
Software Security Considerations for IoT
Aki Koivu, Lauri Koivunen, Shohreh Hosseinzadeh,

Samuel Laurén, Sami Hyrynsalmi, Sampsa Rauti and Ville Leppänen
University of Turku

Turku, Finland
Email: {aki.i.koivu, lamkoi, shohos, samuel.lauren, sthyry, sjprau, ville.leppanen}@utu.fi

Abstract—Internet of Things (IoT) is a swiftly growing tech-
nology and business domain that is expected to revolutionize the
modern trade. Nonetheless, shortcomings in security are common
in this new domain and security issues are the Achilles’ heel of
the new technology. In this study, we analyze different security
solutions for IoT devices and propose suitable techniques for
further analysis. The aim of this study is to provide guidance
on implementing security solutions for both existing and coming
devices of Internet of Things, by providing analysis and defining
the Complexity of Implementation score for each solution.

Index Terms—Internet of Things, security, software security

I. INTRODUCTION

Internet of Things (IoT) is a network of connected devices
[1]—or ‘things’—that collect and share information in order
to create a more automated environment. These ‘things’ can
be in the form of sensors, actuators, software, and network
connectives (e.g., a gateway that connects home light bulbs
to the Internet). IoT is considered as the third wave of IT-
driven competition [2]. The number of applications for IoT
devices are growing rapidly as the technology is becoming
more popular. Therefore, security of IoT networks and devices
is of paramount importance.

Prior research shows that security in IoT still has room for
improvement [3], and traditional security measures developed
for enterprise and desktop computing are not compatible with
this environment [4]. Confidentiality, integrity, and availability
of information security hold for IoT as well, but the implementa-
tions addressing these aspects must be modular and lightweight.
Security requirements for IoT devices focus on communication
security, data protection and physical protection [5].

There exists a wide range of heterogeneous components
with different processing capabilities and capacities [6]. Some
devices are equipped with 32-bit processors and have memory
hierarchies like a smart phone, while some other have only a
8-bit micro-controller [7]. Moreover, many of the participating
devices are constrained in memory, storage, and computational
power. As an example, a networked door lock is a fairly low
capacity device that has just enough processing power to have
the essential functionality, and is not capable of performing
complicated computations. To this end, a security measure
needs to be compatible with even most limited devices of the
network and certainly, not all security measures may apply to
all IoT devices. Therefore, it is important to identify security
measures feasible for implementation in the IoT environment.

In this study, we research the complexity of implementing
security measures into IoT devices, with the goal of identifying

conveniently implementable and lightweight security measures.
We list various security solutions that either have already been
implemented in embedded IoT devices, or are experimental in
nature and have the potential to be implemented. Every solution
is introduced and our findings are presented. The remaining
of the study is structured as follows: Section II surveys the
relevant studies. Section III defines our scope of study. Section
IV outlines each security solution. Finally, Section V provides
conclusions based on the research and possible future work
directions.

II. PREVIOUS STUDIES

There are many different security solutions proposed for
various domains, and providing security at different levels,
i.e., hardware, software, and network. Some of these solutions
are applicable to IoT environment as well, while, some other
are not applicable due to the limitations of the participating
devices in these networks. For instance, a typical operating
system security method, Address Space Layout Randomization
(ASLR), can not usually be applied on IoT devices. This is
because the IoT devices routinely lack the required hardware
(such as a Memory Management Unit), or software structures
(such as relocatable or loadable libraries).

There is a noticeable amount of research on IoT focusing
on different aspects. There exists a systemic IoT security study
by Riahi et al. [8], which can be used as a general guideline
for implementing overall IoT security. There is also a targeted
study on security considerations for home IoT by Han et al. [9],
which discusses the specific requirements of implementation.
Connectivity has also been researched, by considering the cloud
aspect of IoT security [10]. Alqassem et al. [11] authored a
paper on the requirements for IoT security on an abstract level,
while a security analysis of existing IoT devices by Wurm et
al. [12] provides ways to exploit existing devices. This study
is a good ground for researching ways to defend against the
outlined attacks. Also, a study by Hosseinzadeh et al. [13]
gives an overview of obfuscation and diversification as security
strengthening solutions for IoT.

III. SCOPE OF STUDY

A. Complexity of Implementation

In device manufacturing, production cycles are rapid and
existing code or software is often recycled. Because of this,
additions to the used code should be modular and not require
rewriting an extensive amount of the original software. Adding



security measures as new blocks of code to the software should
also obey this requirement.

In our study, we focused on finding security solutions that
evaluated to be the most practical to implement as new features
of existing software. For measuring practicality of the solutions,
we introduce the Complexity of Implementation score (COI):

COI = 1 + C1 + C2 + . . .

Each input value is a binary 1 or 0 score based on a criteria
that contributes to the complexity of the solution. The goal is
to estimate how difficult it would be to implement a certain
solution to an IoT system, based on the existence of known
implementations and the extent of current knowledge of the
subject based on research available, the estimated amount of
software code needed to be modified and the applicability
with different architectures. In our case, the COI score ranges
from one to four, where higher score indicates a possibly more
complex and harder solution to implement. No solution is
trivial to implement, which is why we set the base score at one.
We use the following three criteria to define our COI scores:
C1 Instead of just adding more code, code rewriting in existing

code is required for integrating the solution.
C2 Major architectural changes are needed in existing code

for integrating the solution.
C3 Existing implementations of the solutions were not found,

further research required.
The scoring is noticeably coarse, but provides a common

metric for evaluating the possible complexities of a security
solution.

B. Limitations

We excluded software development methodologies from our
study. Most of them can not be applied as an afterthought
by their very definition, such as Test-Driven Development
(TDD), which we want to avoid. In addition, TDD should
trivially apply to any newly written software in the context
of IoT and is therefore, not worth studying in this context
either. Introducing security awareness to code development has
already been studied in the literature [14] and we believe this
literature should be used when new software is to be written
regardless of whether it is targeted towards IoT or not.

We also exclude static analysis from our study. Static analysis
of software is a useful tool to reduce bugs in the code and
also increase software security [15]. Large organizations, like
NASA, are both researching and using static analysis in their
workflow [16]. This alone makes us believe it should contribute
to the security and correctness of IoT devices software the
same way it does for other software. We believe this is even
more relevant for IoT due to the minimalism of many IoT
systems allowing more fine-grained analyses to be performed
compared to bigger systems.

In our study, for conducting research we used an STM32L1
microcontroller-based IoT device, the Thingsee One [17]. The
device is equipped with an ARM Cortex-M3 processor and an
IoT-oriented operating system, NuttX OS. Operating systems

for IoT purposes are designed to be portable, because there
is a great deal of diversity among IoT hardware. Currently,
embedded IoT operating systems like RIOT and FreeRTOS
showcase support for various microcontrollers, but are often
implemented only for a finite group of devices. While we
experimented with a group of operating systems, our main
focus is on NuttX OS.

C. Threat analysis

It is essential for any security measure to define what
threats it is defending against. By definition, IoT devices
are connected, which makes network attacks major sources
of threats, but we also believe that as IoT devices become
more commonplace, physical security also becomes important.
Otherwise, an attacker could, for example, walk up to an
internet enabled coffee machine and re-flash its firmware, which
could be used to do anything from brewing coffee for free
to providing reverse proxy access to internal networks. To be
more specific, we want to counter software bugs and vulnerable
software that could lead to a system compromise, which can
come from both the network or from a malicious user having
a physical access to the system.

IV. SECURITY SOLUTIONS

A. Memory protection

While researching IoT operating systems and the IoT devices
they are used on, we noticed many of the devices do not have
a Memory Management Unit (MMU) subsystem and as a
consequence many of the operating systems also lack any
support for MMU. Traditional memory protection mechanisms,
such as ASLR [18] cannot therefore be used. A simpler
subsystem support called Memory Protection Unit (MPU) does
exist in many of the devices and operating systems. It can
provide an alternative design for userspace separation to provide
some level of integrity and memory protection. The operating
system ARM mbed even uses it to provide a similar level of
protection afforded usually only by MMU [19]. This feature
is limited to ARM’s processors only, unfortunately.

We researched the commercial but mostly open-source
Thingsee One device, to see whether we can enable the
operating system’s separation of kernel and userspace, which
was not used by default. This would allow us to enable
memory protection. The devices processor, ARM Cortex-M3,
has the capability to protect memory [20]. According to our
findings, it is challenging to integrate kernel and userspace as
an afterthought, as this requires a conscious choice to separate
components of the system as a whole. Extra systems added
on top of the operating system for the device were calling the
kernel features directly and would therefore require at least
some rewriting to function in the more secure operating mode
of the operating system used.

Even if one can not enable the operating system’s protection
mechanisms for application and/or kernel protection, or there
is no real userspace, memory protection units can still often
be used partially for securing at least parts of the system. For
example, on ARM processors, the interrupt vectors are often



located at the start of the address space [21]. A problem arises
because null memory pointers could provide an attacker a
way to write code in place of an interrupt vector and through
that redirect execution easily to a malicious code [21]. The
vulnerability can be avoided by using the otherwise unused
memory protection unit of the system. Some invalid memory
pointers may not point right at the start of the address space,
but could instead be dangling elsewhere in the memory space.
They could even be just slightly offset from the beginning of
the address space, which could be used as another attack vector.
So, protecting just interrupt vectors at the start of address space
is not enough, but is a good start for efforts hardening IoT
against potential vulnerabilities and understanding how MPU
can be used.

We give memory protection 2 in our COI scoring as it
requires specificity from hardware architecture in almost all
cases, barring stack checks, for example. Memory protection is
mostly a well established practice and therefore does not need
further research to be implemented. Writing code is required,
but memory protection can be added as a layer on top of
everything to enforce constraints instead of requiring code
modifications for the code to be made ”memory-protected”.
There are also plenty of existing memory protection implemen-
tations in various forms [21], [22].

B. Link time reordering

A typical embedded IoT operating system is assembled from
multiple pieces. These pieces, or object files, are laid out into
a final address layout for a device. Since the layout order is
deterministic between pieces (whose relative order does not
matter), an attacker can use the knowledge of a single device
instance to figure out the layout of another device instance
and then use this knowledge to attack the system further. This
knowledge is internal implementation details and can therefore
be changed without breaking the system. We can introduce
artificial diversity to the linking phase to shuffle the memory
layout while preserving functionality, a form of diversification.

On our tested device, the Thingsee One, there is a binary
blob, which makes many forms of security measures difficult to
apply. Fortunately, the binary blob is an object file which can
be shuffled with the rest of the system. This means link time
reordering can potentially be used with partially closed source
systems, which is desirable due to many vendor-developed
opaque binary blobs containing driver code. It is also necessary
to note that whatever is inside the vendor’s opaque blob will
naturally not get reordered internally, but the impact of this
can be limited. Vendors should be made aware of this sort of
security measure. This would then allow them to divide up the
said binary blobs into smaller parts that could still be opaque,
but their order could be shuffled within the resulting system
on a finer level.

Link time reordering is scored at 2 in complexity of
implementation. The technique requires only compile-time
architectural changes to the linker and no code should require
rewriting. The principle is straightforward, but its effectiveness

may require further research. No existing implementations were
found, which may indicate either the lack of research or tools.

C. Code obfuscation

Code obfuscation is often regarded as security by obscurity,
but it can be used as a useful layer of deterrence on IoT if
applied on per device basis [23], [24]. This is known as code
diversification. Generating a generic attack that would work on
all instances of the device would be made nearly unattainable
with proper diversification. This can be done, for example, by
instrumenting code at either source level, compiler intermediate
code level or at compiled bytecode level by adding NOP (no
operation) instructions [25].

Obfuscation can be a useful method even when executed
in a naive way, but better tools are required for maximal
effectiveness against vulnerability analysis and exploitation.
This area needs further development. Since the most effective
obfuscation needs to be done per-device, a further limitation of
this method is that compiling becomes a bottleneck. Depending
on operating system complexity, a compile pass may take a
long time, but fortunately many IoT systems with included
applications are often so small that this should become almost
negligible. For example, the NuttX operating system compiled
with a simple ’hello world’ printing script does not take more
than a minute to build on a recent desktop hardware. This is
not always the case, though. The upcoming Brillo operating
system for IoT by Google can take up to 30 minutes to finish
a compile pass in the same system.

Obfuscation can often also lower performance, which can
be critical on real time systems. Therefore, obfuscation might
not always be applicable as a security increasing solution.
Furthermore, debugging systems that have been changed per
device can be harder as, for example, offsets for debugging
data are different for each device. This can be alleviated by
being able to compile the debugging symbols afterwards based
on a seed that is normally kept secret. The seed would basically
be input into the compiler and would provide a deterministic
compile pass so that all debugging offsets are found.

Code obfuscation is scored at 1. There is plenty of research
and existing implementations on code obfuscation. By its very
definition, we do not need to change the architecture of a system
to apply obfuscation. Code rewriting is also not required if it
is done automatically. Nevertheless, obfuscation is a complex
subject even if its base cases are simple.

D. Stack shuffling

The stack of a program holds data such as local variables
and execution flow information of function calls, such as return
pointer to calling function. The boundaries of variables and
the location of the stack is often deterministic and known to
the attacker along with how the data is going to be used in
the stack, which can allow malicious actor to perform attacks
using buffer overflows in stack variables. The order of the
variables that are pushed into the stack can often be changed
without much consequence, which stack shuffling aims to do.
By modifying how the stack is being constructed per device, we



can make it more difficult to perform stack-based attacks. Stack
shuffling would suit well to the IoT environment for finding
bugs and preventing exploitation because of its negligible
performance drop. There exists at least one implementation
of stack reordering on a compiler [26], but it has been made
specifically for systems using the OpenBSD operating system.
Using it to develop a general implementation should be possible.
The security evaluation of this technique is still lacking, but
as buffer overflows have been a source of many vulnerabilities
[27], this approach should have positive effect on security.

This approach is scored at 2 as implementation of it for
various compilers and processor architectures may not be trivial
and hence require further research. As mentioned above, it
has at least one existing implementation, but its effectiveness
is not widely tested based on our findings. Code rewriting or
architectural changes are not needed except possibly in the
compiler itself.

E. System call diversification

As with link time reordering and stack shuffling, diversifying
system calls needs to be done per device to be of any use [28].
Also in IoT many devices contain some type of system call
interface. Many, if not all ARM processors for example, have
SVC-calls (Service Calls) that pass control to the kernel code.
The goal of system call diversification is to make constructing
meaningful system calls difficult for an attacker. The attacker
cannot then for example write into a file descriptor (a system
call action) to further exploit the system.

This security solution does not apply to all IoT systems, as
the systems may be so small that it does not make any sense to
have system calls implemented. Due to the invasive nature of
this method on the system, having to modify the fundamental
building blocks of a kernel and userspace separation, it may be
overly burdensome to implement this feature on some operating
systems. One would face difficulties with systems, for example,
if system calls were not initially enabled. All custom code
calling directly into kernel would need to be rewritten, since it is
a prerequisite for the system calls to have kernel and userspace
separation for the system calls to make practical sense to
exist. Our target system did not use the kernel separation and
therefore programs that were in userspace were attempting
to touch kernel data directly with separation enabled, which
hindered writing our implementation greatly.

In practice, system call diversification can essentially be
done by modifying the order of system calls so that each
device has a unique and externally unguessable order of the
possible calls [29], such as writing to a file and run executable
calls. System call diversification appeared to be feasible at the
very least on the NuttX operating system, which we inspected
in depth. On other IoT operating systems, if the system call
ordering/numbering is being hardcoded in header files instead of
being generated, automatic diversification could be problematic
initially, but on architectural level we can see no other big
obstacles.

This security solution is scored at 3. It requires architectural
changes at worst, which also implies code rewriting. There

is enough research on the subject to write an implementation.
Commercially the security solution is not very well known, but
this may be because it is rather new or there are not enough
tools or operating system level support.

F. Integrity verification

Integrity verification can take many forms. For IoT the
universal Serial Bus (USB) is a technology that is very common
among today’s devices. The technology is also typical among
embedded IoT devices, and contemporary energy-efficient USB
technology is now developed for IoT [30].

USB connectivity can provide attackers plenty of different
ways to attack a device. In one instance, a USB mass storage
device was made to emulate a USB hub device, attaching and
removing virtual devices in a specific sequence in order to
manipulate host’s memory heap, which ultimately lead to a
buffer overflow [31]. This particular attack was made against a
video game console. In certain sophisticated IoT devices, like
the ThingSee One, the USB port can be used to access the
device’s storage or flash in new firmware. When this feature is
present, malicious software can be injected to the device, for
example with a USB drive. The implications of these attacks
would be intensified in a high-risk environment like industrial
or military systems.

Integrity verification for USB connectivity is a crucial
feature for strengthened physical-layer security. The host device
requires a specific identification number from the connected
USB drive to grant it read and/or write privileges. Every
USB drive has a manufacturer-defined device ID, composed of
vendor, product and revision codes. This ID can for example
be used to identify a USB drive without additional mechanics.
Integrity verification for USB has been implemented for
example as a part of embedded lock-down manager in Windows
IoT (formerly Windows Embedded) [32], but as a lightweight
solution for IoT devices without an operating system this feature
can be built into the kernel of the device, by manufacturer-
defined or user-defined configuration process. Apart from the
perspective of USB, integrity verification can for example be
seen in the accessible serial ports as requiring a password [33].

Integrity verification is scored at 2 as it requires some non-
trivial architectural changes to account for certificates and
validation. Some integrity verification types, such as secure
boot, would require supporting hardware, which may require
complex changes.

G. Tampering detection

Many of the previous security solutions hinder the speed of
possible exploitation, but could be susceptible to brute-force
attacks. For example, a simple password can be brute-forced
to access the serial console, or link-time diversification of the
devices can force an attacker to attempt exploitation multiple
times before finding the correct offsets/password required for
exploitation. The amount of tries for a successful brute-force
attack can be too small for an effective deterrence due to
technical constraints either in the device, such as small address
space, or in the method used.



IoT devices often collect telemetry data of the device’s
performance or other aspect. We propose this telemetry should
also include crash signaling. That is, if a device crashes due
to a programming error, the next boot it signals about this
alongside any other telemetry. This way one could collect
the signs of attacks ongoing on the devices and possibly act
upon this information to find and block the vulnerability being
exploited. The telemetry signal would essentially be used as
a measure of either a common crash being triggered across
the device fleet or in worst case as a wide-scale alert system
showing a possible vulnerability exploitation in progress by
brute-force.

Other anti-tampering techniques also exist, such as chassis
intrusion detection often found in power meters [34]. These
can be used to strengthen the security by discarding encryption
keys from memory in case of intrusion. They still require
hardware-based support to function efficiently and are not
always applicable.

Tampering detection can take various forms, but we score
it at 3 as these changes can be very deep requiring the above
mentioned telemetry data addition for example. This requires
at minimum architectural changes. Code rewriting may also
be required with USB as you need to modify the USB stack
to account for validation data.

H. TLS integration

Cryptography is a necessity for almost any type of network
communication to be considered secure. IoT devices are
communicating with other devices and systems by definition.
The most prevalent way to secure communications even in
otherwise insecure networks is Transport Layer Security (TLS)
[35]. We partially integrated mbed TLS library [36] into the
Thingsee One as an attempt to strengthen its security. The
mbed TLS is a TLS implementation library targeted towards
embedded devices and should be one of the best candidates
for TLS integration into less powerful IoT devices. During
our integration experiment we ran multiple times into memory
constraints and insufficient stack space, but we managed to
slim down the functionality and size of the library enough to
fit a mostly functional implementation into the device.

Performance of the resulting integration was over ten times
slower than unencrypted communication, often exceeding 20
seconds for a single message. In addition, the amount of
memory taken by the security library could easily be larger than
the whole operating system itself, but this can often be tuned at
the cost of either performance or functionality. The processor’s
acceleration features targeted towards encryption could have
been used to boost performance, but we did not evaluate this.
The performance boost would probably be significant, but it
would still not reduce the memory usage, which was the biggest
limiting factor based on our observations.

Based on the results, we can say that TLS with full protocol
compatibility is very demanding for some IoT devices. The least
powerful sensor devices can not hold in their limited memory
all the security modes or certificates necessary to encrypt and
decrypt the data being transmitted even when the devices are

capable enough to perform HTTP and other messaging with
the outside world. The devices would be limited to the very
least a subset of a full TLS compatibility, which means we
lose an important part of interoperability with web-servers and
other parts of the network. This can be fixed by changing the
hardware to a stronger one.

It can make sense to construct a more powerful central hub
device for all the other IoT devices to connect to. The devices
can then use a lightweight encryption between the hub and
others parts of the internal network using protocols, such as
what is defined in the IEEE 802.15.4 [37] for lightweight
wireless communication. The hub can then implement full TLS
for any external communications leaving resource constrained
devices performing a specific efficient cryptography protocol.
Unfortunately, adding a hub would clearly increase implemen-
tation complexity greatly, which means one should evaluate
the cost between hub and more performant IoT devices already
during the implementation of the device.

Similar to integrity verification, TLS integration is scored at
2 as it also requires some changes to architecture and may need
hardware changes to accommodate the increased processing
requirements. No code rewriting is required as TLS can often
just be added as an extra layer that stops processing if validation
fails. TLS is very widely supported, even in IoT, so no further
research should be required.

TABLE I
COMPLEXITY-OF-IMPLEMENTATION SCORES OF THE PROPOSED SECURITY

SOLUTIONS

Solution C1 C2 C3 COI

Code obfuscation 0 0 0 1
Memory protection 0 1 0 2
Link time reordering 0 0 1 2
Stack shuffling 0 0 1 2
Integrity verification 0 1 0 2
TLS integration 1 0 0 2
Tampering detection 1 1 0 3
System call diversification 1 1 0 3

In Table I we summarize the discussed solutions with
evaluated COI score and sort them by the score. With differing
types of solutions, COI score presents diverse results, which
indicates that this type of scoring could potentially be viable.
Solutions which have a larger COI score compared to the
median, tampering detection and the system call diversification,
have existing implementations but require significantly more
efforts to be implemented. Even though code obfuscation is
scored below median, its nature of lowering performance should
have taken into account when it is implemented.

V. CONCLUSION AND FUTURE WORK

In this study, we researched some of the application layer
solutions for IoT security and discussed effective security
measures for this environment. We reviewed the security
measures that try to defend against the physical and application
layer attacks. Although these solutions are mostly theoretical,
we showed they could also be practical to implement. From



all this, we analyzed the strengths and weaknesses of each
solution, such as ease of use, possible system slowdowns
and effectiveness against attacks. For each analyzed solution,
we presented a COI score that evaluates the complexity of
implementation.

Future work includes having practical test cases of the
security solutions and through further analysis, discovering
their effectiveness to strengthen the security in the context of
IoT. In addition, we could not find any empirical surveys on
the prevalence of various security solutions on IoT systems.
This type of survey could provide insight for finding which
solutions are a necessity for IoT or were easy to implement. A
necessity means it may already have been used in an attack and
is therefore an obvious solution to add. An easy solution may
not be targeted for a specific attack, but is instead implemented
as a proactive measure where the cost-benefit analysis of adding
it makes sense. The survey could then improve the focus of
any future security research and implementation efforts.

ACKNOWLEDGMENTS

The research leading to these results was supported partly by
Tekes – the Finnish Funding Agency for Innovation, DIMECC
Oy and Cyber Trust research program. This research is also
supported by Tekes project 1881/31/2016 ”Cybersecurity by
Software Diversification”. The authors gratefully acknowledge
Henri Ståhl for researching security methods, especially for
efforts on integrating TLS into an IoT device, Pertti Ranttila
for researching alternative IoT devices for the security research
and both for being part of the research team.

REFERENCES

[1] I. T. Union, “Overview of the Internet of things. Recommendation ITU-T
Y.2060,” 2012.

[2] M. E. Porter and J. E. Heppelmann, “How Smart, Connected
Products Are Transforming Competition,” https://hbr.org/2014/11/
how-smart-connected-products-are-transforming-competition, accessed:
2016-06-25.

[3] R. Mahmoud et al., “Internet of things (iot) security: Current status,
challenges and prospective measures,” in 2015 10th International
Conference for Internet Technology and Secured Transactions (ICITST),
Dec 2015, pp. 336–341.

[4] P. Koopman, “Embedded system security,” Computer, vol. 37, no. 7, pp.
95–97, July 2004.

[5] H. J. Kim et al., “A Study on Device Security in IoT Convergence,” in
2016 International Conference on Industrial Engineering, Management
Science and Application (ICIMSA), May 2016, pp. 1–4.

[6] O. Hahm et al., “Operating systems for low-end devices in the internet
of things: a survey,” IEEE Internet of Things Journal, vol. PP, no. 99,
pp. 1–1, 2015.

[7] P. Gaur and M. P. Tahiliani, “Operating Systems for IoT Devices: A
Critical Survey,” in Region 10 Symposium (TENSYMP), 2015 IEEE, May
2015, pp. 33–36.

[8] A. Riahi et al., “A systemic approach for iot security,” in 2013 IEEE
International Conference on Distributed Computing in Sensor Systems,
May 2013, pp. 351–355.

[9] J. H. Han, Y. Jeon, and J. Kim, “Security considerations for secure and
trustworthy smart home system in the iot environment,” in Information
and Communication Technology Convergence (ICTC), 2015 International
Conference on, Oct 2015, pp. 1116–1118.

[10] J. Singh et al., “Twenty security considerations for cloud-supported
internet of things,” IEEE Internet of Things Journal, vol. 3, no. 3, pp.
269–284, June 2016.

[11] I. Alqassem and D. Svetinovic, “A taxonomy of security and privacy
requirements for the internet of things (iot),” in 2014 IEEE International
Conference on Industrial Engineering and Engineering Management,
Dec 2014, pp. 1244–1248.

[12] J. Wurm et al., “Security analysis on consumer and industrial iot devices,”
in 2016 21st Asia and South Pacific Design Automation Conference (ASP-
DAC), Jan 2016, pp. 519–524.

[13] S. Hosseinzadeh et al., “Security in the Internet of Things through
Obfuscation and Diversification,” in Computing, Communication and
Security (ICCCS), 2015 International Conference on, 2015, pp. 1–5.

[14] C. Pohl and H.-J. Hof, “Secure scrum: Development of secure software
with scrum,” arXiv preprint arXiv:1507.02992, 2015.

[15] H. H. AlBreiki and Q. H. Mahmoud, “Evaluation of static analysis
tools for software security,” in Innovations in Information Technology
(INNOVATIONS), 2014 10th International Conference on, Nov 2014, pp.
93–98.

[16] G. J. Holzmann, “The power of 10: rules for developing safety-critical
code,” Computer, vol. 39, no. 6, pp. 95–99, 2006.

[17] “Thingsee One,” https://www.hackster.io/thingsee/products/thingsee-one,
accessed: 2016-06-23.

[18] H. Shacham et al., “On the effectiveness of address-space randomiza-
tion,” in Proceedings of the 11th ACM Conference on Computer and
Communications Security. ACM, 2004, pp. 298–307.

[19] ARM, “mbed uVisor,” https://www.mbed.com/en/technologies/security/
uvisor/, (Accessed on 09/23/2016).

[20] ——, “Cortex-M3 Processor,” http://www.arm.com/products/processors/
cortex-m/cortex-m3.php, accessed: 2016-7-29.

[21] Nuttx.org, “STM32 Null Pointer Detection,” http://nuttx.org/doku.php?
id=wiki:howtos:stm32-null-pointer, 2013, accessed: 2016-7-29.

[22] NuttX, “NuttX Protected Build,” http://nuttx.org/doku.php?id=wiki:
howtos:kernelbuild#the memory protection unit, (Accessed on
09/30/2016).

[23] S. Hosseinzadeh et al., “Security in the internet of things through
obfuscation and diversification,” in Computing, Communication and
Security (ICCCS), 2015 International Conference on, Dec 2015, pp. 1–5.

[24] S. Hosseinzadeh, S. Hyrynsalmi, and V. Leppänen, Obfuscation and
Diversification for Securing the Internet of Things (IoT). Elsevier, 2016,
p. 259–274.

[25] A. Homescu et al., “Profile-guided automated software diversity,” in Code
Generation and Optimization (CGO), 2013 IEEE/ACM International
Symposium on, Feb 2013, pp. 1–11.

[26] T. Unangst, “Developing software in a hostile environment,” 2014.
[Online]. Available: https://www.openbsd.org/papers/dev-sw-hostile-env.
html

[27] B. Martin et al., “2011 cwe/sans top 25 most dangerous software errors,”
Common Weakness Enumeration, vol. 7515, 2011.

[28] R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and
Paradigms. Elsevier, 2016.

[29] S. Rauti et al., “Towards a diversification framework for operating system
protection,” in Proceedings of the 15th International Conference on
Computer Systems and Technologies. ACM, 2014, pp. 286–293.

[30] A.P. Syvertsen, “USB connectivity in a battery-powered IoT
world,” http://www.embedded.com/design/power-optimization/4439531/
USB-connectivity-in-a-battery-powered-IoT-world, accessed: 2016-07-
26.

[31] J. Larimer, “Beyond autorun: Exploiting vulnerabilities with removable
storage,” Blackhat, 2011.

[32] Microsoft Corporation, “USB FIlter,” https://msdn.microsoft.com/en-us/
library/dn638283(v=winembedded.82).aspx, accessed: 2016-07-28.

[33] Cisco, “Telnet, Console and AUX Port Passwords,”
http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/
ios-software-releases-110/45843-configpasswords.html, (Accessed
on 09/30/2016).

[34] E. Davis and B. Schafer, “Optical chassis intrusion detection with power
on or off,” May 14 2002, uS Patent 6,388,574. [Online]. Available:
https://www.google.com/patents/US6388574

[35] R. E. Dierks T., “The Transport Layer Security (TLS) Protocol Version
1.2,” https://tools.ietf.org/html/rfc5246, accessed: 2016-07-20.

[36] A. Holdings, “mbed TLS,” https://tls.mbed.org/, accessed: 2016-07-20.
[37] N. Sastry and D. Wagner, “Security considerations for ieee 802.15. 4

networks,” in Proceedings of the 3rd ACM workshop on Wireless security.
ACM, 2004, pp. 32–42.


