive number knowledge in a large sample with
which Latent Profile Analysis can be used to examine the nature of these individual differences. Thus,
the first question the present study aims to answer is: what are the qualitative and/or quantitative
individual differences in late primary school students’ adaptive number knowledge?

The results of previous research suggest that procedural flexibility in mathematics is related to
both procedural skills and conceptual knowledge (Schneider et al., 2011). As well, there is preliminary
evidence that adaptive number knowledge is related to both knowledge of arithmetic concepts and
arithmetic fluency (McMullen et al., 2016), though this evidence is based on a small sample of ninth
grade students. Based on this previous evidence it would be expected that adaptive number knowledge
is a relevant component of arithmetic knowledge and skills. Therefore the second question posed by the
present study is: How are profiles of adaptive number knowledge related to concurrent arithmetic
knowledge and skills in a large sample of primary school students?

Finally, there is little evidence about how features of adaptivity are related to algebra skills and
knowledge. Flexibility with arithmetic procedures has previously been argued to be related to algebra
skills (Kieran, 1992), but to the best of our knowledge, no such studies exist that explicitly test this
link. The nature of adaptive expertise with arithmetic has been argued to be related to more advance
mathematics, especially in transferring knowledge to new contexts (Baroody, 2003; Verschaffel et al.,
2009). The well-connected numerical characteristics and relations needed for strong adaptive number
knowledge may also support pre-algebra reasoning (Nunes et al., 2006). Thus, the final aim of the
present study is to examine how adaptive number knowledge is related to pre-algebra skills by asking:
Are profiles of adaptive number knowledge related to pre-algebra skills, even after taking into account
arithmetic conceptual knowledge and arithmetic fluency?

2. Methods

2.1. Participants

Participants were 1065 fourth to sixth grade primary school students (498 female) from small to
medium urban, suburban, and rural areas in the south of Finland. Participants were recruited to
participate in a large-scale experiment investigating the effects of an educational game on enhancing
adaptive number knowledge. There were 123 fourth graders (Mage=10.18, SD=0.42), 549 fifth graders
(Mage=11.14, SD=0.38) and 393 sixth graders (Mage=12.20, SD=0.45), from a total of 59 classrooms.
All teachers from these classes were volunteers. Participation was voluntary; informed consents from
parents and assent of the students were obtained before data gathering. Ethical guidelines of the
university were followed.

2.2. Procedures

Data from the present study was collected first during the pre-testing before any intervention
was carried out, at the beginning of the spring term 2014. As well, at the final time point, three and a
half months later at the end of the spring term 2014, when all students completed a parallel post-test set
of measures (see Sections 2.3 and 2.4 for more details on similarities between measures). At both time
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points, participants completed paper-and-pencil tests in their regular classrooms, supervised by trained
testers who made use of a timed presentation to ensure uniformity in all testing procedures.

A two-stage staggered experimental design was used in the overall study, in which participants
in the initial control condition completed the intervention after the students in the experimental group.
Participants from both conditions are included in the present study, as they all participated in the
intervention activities at some point in between the pre- and post-tests. During the intervention,
students’ normal mathematics instruction was enriched with a digital mathematics involving the
navigation of a boat through a virtual hundreds-square using arithmetic operations game (for a full
description of the game, see Lehtinen et al., 2015). Average playing time was 5.7 hours (SD = 3.3
hours) during the three month in between the pre- and post-tests.1

2.3. Measures at Pre-test

2.3.1. Adaptive Number Knowledge

Adaptive number knowledge was measured using the Arithmetic Production Task; extensive
details and analysis of this task can be found elsewhere (McMullen et al., 2016). Participants are asked
to form as many valid arithmetic sentences as they can, using a set of five given numbers, which equal
a target number. Participants are told they can use the given numbers and the four arithmetic operations
in any combination and as many times as they want. After an example item, there were four test items
(Table 1). Participants were given 90 seconds to complete each item. Reliability for the total number of
correct answers across the four items was acceptable (Cronbach’s alpha = .70).

Two types of items were used on the task (see McMullen et al., 2016 for a detailed explanation
of item types). First, dense items included a numbers where there were a large amount of arithmetical
relations which can easily be identified between the given and target numbers. Second, sparse items
have a relatively small number of obvious relations between the given and target numbers.

Table 1

Items of the Arithmetic Production Task during Pre- and Post-test.

Item Given Target Type

1 2, 4, 8, 12, 32 = 16 Dense

2 1, 2, 3, 5, 30 = 59 Sparse

3 2, 4, 6, 16, 24 = 12 Dense

4 3, 5, 30, 120, 180 = 12 Sparse

1 Overall time playing the game was not related to any variables used in the present study: ps > .44.
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For the purposes of examining potential qualitative differences in students adaptive number
knowledge participants’ responses were coded as either Simple or Complex. Simple answers were
either solely additive, containing only addition or subtraction, or solely multiplicative, containing only
multiplication or division. Complex answers contained both additive and multiplicative operations (e.g.
both addition and multiplication, 2∙4+8=16). Sum scores for Simple and Complex responses were
calculated for the dense items and sparse items separately.

2.3.2. Arithmetic Fluency

Arithmetic fluency was measured using the Woodcock-Johnson mathematics fluency sub-test
(Woodcock, McGrew, & Mather, 2001). Participants are asked to complete as many single-step basic
arithmetic problems out of a two-page set of 160 items as they can in three minutes. Reliability values
of this instrument in this age range have previously been reported as above .90 (Schrank, McGrew, &
Woodcock, 2001). Test-retest reliability over a five-week period in the present sample shows similar
reliability (Pearson’s correlation = .89).

2.3.3. Arithmetic Conceptual Knowledge

Participants’ arithmetic conceptual knowledge was examined with a collection of multiple-
choice items examining their knowledge of arithmetic concepts (based on corresponding algebra items
from Schneider et al., 2011) and missing-value equation solving. The six arithmetic concept items
covered concepts such as commutativity, associativity, and inverse/complementary operations. The six
missing-value equation problems involved choosing the correct missing number from a two-step
equation (e.g. 6 x __ = 2 x 15; Options; 5, 24, 6, 4). Due to the novel nature of these items, they were
considered to measure students’ arithmetic conceptual knowledge (Rittle-Johnson et al., 2001).
Therefore at Time 1, these items were combined with the Knowledge of arithmetic concept items to
create a general measure of students’ initial arithmetic conceptual knowledge. At Time 1, reliability
was acceptable across all 12 of these items (Cronbach’s alpha = .73).

2.4. Measures at Post-Test

2.4.1. Pre-Algebra skills

Participants completed open-ended versions of similar missing value equivalence problems as
were presented on the pre-test (e.g. 18 ÷ __ = 54 – 48). There were eight items in total on this measure,
which had high reliability (Cronbach’s alpha = .82).

2.5. Analysis

Latent Profile Analysis (LPA) was run using Mplus version 7.0 (Muthén & Muthén, 1998-
2012). LPA was chosen because it can be seen as more useful than other cluster techniques, as it does
not require variables to meet many of the traditional modeling assumptions, such as distributional
normality (Magidson & Vermunt, 2003). The estimation method was maximum likelihood with robust
standard errors (MLR); a full information approach that is able to handle missing-at-random data. The
LPA analyses were carried out as mixture models, in which 1000 and 100 random start values were
used in the first and second steps of model estimation, respectively, to ensure the validity of the
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solution (Geiser, 2013). Model fits were evaluated through a combination of a) statistical indicators
(Nylund, Asparouhov, & Muthén, 2007) and b) substantive theory, in order to determine the most
suitable number of latent classes for the best fitting model. Low values for AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion) indicate a better fit, relative to nested models.
Entropy values that approach 1 signify more certainty in the classification, with a rough cut off of .80
(Collins & Lanza, 2010). Finally, a significant result on the BLRT (Parametric Bootstrapped
Likelihood Ratio Test) supports the k-class solution in comparison with the k–1-class solution. Analysis
of variance tests were run in SPSS version 21.

3. Results

Variance Component Analyses was conducted in order to explore whether there were
substantial classroom level differences in the measures of adatptive number knowledge, arithmetic
fluency, conceptual knowledge, and pre-algebra knowledge. In all cases Intraclass Correlation
Coefficients (ICC) were below the 0.25 threshold indicating that multi-level analysis is not needed
(Bowen & Guo, 2011; Kreft, 1996). The ICC for total correct number of responses on the Arithmetic
Production Task was .10, total correct arithmetic fluency responses was .13, for total correct on the
conceptual knowledge at the pre-test measure the ICC was .14, and post-test pre-algebra knowledge
scores’ ICC was .14.

Table 2
Descriptive statistics for whole sample and by grade level for all measures.
Grade
Level Arithmetic Production Task Responses Arithmetic

Fluency
Conceptual
Knowledge

Pre-Algebra

(Post-test)

Dense
Simple

Dense
Complex

Sparse
Simple

Sparse
Complex

All
8.06

(3.14)

.71

(1.06)a

.79

(1.04)

1.43

(1.29)

70.53

(17.40)

8.41

(2.62)

5.72

(2.28)

4
6.77

(2.70)

.46

(.74)

.62

(.80)

1.17

(1.11)

65.34

(17.82)

7.69

(2.81)

4.81

(2.59)

5
8.22

(3.13)

.79

(1.13)

.80

(1.07)

1.45

(1.30)

70.84

(17.35)

8.54

(2.63)

5.49

(2.27)

6
8.24

(3.20)

.68

(1.05)a

.82

(1.08)

1.50

(1.32)

71.83

(17.09)

8.44

(2.52)

6.31

(2.03)
aSkewness>2 and Kurtosis>7
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Table 2 presents the means and standard deviations for adaptive number knowledge, arithmetic
fluency, and arithmetic conceptual knowledge for the whole sample and by grade-level. Overall, there
remains variability in adaptive number knowledge even within grade level. One-way ANOVAs
indicated grade-level differences in all variables except simple responses on sparse items: Fs (2, 1062)
> 3, ps ≤ .05. Further analyses are now conducted to examine possible qualitative differences in
adaptive number knowledge.

3.1. Profiles of Adaptive Number Knowledge

Based on recommendations (Collins & Lanza, 2010; Nylund et al., 2007), the LPA of adaptive
number knowledge indicated that the five-class model was statistically appropriate while also having
an acceptable entropy value (see Table 3 for a full account of statistical indicators). First, the five-class
model was considered more advantageous because the six-class model had two extremely small classes
(<5% of sample), which is not recommended (Nylund et al., 2007). Thus, the value afforded by the
additional class in the six-class model was considered inconsequential. As well, the additional class
added in the five class model when compared to the four-class model had a strong theoretical
justification, in that it represented those students who had an extremely high number of all types of
correct responses (i.e. the “High” group detailed in the next paragraph).

Table 3
Statistical indicators for the 2 to 8 class LPA models.
Number
of classes

Log-
likelihood

AIC BIC Entropy VLMR
p-
value

Average latent class posterior
probabilities

2 -5627 11296 11400 .89 .20 .97/.87
3 -5496 11048 11188 .75 <.0001 .90/.85/.93
4 -5442 10953 11127 .75 .64 .88/.82/.93/.83
5 -5311 10706 10916 .81 .04 .88/.82/.88/.96/.98
6 -5266 10630 10873 .81 .02 .87/.90/.81/.89/.96/.97
7 -5312 10737 11016 .77 .32 .84/.92/.76/.78/.85/.92/.97
8 -5227 10580 10893 .80 .28 .90/.84/.94/.76/.76/.88/.96/.96

Table 4 outlines the mean adaptive number knowledge responses for the five classes. The
“Basic” group (n=535) had below average values for all response types. The “Simple” group (n=54)
had relatively high simple responses on both the dense and sparse items, but few complex responses.
The “Complex” group (n=158) had above average complex responses on both dense and sparse items,
but few simple responses. The “Strategic” group (n=293) had above average simple responses on dense
items and above average complex responses on the sparse items. The “High” group (n=24) had above
average responses for all response types.
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Table 4
Mean values for the five adaptive number knowledge profiles across response type.

Percent of
sample

Dense
Simple

Dense
Complex

Sparse
Simple

Sparse
Complex

Basic (n=535) 50.2% 6.41 .22 .60 .87
Simple (n=54) 5.1% 10.14 .49 3.63 .71
Complex (n=158) 14.9% 9.00 2.27 .76 2.29
Strategic (n=293) 27.5% 10.32 .49 .65 2.08
High (n=24) 2.3% 9.48 4.89 1.40 2.96

Figure 1 details the mean values for correct responses and complex responses for each item for
the five classes. The mean values for correct responses between the Simple, Complex, and Strategic
groups are relatively similar. However, despite having similar numbers of complex solutions on the
sparse items there is a wide disparity between these three groups with the use of complex solutions on
the dense items (on which more simple solutions were easily identifiable).

-Insert Figure 1 about here-

A chi-squared test indicated a positive association between profile membership and grade-level,
χ2(8)=58.89, p<.001. Standardized adjusted residuals above an absolute value of 2 reveal the profiles
which significantly differ from what would be expected. There was a clear relation between adaptive
number knowledge profile membership and grade level. However, there remained substantial within
grade level differences in profile membership. There were more 4th and 5th grade students (adjusted
residual = 5.2 and 2.6) and less 6th grade students (adjusted residual = -6.1) in the Basic group than
expected by chance. As well, there were less 4th and 5th grade students (adjusted residual = -3.1 and -
3,5) and more 6th grade students (adjusted residual = 5.7) in the Strategic group than would be
expected. Finally, there were less 4th grade students (adjusted residual = -2.2) in the Complex group
than would be expected. There were no substantial differences in the grade-level makeup of the Simple
and High groups, mostly likely due to the small sizes of these  profiles.

3.2. Adaptive number knowledge and arithmetic skills and knowledge

In order to explore the relation between adaptive number knowledge and arithmetic skills and
knowledge two ANCOVAs were run to examine group level differences among the five adaptive
number knowledge profiles in arithmetic fluency and arithmetic conceptual knowledge, while taking
into account grade-level differences. Overall, profile membership and grade-level accounted for 40% of
the variance of arithmetic fluency and 25% of conceptual knowledge. Adaptive number knowledge
profile membership was related to both arithmetic fluency: F(4, 1051)=98.72, p<.001, ηp

2=.27; and
arithmetic conceptual knowledge: F(4, 1051)=44.26, p<.001, ηp

2=.14. Grade level showed weaker
relations with arithmetic fluency: F(2, 1051)=8.54, p<.001, ηp

2=.02; and arithmetical conceptual
knowledge: F(2, 1051)=4.89, p<.01, ηp

2=.01. There was no interaction effect between profile
membership and grade-level.
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-Insert Figure 2 about here-

Planned post-hoc analyses revealed substantial differences between the different profiles.
Figure 2 presents the mean values for arithmetic fluency and conceptual knowledge for the different
adaptive number knowledge profiles. As shown in Figure 3, there were difference in arithmetic fluency
scores between all profiles, and differences in arithmetic conceptual knowledge between most profiles.

-Insert Figure 3 about here-

3.3. Adaptive number knowledge and pre-algebra skills

In order to examine how adaptive number knowledge was related to pre-algebra skills an
ANCOVA was run to determine group level differences among the five adaptive number knowledge
profiles in pre-algebra skills at the post-test, while controlling for grade level, pre-test arithmetic
fluency and conceptual knowledge. Overall, profile membership, grade level, and pre-test scores
accounted for 44% of the variance in post-test pre-algebra skills. Even after taking into account the
strong effect of pre-test conceptual knowledge on post-test pre-algebra (ηp

2=.20, p<.001), the moderate
effect of pre-test arithmetic fluency (ηp

2=.03, p<.001), and the small effect of grade level (ηp
2=.005,

p=.03), adaptive number knowledge profile membership still explained a moderate portion of the
variance in post-test pre-algebra, F(4, 970)=9.14, p<.001, ηp

2=.04. As can be seen in Figure 4, there
were substantial differences between the profiles. In general, those students in the Basic and Simple
groups had lower performance on the post-test, while the students in the Complex group were most
successful with pre-algebra skills on the post-test.

Figure 4 Estimated marginal means for post-test pre-algebra skills by adaptive number knowledge
profile, controlling for pre-test conceptual knowledge and arithmetic fluency. Error bars = ±2 S.E,
range determined by ±2 standard deviations from sample mean.
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4. Discussion

The main aims of the present study were to examine (a) the qualitative and/or quantitative
nature of individual differences in students’ knowledge of numerical characteristics and relations, (b)
how these individual differences are related to arithmetic fluency and arithmetic conceptual knowledge,
and (c) how these differences were related to pre-algebra skills. The results of the present study provide
the first substantial evidence, in a large sample, which shows that there are indeed such individual
differences in students’ knowledge of numerical characteristics and relations. Thus, it is possible to
distinguish, within students’ existing mathematical competences, a relevant component of arithmetic
problem solving – referred to as adaptive number knowledge (McMullen et al., 2016). Adaptive
number knowledge is shown in the present study to be related to other arithmetic knowledge and skills
in a large sample of primary school students. Finally, adaptive number knowledge is uniquely related to
pre-algebra skills, even after taking into account prior conceptual knowledge and arithmetic fluency.

4.1. Adaptive number knowledge

The approach of the present study was to determine the type of patterns students display when
completing the Arithmetic Production Task (Brezovszky et al., 2015; McMullen et al., 2016). Using
LPA modeling, it was apparent that there are substantial individual differences in students’ responses
on this task, not only in terms of the number of solutions, but also the types of solutions the students
produced. In particular, it was apparent that some students were more adaptive in their solution types,
choosing solution strategies depending on the type of problems that were presented (Strategic, High),
while others were more fixed in the type of solutions they designed no matter the problem type
(Complex, Simple). These qualitative distinctions do not appear to be entirely explained by grade level,
nor by other arithmetic skills, suggesting that the different approaches to the task may be due to
differences in other factors, particularly adaptive number knowledge.

The results of the LPA suggest that there are qualitative differences in students’ adaptive
number knowledge that cannot entirely be taken into account through simple sum scores. For example,
the Simple group actually had on average more correct responses in total on the Arithmetic Production
Task than every other group but the High group. However, the almost non-existent use of
arithmetically complex solutions (i.e. both additive and multiplicative operations in one solution) in the
Simple group potentially indicates a lower level of adaptive number knowledge. Those students in
other groups (i.e. Strategic, Complex, High) were able to more consistently apply more mathematically
complex calculations to reach the target number, suggesting more well-developed knowledge of
numerical characteristics and relations. These differences were most apparent on sparse items, in which
students in the more advanced groups were able to successfully find solutions that did not require
repeated addition and instead utilized the complex numerical relations between the numbers (e.g. 2 x
30 ≈ 59). It should be noted, however, that the Simple group was relatively small, and may simply
reflect a particular strategy for solving these task, which could be adjusted with different instructions,
and not a particular level of adaptive number knowledge. Thus, it may be sufficient to use sum scores
in order to access general adaptive number knowledge in studies in which the particular focus is not on
examining the nature of adaptive number knowledge itself. However, the relevance of uncovering such
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qualitative differences in adaptive number knowledge is also supported by the obvious hierarchy of the
five profiles in regards to other arithmetic skills and knowledge.

4.2. Relation between adaptive number knowledge and arithmetic skills and knowledge

Prior evidence provided tentative support that individual differences in adaptive number
knowledge were related to other arithmetic skills and knowledge (McMullen et al., 2016), however this
finding was in a small sample of ninth grade students, and did not necessary suggest that adaptive
number knowledge would be relevant during the formative years of arithmetic development in late
primary school. The present study confirms these results among primary school students, and reveals
that adaptive number knowledge is a relevant component of arithmetic knowledge in primary school.

There  were  clear  distinctions  between  all  groups  in  terms  of  arithmetic  fluency;  overall
procedural fluency with basic arithmetic increases across the groups in the order of Basic, Simple,
Complex, Strategic, and High. While it is no surprise that the ability to fluently calculate simple
arithmetic problems is related to a time-sensitive task such as this one, this is particularly informative
when examining differences between the three middle groups of Simple, Complex, and Strategic.
While, in total, these groups had similar number of correct answers on the Arithmetic Production Task,
their differences in arithmetic fluency shows an interesting relation with the particular nature of their
solutions. Those students who were included in the Simple group rely almost exclusively on simple,
single operation solutions and also had the lowest arithmetic fluency besides the Basic group.  As well,
despite both groups being fairly successful with using mathematically complex solutions with both
additive and multiplicative operations, those students in the Strategic group outperformed those in the
Complex group on the measure of arithmetic fluency. The only major difference between the Complex
and Strategic groups was that the Complex group used complex solutions on the dense items, while the
Strategic group mostly relied on simple solutions on the dense items (both used complex solutions on
the sparse items, and had a similar number of correct answers for both item types). This suggests that
having the ability to quickly and accurately calculate simple solutions allows for adapting one’s
strategy for producing solutions based on the problem type – using more simple solutions on dense
items, when they are readily accessible, and more complex solutions on sparse items, when they are
procedurally advantageous.

While there were distinct differences between all groups with arithmetic fluency, there were
fewer differences among the more advanced groups for conceptual knowledge. These results suggest
that conceptual knowledge of arithmetic can be seen as necessary, but not sufficient, for advanced
adaptive number knowledge. In particular, knowing the rules of how to arithmetically combine
numbers using multiple operations to form other numbers requires a basic understanding of some
arithmetic principles, such as commutativity. However, once these rules are understood other factors
play a larger role, for example arithmetic fluency, and possibly numerical knowledge and skills.
Schneider and colleagues (2011) found that procedural and conceptual knowledge predicted algebra
flexibility in similar ways. A full battery of tests covering all features of arithmetic adaptivity,
including numerical knowledge and advanced number sense (e.g. Geary et al., 2009) and flexibility
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measures (e.g. Hickendorff et al., 2010; Torbeyns, Smedt, Ghesquière, & Verschaffel, 2009) would be
important for examining the inter-relations among this diverse set of skills and knowledge.

4.3. Adaptive number knowledge and pre-algebra skills

The present study provides the first evidence that adaptive number knowledge is related to pre-
algebra skills, even after taking into account arithmetic conceptual knowledge, arithmetic fluency, and
grade level. These results are the first to provide evidence of the role adaptive number knowledge plays
in the larger development of adaptive expertise with arithmetic, and mathematics in general.
Importantly, these results align with theoretical accounts of mathematical development that have been
proposed previously, but have had little empirical support until now (e.g. Carpenter et al., 1998;
Kieran, 1992).

Previously, evidence has found that many aspects of arithmetic knowledge, including skills with
addition, subtraction, and multiplication are not strong predictors of algebra knowledge (Siegler et al.,
2012). As has been proposed previously, core features of adaptive expertise, such as flexible problem
solving, are expected to have a larger impact on learning since they allow for more well developed
conceptual knowledge and seem to support the transfer of knowledge to new contexts (Baroody, 2003;
Star & Rittle-Johnson, 2008). The findings of the present study are in line with this conjecture, as those
students with more well developed adaptive number knowledge were more successful in solving
complex multiple-operation missing-value problems than their peers. One possibility is that the
relational thinking required for the missing value problems (e.g. Nunes et al., 2006) aligns closely with
the knowledge of arithmetic relations needed on the Arithmetic Production Task. Being able to fluidly
align the numerical relations and characteristics for producing arithmetic sentences on this task
required similar kind of knowledge of arithmetic relations as is needed to solve missing-value
problems. An alternative explanation is that those students who have a stronger set of arithmetic skills
and a wider range of arithmetic knowledge also can adapt these advantages to complete these missing-
value problems. However, given that the relation between adaptive number knowledge and the
development of pre-algebra skills held even after controlling for arithmetic conceptual knowledge and
arithmetic fluency, it seems to be the case that this relation is fairly unique.

4.4. Limitations

One of the major limitations of the present study is that since the two measurement points were
interceded by an intervention involving students playing an education game aimed at enhancing
adaptive number knowledge the identified relations may be potentially overstated. However, while the
game was meant to enhance adaptive number knowledge, the Arithmetic Production Task was quite
dissimilar to the mathematical activities covered in the game, thus only distant transfer effects were
expected. The measure of pre-algebra knowledge used on the post-test was even further removed from
the activities completed by the students in the game. Thus, along with the fact that gameplay should
equal effect on all participants, we do not expect this limitation to have a substantial impact on the
results of this study.
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There appears to be a fairly large imbalance in the groups identified in the LPA model, with
half of the participants being included in the Basic group. However, it is not entirely surprising that
most of the participants were only able to provide a small number of relatively simple solutions given
that the adaptive number knowledge measure was a fairly atypical task in comparison to most
mathematics classroom activities. While a scalar measure of adaptive number knowledge may be
acceptable in other circumstances, using an LPA model can allow for a more in-depth understanding of
the nature of individual differences, by more accurately describing heterogeneity in individuals’
response patterns (e.g. Collins & Lanza, 2010), as are found in the Arithmetic Production Task in the
present study.

Finally, the present study provides evidence that adaptive number knowledge is related to other
arithmetic skills, and even pre-algebra knowledge. However, it is possible that these correlations may
be explained by confounding factors. While classroom level differences were not found, nor did
students receive explicit instruction in such solving missing-value problems prior to testing, it is
possible that students’ general cognitive ability may be a confounding variable that explains the
relation between adaptive number knowledge and other arithmetic and pre-algebra skills and
knowledge. However, if this were the case we would expect to see even larger differences between
grade levels on these measures, yet grade-level explained only a minor amount of variance in post-test
pre-algebra scores. As well, adaptive number knowledge was found to explain a moderate level of
variance in pre-algebra knowledge even after taking into account prior knowledge of arithmetic
fluency, grade level, and even arithmetic concepts – which were partially measured using very similar
tasks as the post-test pre-algebra measure. This suggests that any confounding by other more general
cognitive measure may be minimal. However, future studies of the nature of adaptive number
knowledge should confirm this by taking into account the potential for domain-general and domain-
specific cognitive measures to have a potential mediating effect on the relation between adaptive
number knowledge and arithmetic and pre-algebra knowledge.

4.5. Educational implications

Adaptivity with arithmetic has been connected with the movement in mathematics education
towards focusing on adaptive expertise, instead of routine expertise (Baroody, 2003; Hatano & Oura,
2003; Verschaffel et al., 2009). Within this framework, the emphasis is placed on focusing instruction
and learning in arithmetic away from calcified knowledge and skills that have limited scope beyond a
small set of known problems, onto knowledge and skills that can be readily applied to novel tasks in
flexible ways. The present study provides one task which may prove useful for assessing this type of
knowledge and skills with arithmetic problem solving. By placing the task of arithmetic sentence
creation on the student, the Arithmetic Production Task is able to assess their ability to adaptively
apply their knowledge of numerical characteristics and relations in a new but relevant task. The
numerical features of many mathematical situations, both in later mathematics classes and real life, are
manifold and require a deep understanding of their potential connections (Lobato, Rhodehamel, &
Hohensee, 2012; Reyna & Brainerd, 2007). It is possible that those students with stronger adaptive
number knowledge may be more able to navigate these situations in recognizing the most relevant
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numerical features, both within explicitly mathematical contexts and outside of them (e.g. Hannula-
Sormunen, 2015; McMullen, Hannula-Sormunen, Laakkonen, & Lehtinen, 2015).

While more evidence is needed, the results of this study and previous studies suggest that
adaptive number knowledge could be considered for inclusion in the instructional content of arithmetic
teaching. Recent studies also suggest that adaptive number knowledge can be enhanced with game-
based learning (Brezovszky et al., 2015). The use of a more open learning environment to allow for
students to explore the numerical connections between numbers seems to be a promising mode for the
development of adaptive number knowledge. Integrating such an approach into traditional arithmetic
instruction may help lessen the gaps between different students’ adaptive number knowledge found in
the present study.

4.6. Conclusions

 Solution strategies in the context of arithmetic flexibility and adaptivity may be regularly re-
born within the problem solving process (Threlfall, 2002, 2009), or they may be selected from a set of
known strategy options (Siegler  & Lemaire,  1997;  Verschaffel  et  al.,  2009).  Whatever  the case,  it  is
now clear that some students are much more capable than others of creating arithmetic sentences from
a given set of numbers that equal a target number. Not only can they do so with different frequency of
responses, but also with different levels of mathematical complexity. This approach of examining
students’ own creative abilities aims to explore the issue of adaptivity with arithmetic problem solving
from a different direction than research on flexibility and supposes that in order to be truly adaptive
with arithmetic one must be able to approach arithmetic problems with a well-connected network of
numerical characteristics and the arithmetic relations between these numbers (Lehtinen et al., 2015;
McMullen et al., 2016). Whether creating strategies in-situ or choosing the most appropriate for the
task at hand, it is now apparent that adaptive number knowledge may be an important aspect of
mathematical development.
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Figure 1 Mean correct and complex solutions for each item by adaptive number knowledge profile. Items 1 and 3 are dense items,
items 2 and 4 are sparse items. Error bars represent ±2 standard error.
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Figure 2 Mean correct answers for arithmetic fluency and arithmetic conceptual knowledge by adaptive number knowledge profile.
Error bars represent ±2 standard error, range determined by ±2 standard deviation from sample mean.
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Figure  3 Post-hoc comparisons between adaptive number knowledge profiles. Arrows indicate direction of significant differences.
*p<.05; **p<.01; ***p<.001


