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Accurately estimating genetic variance components is important for studying evolution in thewild. Empirical work on domesticated

and wild outbred populations suggests that dominance genetic variance represents a substantial part of genetic variance, and

theoretical work predicts that ignoring dominance can inflate estimates of additive genetic variance.Whether this issue is pervasive

in natural systems is unknown, because we lack estimates of dominance variance in wild populations obtained in situ. Here, we

estimate dominance and additive genetic variance, maternal variance, and other sources of nongenetic variance in eight traits

measured in over 9000 wild nestlings linked through a genetically resolved pedigree. We find that dominance variance, when

estimable, does not statistically differ from zero and represents a modest amount (2-36%) of genetic variance. Simulations show

that (1) inferences of all variance components for an average trait are unbiased; (2) the power to detect dominance variance is

low; (3) ignoring dominance can mildly inflate additive genetic variance and heritability estimates but such inflation becomes

substantial when maternal effects are also ignored. These findings hence suggest that dominance is a small source of phenotypic

variance in the wild and highlight the importance of proper model construction for accurately estimating evolutionary potential.
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Predicting the evolution of quantitative traits in wild animals re-

quires determining how these traits respond to selection (Lynch

and Walsh 1998). Because the evolutionary response depends

upon additive genetic variance, it is this component of genetic

variance that has been the focus of many empirical quantitative

genetic studies. Additive genetic variance is, however, only one

segment of genetic variance, the other two being nonadditive:

dominance and epistatic variances. Compared to additive genetic

variance, estimates of nonadditive genetic variance components

are uncommon. Although studies in animal and plant breeding,

lab experiments, and humans have provided estimates of dom-

inance variance (reviewed in Wolak and Keller 2014), studies

estimating nonadditive genetic variance in wild animal popula-

tions in situ (i.e., under ecologically relevant environmental con-

ditions) remain scarce. This lack of knowledge of dominance

variance in wild populations hampers critical evaluation of some

of the core theories in evolutionary genetics. In particular, the

Fisherian assumption that population size is (near) infinite im-

plies that dominance genetic variance can be ignored. This is

because nonadditive genetic effects average out to zero when a

(near) infinite number of genetic backgrounds are present in a

population (Fisher 1958). Furthermore, Hill et al. (2008) pre-

dicted using a biallelic single locus model that dominance vari-

ance can at best explain a small proportion of genetic variance un-

der drift-mutation equilibrium and speculated the same scenario

would apply under selection. In contrast, under a Wrightian view

of populations as finite, structured, and often small, nonadditive

genetic effects cannot be ignored in shaping local adaptation and

fitness landscapes (Wright 1931; Whitlock et al. 1995; Fenster

et al. 1997). From this perspective, dominance variance could be
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DOMINANCE GENETIC VARIANCE IN A WILD BIRD

pronounced in the wild, because most natural population are con-

sidered to have low effective population sizes (Roff 1997).

With theory taking two opposite stands regarding the impor-

tance of dominance, the resolution of this question lies in empir-

ical work. Compilation of empirical estimates, however, has not

led to a consistent conclusion. Notably, Hill et al. (2008) con-

ducted a literature review showing that narrow-sense heritability

is only a little less than repeatability and heritability in the broad

sense, and thus concluded that dominance variance is negligible.

In contrast, Crnokrak and Roff (1995) found that life history traits

are affected particularly strongly by dominance and the more re-

cent and more extensive compilation by Wolak and Keller (2014)

underlines that the dominance variance is a pronounced fraction

of total genetic variance in various traits (on average 38%; n =
553 point estimates). However, most of these estimates are based

on domesticated organisms or laboratory studies, where the en-

vironmental variance is reduced to a minimum and the genetic

architecture has likely been altered by domestication or adapta-

tion to the lab environment. Two studies conducted in humans

found dominance variance to be either negligible or to account

for most of the genetic variance in life history and physiolog-

ical traits (Abney et al. 2000; Kosova et al. 2010). One study

in zoo-housed orangutans showed that dominance accounts for

most of the genetic variance in personality (Adams et al. 2012).

In a few field trials studies conducted in trees, the proportion of

dominance to genetic variance was found to be 1 for survival

(Mullin et al. 1992), 0.59 and 0.53 for diameter (Waldmann et al.

2008; Costa et Silva et al. 2010), and 0.34 and 0.01 for height

(Mullin et al. 1992; Waldmann et al. 2008). Finally, one study

using a combination of a long-term pedigree and cross-fostering

design in wild birds showed that variance explained by the nest

of origin (after accounting for additive genetic and nest of rear-

ing effects), which is the upper limit to dominance variance, was

small in proportion to genetic variance (0.09; Merilä et al. 2001).

Clearly, more estimates of dominance in wild populations in situ

are needed to inform us of the magnitude of its effects sizes in the

wild.

The main limitation for inferring dominance variance in wild

animal populations in situ is that most organisms do not easily

allow obtaining the necessary knowledge of relatedness between

individuals. Indeed, dominance variance contributes to the phe-

notypic resemblance of both full-sibs and double first cousins,

the latter category of relatives being very rare in the wild (Wolak

and Keller 2014). Hence, the most viable option for inferring

dominance is—in principle—based on comparing the phenotypic

resemblance of full-sibs (affected by additive genetic and domi-

nance effects) to that of half-sibs (affected by additive genetic ef-

fects alone) (Cockerham and Weir 1977; Lynch and Walsh 1998).

In many organisms where parentage can be readily assessed, full

and half-sibs typically share common environment and mater-

nal effects, which are hence confounded with additive and domi-

nance genetic effects. Multigenerational phenotypic information

on full sibs from different breeding attempts, maternal and pater-

nal half-sibs, as well as more distant relatives is then addition-

ally required to avoid complete confounding (Wolak and Keller

2014). Clearly, therefore, inferring dominance in a wild popu-

lation is demanding. On the other hand, simulations show that

ignoring dominance variance results in inflated estimates of ad-

ditive genetic variance (Ovaskainen et al. 2008) thereby overesti-

mating evolvability. Importantly, the strength of this bias depends

on the amount of dominance variance. Under controlled environ-

mental conditions, dominance variance was shown to represent

a large (>0.5) fraction of the total genetic variance in fitness-

related traits (Crnokrak and Roff 1995; Wolak and Keller 2014).

It is hence possible that by ignoring dominance, additive genetic

variance is strongly overestimated in wild populations for traits

that are under selection. In addition, the tight relationship be-

tween maternal and both genetic variances suggests that even

greater biases can be expected when also maternal effects are ig-

nored, which corresponds to a commonly fitted model in ecology

and evolution. Such overestimation of additive genetic variance

could provide one explanation for why wild populations suffer

from an inflated expectation of evolutionary response compared

to what is observed (Pujol et al. 2018).

Our objective in this article is to test whether dominance can

be a nonnegligible part of genetic variance in a wild population,

and whether ignoring such dominance variance in quantitative

genetic analyses of traits in a wild population entails inflation of

additive genetic variance. To this end, we first obtain point esti-

mates of dominance genetic variance (in addition to other sources

of variance) in a wild population of blue tits. We focus on eight

morphological and behavioral traits measured in nestlings. We

estimate (when possible) additive genetic, dominance, common

environmental, and maternal variances underlying each of these

traits. After thus establishing what are realistic effect sizes of

dominance and other sources of variance in this wild popula-

tion, we use simulations to demonstrate that our data structure

allows providing unbiased estimates of all these variance compo-

nents and that ignoring dominance causes little bias in additive

genetic variance and heritability estimates. In contrast, we show

that models ignoring both dominance and maternal variance re-

sult in clearly inflated estimates of additive genetic variance and

heritability.

Material and Methods
DATA COLLECTION

Data were collected in a wild population of blue tits breeding

in nest boxes in South-Western Finland (Tammisaari, 60°01′N,

23°31′E) and monitored yearly since 2003. Nest boxes were
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Table 1. Sample size, average, and standard deviation (SD) of each studied trait.

Trait Number of nestlings Average SD Years

Handling aggression 9376 2.85 1.26 2006-2019
Breath rate 9114 1.92 0.41 2007-2019
Docility 8315 −0.21 0.17 2008-2019
Tarsus 9857 17.06 0.64 2003, 2005-2019
Mass 9865 11.47 1.11 2003, 2005-2019
Wing 9875 46.01 3.59 2003, 2005-2019
Head 9701 22.67 0.67 2005-2019
Tail 9858 24.98 4.28 2003, 2005-2019

visited weekly in May, and daily starting from their expected

hatching date until hatching was observed (D0). Two days after

hatching (D2), nestlings were weighed (using a scale with 0.1g

precision) and individually marked by clipping their nails. Be-

tween 2006 and 2010, reciprocal cross-fostering was performed

between pairs of nests with similar hatching date and average

mass (for more details, see Brommer and Kluen 2012). Between

D5 and D9, parents were caught in the box when feeding their

young and identified based on unique alphanumeric codes on

their metal ring or ringed if previously unringed. On D9, nestlings

were weighed and ringed after their nail code, which provides

information on their nest of origin, was read. On D16, nestlings

were all transferred in a large paper bag and morphometric and

behavioral measurements were taken following a fixed sequence

(cf. Brommer and Kluen 2012). First, each individual was held

still on its back by an observer, who counted how many times it

struggled during 10 seconds. Docility was calculated by multi-

plying the number of struggles per second by –1, such that higher

docility values indicate a more docile animal. Directly following

the docility assay, the time each bird took to take 30 breaths

was recorded twice using a stopwatch. Breath rate (BR), which

captures an individual’s stress response to handling (Carere and

van Oers 2004), was calculated as 30 divided by the average of

these two measures and expressed in number of breath/second.

Morphometric measurements were then taken: First, the bird’s

right tarsus and head-bill length were measured using a digital

sliding caliper (0.1-mm accuracy). Then, wing and tail lengths

were measured using a ruler (1-mm accuracy). A score was then

given to each bird based on its behavior (struggling, flapping

wings) during morphometric measurements. This score, which

is similarly measured in adults and called handling aggression

(HA), ranges from 1 (for completely passive individuals) to 5

(for the individuals struggling continuously) and reflects the time

it takes for each bird to calm down during handling. Finally, each

nestling was weighed using a Pesola spring balance (0.1-g accu-

racy) before being placed in a second large paper bag where it

remained with its already measured siblings until the entire brood

was processed and put back to its nest. In total, eight traits (three

behavioral and five morphological) were measured in nestlings

(Table 1) and analyzed using quantitative genetic models.

MICROSATELLITE GENOTYPING

Blood was taken on all adults when caught and feathers were

taken on nestlings on D9 for DNA extraction and genotyping. All

laboratory work was carried out by the Center of Evolutionary

Applications (University of Turku, Finland). DNA from feather

samples was extracted using a silica fine and filter plate-based

method modified from Elphinstone et al. (2003). DNA from

blood samples was extracted with a method modified from Aljn-

abi and Martinez (1997). All samples were genotyped with nine

microsatellite markers using a multiplex PCR approach. PCR was

carried out in one 8 µl reaction using QIAGEN Multiplex PCR

Kit (Qiagen Inc. Valencia, CA, USA) with the annealing temper-

ature of 57°C and the primer concentration varying from 0.09 to

0.5 µM following the standard protocol (Table S1). To improve

the microsatellite peak profiles, a GTTT-tail was added to the 5’

end of each reverse primer (Brownstein et al. 1996). The sex of

the offspring was determined by amplifying sex-specific genes

CHD1W and CHD1Z using P2 and P8 primers in an additional

amplification reaction using the same standard protocol with an-

nealing temperature at 55°C (Griffiths et al. 1998).

Amplifications were performed on Bio-Rad S1000 thermal

cyclers and the size of the fragments was determined by capil-

lary electrophoresis on an ABI PrismTM 3130xl genetic analysis

instrument. To minimize fragment analysis costs, two samples

were pooled for capillary electrophoresis. To enable pooling of

samples, two alternative sets of fluorescent labels, that is, all nine

markers (+sexing marker) with both FAM/VIC and NED/PET

labels, were used. The peak profiles of the pooled samples could

then be separated during scoring and visual inspection, using

GeneMarker version 2.4.0 (SoftGenetics).

POPULATION PEDIGREE

Parentage assignment was done for each year separately (2007-

2019), by combining genotype data and social pedigree and

using the R package MasterBayes (Hadfield et al. 2006). After

1542 EVOLUTION JULY 2020



DOMINANCE GENETIC VARIANCE IN A WILD BIRD

validating parent-offspring relationships between females and

nestlings sampled on the same territory (mismatch tolerance

= 1), we assigned genetic fathers, among all males genotyped

on the same year for each offspring, with a 95% probability

threshold. These analyses revealed that between 2007 and 2019,

extra-pair young represented 15% (standard deviation [SD] = 3)

of the young in the population and occurred in 45% (SD = 6) of

broods. In nests that were not genotyped (before 2007, or when

the mother or offspring was not genotyped), we assumed social

parents to be the genetic parents of the offspring they reared. The

resulting population pedigree hence combines social and genetic

pedigrees and represents our best inference of the true pedigree

in this population.

Phenotypic data are available for 9887 individuals and the

pruned pedigree (which only includes informative individuals)

holds record for 10,946 individuals, 9890 maternities, 8620 pa-

ternities, 38,507 full sibs, 82,487 maternal sibs, 68,748 paternal

sibs, 43,980 maternal half-sibs, 30,241 paternal half-sibs, a mean

family size of 12.4, a mean pairwise relatedness of 1.5 × 10−03,

and a maximum pedigree depth of 9. Several features of this

dataset are expected to provide information that allows obtain-

ing unbiased estimates of dominance, additive genetic, maternal,

and common environment variance. First, full sibs and maternal

half sibs share common environment effects and maternal effects.

Because dominance is expected to contribute to phenotypic co-

variance between full sibs but not between half-sibs, compar-

ing full to half-sibs allows estimating dominance variance. In

this dataset, 1304 phenotyped nestlings in 473 nests are identi-

fied as extra-pair offspring. Second, paternal half sibs, regard-

less of whether they are sired through extra-pair or within-pair

mating, do not share common environment nor maternal effects

and provide unconfounded information on additive genetic vari-

ance. In this population, 220 of the identified 563 sires mated

with more than one female (1.67 females per male on average).

Third, comparing full sibs from different breeding attempts al-

lows estimating consistent differences in offspring traits across

mothers (maternal effects). Of the 794 known mothers, 271 re-

produced in multiple years (1.54 broods per female on average),

151 are known to have reproduced more than once with the same

male. Finally, cross-fostering experiments allow estimating en-

vironmental effects due to a common nest of rearing (common

environment). In this dataset, 1437 nestlings from 350 broods

were raised in a different nest than their nest of origin. There

were no double first cousins in this population. In natural popu-

lations, the estimation of dominance can be complicated by the

presence of inbreeding (see Wolak and Keller 2014). Based on

this population’s pedigree, we found inbreeding to be rare: 66

individuals (0.6% of the population) have a nonzero inbreeding

coefficient (f), among which 37 closely inbred (f = 0.25) individ-

uals (0.3% of the population) produced by seven pairs (0.4% of

the pairs). These numbers and the average inbreeding coefficient

in the population (9.8 × 10−04) are lower than what was found

in a noninbred great tit population showing low inbreeding vari-

ance (Szulkin and Sheldon 2008; Chapman and Sheldon 2011).

We hence assume inbreeding to have negligible impacts on our

variance component estimates.

ANIMAL MODELS

Quantitative genetic analyses were performed by running uni-

variate animal models for each trait separately. Animal models

are a type of linear mixed model in which the additive genetic and

dominance relatedness matrices derived from a population pedi-

gree can be fitted as random effects to estimate additive genetic

and dominance variance (Henderson 1984; Kruuk 2004; Wilson

et al. 2010). In all models, we also fitted year, brood of rearing,

mother identity, and observer identity as additional random

effects to estimate variance among years, broods (common envi-

ronment variance), mothers (maternal variance), and observers.

Sex was fitted as a fixed effect in all models to account for sexual

dimorphism, which can already occur at the nestling stage. Cross-

sex additive genetic correlations for all traits were calculated and

they were all ≥0.96 (standard error [SE] ≤ 0.29). Finally, han-

dling order was fitted as a fixed effect for behaviors to correct for

potential effects of waiting time before measurement, and mass

was corrected for tarsus length to reflect body condition. Ani-

mal models were solved using Restricted Maximum Likelihood

(REML) and implemented in ASReml-R version 4.0 (Butler et al.

2009; VSN International, Hemel Hempstead, U.K.). Statistical

significance of fixed effects was tested using conditional Wald

F tests. Statistical significance of dominance variance was tested

using likelihood ratio tests (LRT) tested against a chi-square

distribution with mixture of zero and one degree of freedom to

account for the fact that variances cannot be below zero (Self and

Liang 1987). For each variance component, we calculated its ap-

proximated 95% confidence interval (CI) by adding/subtracting

1.96 × SE to its point estimate that we use for visible display

purposes only and not for statistical testing. Heritability (h2) of

each trait was calculated as the ratio VA/VP, where we calculated

VP, the phenotypic variance, as the sum of the REML estimates

of additive genetic effects, dominance, maternal, common en-

vironment effects, and residuals, conditional on the fixed-effect

structure of the model. Standard errors of variance ratios were

approximated using the delta method (Fischer et al. 2004). All

statistical analyses were performed in R (R Development Core

Team 2019). Residuals of all animal models were approximately

normally distributed (Shapiro-Wilk test values >0.91; Figure

S1). The script of the quantitative genetic analysis is provided in

Text S1.
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SIMULATIONS

Simulations were performed using the population pedigree

and the R package nadiv (Wolak 2012) to generate values for

different random effects of a hypothetical “average trait” (with

phenotypic variance equal to 1 and additive genetic, common

environment, maternal, dominance, and residual variances equal

to their average proportion of phenotypic variance calculated

across all traits). In total, 1000 datasets were simulated and for

each dataset, five different models were run. In model 1 (“full

model”), all five variance components were estimated. Model 2

was similar to model 1 but dominance variance was constrained

to be equal to the variance of the simulated dominance values.

Model 2 was then compared to model 1 using LRT and we

calculated the percentage of simulations in which the estimated

dominance variance differed statistically from the true domi-

nance variance. In model 3 (“Model –D”), dominance variance

was not fitted as a random effect. Model 3 was then compared

to model 1 using LRT and we calculated the percentage of

simulations in which a significant dominance variance was found

(power). Maternal and dominance variances are likely to be

confounded in natural datasets and we wanted to investigate our

capacity to disentangle them and test whether not fitting one can

create bias in the other. In model 4 (“Model –M”), maternal vari-

ance was hence not fitted as a random effect. In model 5 (“Model

–D–M”), neither maternal nor dominance variance were fitted as

random effects. We calculated the distribution (average and 95%

confidence interval [CI]) of the error (estimated-simulated value)

of all variance estimates obtained in models 1, 3, 4, and 5. The

script of the simulations is provided in Text S2. To assess the

identifiability of all random effects, we (i) estimated the correla-

tions between each pair of variance components estimated by the

“full model” across all simulated datasets (as done in Bourret and

Garant 2017) and (ii) extracted each empirical model’s average

information matrix and performed a multivariate sampling ap-

proach (with n = 1000) advocated in Houle and Meyer (2015) to

estimate sampling correlations between all variance components

and their 95% CI. A strong negative correlation is expected when

two components are confounded (low identifiability).

Results
ANIMAL MODEL ESTIMATES

We found significant differences between sexes for all traits ex-

cept tail length. Males were larger and heavier than females on

D16, behaved more aggressively, had a lower BR, and were less

docile than females. We also found that handling order increased

HA and decreased BR but did not significantly affect docility

(Tables S2-S9).

Regarding variance components, all traits exhibited additive

genetic and common environment variance as their nonoverlap-

ping zero 95% CI illustrates (Fig. 1). For all behaviors, both com-

ponents had comparable magnitude and for tarsus length, addi-

tive genetic variance was greater than common environment vari-

ance. In contrast, for all other morphological traits, common en-

vironment variance was greater than additive genetic variance.

Maternal variance was a relatively small variance component for

all right traits and its 95% CI overlapped zero for all traits ex-

cept BR and tarsus length. Morphological traits exhibited impor-

tant among-year variance compared to behaviors for which this

variance component was relatively low (and overlaps zero for

HA and docility). Among-observer variance varied substantially

among traits. It was relatively important for HA, BR, head, and

tail length, but its 95% CI always overlapped zero. Finally, dom-

inance variance was one of the smallest variance components for

all traits with maternal variance. Dominance variance was indeed

bound to zero and hence not estimable for HA and tail length,

whereas for the other 6 traits, its estimated 95% CIs overlapped

zero. LRT tests confirmed that dominance variance was not statis-

tically different from zero for BR (χ2 = 0.003, P = 0.48), docil-

ity (χ2 = 1.83, P = 0.09), tarsus (χ2 = 0.06, P = 0.40), size-

corrected mass (χ2 = 0.11, P = 0.37), wing length (χ2 = 1.93,

P = 0.08), and head-bill length (χ2 = 0.64, P = 0.21). All esti-

mates of variance and their standard errors are provided in Tables

S2-S9.

We computed proportional contributions of the above

variance components excluding year and observer variances.

Proportionally, residual variance was the largest variance compo-

nent for all behaviors (Fig. 2). In contrast, common environment

variance was the major source of phenotypic variance for most

morphometric traits except tarsus length, for which it was ad-

ditive genetic variance. Heritability varied between traits, being

low for tail length (h2 = 0.074, SE = 0.024), moderate for

behaviors (h2 = 0.238, SE = 0.035 for HA; h2 = 0.158, SE =
0.037 for BR; h2 = 0.156, SE = 0.036 for docility), for mass

(h2 = 0.252, SE = 0.036), wing (h2 = 0.136, SE = 0.034), and

head-bill length (h2 = 0.227, SE = 0.040), and the highest for

tarsus length (h2 = 0.387, SE = 0.045). Assuming unbiased

point estimates, dominance variance represented a modest part

of genetic variance for BR (0.021, SE = 0.355), tarsus (0.034,

SE = 0.132), and mass (0.056, SE = 0.153), but less so for head

length (0.160, SE = 0.181), docility (0.360, SE = 0.196), and

wing length (0.351, SE = 0.193).

SIMULATIONS: POWER, BIAS, AND IMPACT OF THE

MODEL’S RANDOM STRUCTURE

Simulations showed that for a hypothetical average trait mea-

sured in this population, the estimated dominance variance

statistically differed from the simulated dominance variance in

5.5% of the simulations. Although our power to statistically
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Figure 1. Point estimate and approximated 95% CI of each variance component in each trait. Each variance component is assigned

a unique color (consistent across all figures) to ease visual comparison between traits. Title acronyms: HA = handling aggression; BR

= breath rate. Axes acronyms: VA = additive genetic variance; VD = dominance variance; VM = maternal variance; VCE = common

environment variance; VR = residual variance; VY = year variance; VO = observer variance.

detect dominance variance was low (15.2%), these simulations

also showed that estimates of all variance components were

unbiased when all fitted in the model (“Full model,” Fig. 3 upper

panel).

These simulations also suggested that not fitting dominance

variance for an average trait (Model “–D”) did not bias estimates

of maternal and common environmental variances. However,

it caused an inflated residual variance and a slightly overesti-

mated additive genetic variance. In contrast, not fitting maternal

variance (Model “–M”) generated clearly inflated estimates of

additive genetic and dominance variance, slightly overestimated

common environment variance, and an underestimated residual

variance. Finally, in the model not fitting dominance and mater-

nal variance (Model “–D–M”), estimates of additive genetic and

common environment variance were even more inflated, whereas

residual variance was unbiased (Fig. 3 upper panel). Hence, ig-

noring dominance and maternal variance can bias estimates of ad-

ditive genetic and other components of the phenotypic variance,

and therefore estimates of heritability. Indeed, applying these four

models to simulated data showed that heritability estimates were

inflated when fitting reduced models (Fig. 3 lower panel): heri-

tability went from 0.198 (“Full model”) to 0.209 (+5.71%) when

ignoring dominance variance, and to 0.229 (+15.67%) when

ignoring maternal variance, whereas not fitting both components

resulted in a heritability of 0.246 (+24.46%). Applying these four

models to empirical data also revealed differences in heritability

estimates between full and reduced models, which varied in am-

plitude across traits due to different amounts of dominance and

maternal variance (Table 3). Importantly, heritability estimates

were systematically higher when both dominance and maternal

effects were not fitted. In addition, differences in heritability

between the full and the most reduced model were often higher

than the sum of the differences between the full model and each

of the two other reduced models, in particular for BR and docility

(Table 3) but also for simulated data (Table 2). For both simu-

lated and empirical data, higher heritability estimates obtained in
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Table 2. Variance components (and their 95% CI) estimated by the four animal models for a simulated trait.

Variance component Full model Model-D Model-M Model-D-M

Additive genetic VA 0.20 [0.13, 0.27] 0.21 [0.14, 0.28] 0.23 [0.16, 0.29] 0.25 [0.19, 0.31]
Dominance VD 0.03 [0.00, 0.15] 0.05 [0.00, 0.17]
Maternal VM 0.03 [0.00, 0.06] 0.03 [0.00, 0.06]
Common environment VE 0.30 [0.26, 0.34] 0.30 [0.26, 0.34] 0.31 [0.27, 0.35] 0.31 [0.28, 0.36]
Residual VR 0.43 [0.36, 0.49] 0.46 [0.42, 0.50] 0.41 [0.33, 0.46] 0.44 [0.40, 0.47]
Phenotypic VP 1.00 [0.96, 1.05] 1.00 [0.96, 1.05] 1.00 [0.96, 1.05] 1.00 [0.96, 1.05]

Figure 2. Proportions of the phenotypic variance (total column

height) explained by additive genetic (VA), dominance (VD), ma-

ternal (VM), common environment (VCE), and residual (VR) vari-

ances calculated based on REML point estimates conditional upon

the fixed effects in the model. To facilitate trait comparisons, we

here ignore variances due to year and observer, although these

were included in the model.

reduced models were explained by a higher additive genetic vari-

ance because phenotypic variance remained constant (Tables 2

and S10-S17).

The correlation matrix between variance components esti-

mated by the full model for simulated data revealed that maternal

variance was moderately confounded with additive genetic and

common environmental variance (r = −0.42 and −0.32, respec-

tively, Table S18) and positively correlated to residual variance

(r = 0.34). In contrast, dominance variance had weak, moderate,

and strong negative correlations with maternal (r = −0.09), ad-

ditive genetic (r = −0.35), and residual variance (r = –0.80), re-

spectively. Common environmental variance was not and weakly

Figure 3. Median estimate and 95% CI of variance errors (esti-

mated – simulated values) and heritability for each model. Each

color denotes a different variance component (VA = additive ge-

netic variance; VD= dominance variance; VM=maternal variance;

VCE = common environment variance; VR = residual variance).

confounded with additive and dominance genetic variances (r

= −0.01 and −0.11, respectively). Sampling correlation ma-

trices between variance components estimated for each trait in

each empirical model were overall qualitatively similar, although

correlations between additive and dominance genetic variances

were weaker and both genetic components were positively

correlated with common environmental variance (Tables S19-

S26).
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Table 3. Heritability (and SE) estimated by the four empirical animal models for each studied trait. Traits are ranked by decreasing order

of their respective proportion of maternal to phenotypic variance (VM/VP) and proportion of dominance to phenotypic variance (VD/VP).

Relative difference (in %) between the heritability estimate from each reduced model and the full model estimate is printed in italics

below each heritability estimate.

Full model Model-D Model-M Model-D-M

Trait VM/VP VD/VP h2 h2 h2 h2

Tarsus 0.085 0.014 0.39 (0.04) 0.39 (0.04) 0.48 (0.04) 0.49 (0.03)
1.32 25.09 27.79

BR 0.080 0.003 0.16 (0.04) 0.16 (0.03) 0.23 (0.03) 0.26 (0.03)
0.64 44.8 62.83

Tail 0.026 0 0.07 (0.02) 0.07 (0.02) 0.10 (0.02) 0.10 (0.02)
0 35.76 37.1

Docility 0.015 0.088 0.16 (0.04) 0.18 (0.03) 0.17 (0.03) 0.20 (0.03)
12.46 11.51 27.81

HA 0.015 0 0.24 (0.04) 0.24 (0.04) 0.26 (0.03) 0.26 (0.03)
0 7.8 7.8

Head 0.012 0.045 0.23 (0.04) 0.24 (0.04) 0.24 (0.04) 0.26 (0.03)
7.24 5.36 13.22

Wing 0.007 0.073 0.14 (0.03) 0.16 (0.03) 0.14 (0.03) 0.17 (0.03)
20.77 5.45 27.45

Mass 0.006 0.015 0.25 (0.04) 0.26 (0.03) 0.26 (0.03) 0.27 (0.03)
3.25 3.08 6.16

Discussion
We infer genetic dominance variance for different nestling traits

in a wild population and use simulations to study repercussions of

ignoring genetic dominance across various modelling schemes.

Our findings provide three clear conclusions.

First, dominance variance can be estimated in the wild, al-

though when estimable (6/8 traits), dominance variance does

not statistically differ from zero. These results combined with

our simulations demonstrate that the power to detect a realis-

tic level of dominance variance in this population is low despite

the availability of long-term phenotypic data of over 9000 ani-

mals and a pedigree resolved for paternities. This issue clearly

illustrates the fact that these analyses are data hungry and thus

that inferring dominance in the wild is challenging (cf. Kruuk

and Hill 2008; Wolak 2012; Wolak and Keller 2014) and ex-

plains the paucity of empirical estimates from wild populations

to date. However, our simulations underline that this wild popu-

lation’s data structure including half-sibs, full sibs, reciprocally

cross-fostered nestlings, and multiple breeding attempts for fe-

males permits gathering sufficient information to produce es-

timates of dominance variance and other variance components

that are unbiased and weakly to moderately confounded. Esti-

mates of dominance variance, although not statistically differ-

ent from zero, add to the few effect sizes of dominance in re-

lation to other variance components in a nondomestic species

and constitute rare estimates of dominance variance in a wild

population.

Second, dominance variance—when estimable—explains a

small portion of the genetic variance, with point estimates rang-

ing from 2% to 36%. In contrast, based on 553 literature point

estimates, Wolak and Keller (2014) computed that on average

38% of the genetic variance was due to dominance. Hence, our

study implies that dominance variance may be relatively modest

in wild populations compared to measures obtained under con-

trolled environmental conditions, although further attempts to es-

timate dominance variance in other systems is clearly required.

Not surprisingly, point estimates of dominance represented only

a small fraction (less than 9%) of phenotypic variance in our

wild study population subjected to ecological relevant environ-

ment variance, whereas it was on average 14% (475 point es-

timates) under controlled environmental conditions (Wolak and

Keller 2014). Interestingly, estimates of dominance variance for

behavioral traits align with earlier findings (Brommer and Kluen

2012) in which nest-of-origin variance (which represented the

upper limit to dominance variance) was zero for HA and small

for BR and docility (7.3% and 4% of phenotypic variance, re-

spectively). The low proportion of phenotypic variance explained

by dominance in this population is also consistent with findings

based on nest-of-origin variance from another wild bird popu-

lation (Merilä et al. 2001), in which dominance variance in body
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condition was considered to explain at most 9% of the phenotypic

variance.

Third, based on simulations we find that ignoring dominance

variance in our population indeed inflates the estimate of ad-

ditive genetic variance and heritability, which aligns with the-

oretical predictions (cf. Ovaskainen et al. 2008) and empirical

findings (Waldmann et al. 2008). However, this inflation can re-

main relatively small as long as maternal variance is included.

In terms of our variance partitioning, maternal variance is the

sum of both maternal genetic and maternal environmental vari-

ances, and captures differences in offspring trait values that are

maintained across repeated records of the same mother. Not in-

cluding maternal variance can clearly inflate the estimates of

additive and dominance genetic variances and, to a lesser ex-

tent, common environmental variance. This finding is not sur-

prising, as it reflects the fact that having the same mother is

a major source of resemblance in full- and half-sibs produced

and reared in one or multiple broods by the same female. In-

terestingly, although we find that ignoring maternal variance

can inflate estimates of dominance variance when explicitly ac-

counted for in the model, we do not find the converse to hold;

that is, maternal variance does not increase when the dominance

variance component is not accounted for in the model. Instead,

dominance variance ends up in both additive genetic and resid-

ual components. This “leaking” of variance between compo-

nents in reduced models is consistent with the confounding be-

tween them in the full models. It also aligns with earlier pre-

dictions that dominance and maternal effects (both included in

the nest-of-origin component in Hadfield and Owens 2006) can

inflate estimates of additive genetic variance (Lynch and Walsh

1998; Hadfield and Owens 2006) and that ignoring dominance

variance often inflates individual-level variance here estimated

as residual variance (Kruuk 2004; Adams et al. 2012). Impor-

tantly, biases in the different variance components resulting from

each reduced model systematically cause inflated heritability

estimates.

The greater bias in heritability when ignoring maternal ef-

fects than when ignoring dominance, even when these two com-

ponents have an equal variance, is likely explained by maternal

variance being more strongly confounded with additive genetic

variance, at least in our study population. Strikingly, the ani-

mal model producing the most inflated heritability estimates (i.e.,

the one ignoring both dominance and maternal effects) is com-

monly fitted in evolutionary quantitative genetic studies. Indeed,

maternal variance is commonly not included in animal models

estimating the heritability of juvenile traits in pedigreed popu-

lations (e.g., Frentiu et al. 2007, Dingemanse et al. 2009, Weiß

and Foerster 2013, Pavitt et al. 2014, Class and Brommer 2015,

Stedman et al. 2017). Ignoring maternal variance is often jus-

tified by a limited number of breeding attempts per female or

by testing beforehand that the inclusion of maternal identity re-

turns nonsignificant or nonestimable maternal variance. In this

population, for example, 66% of females breed only once and

maternal variance represents a rather small portion of pheno-

typic variance. However, we show that not fitting maternal ef-

fects, even when small and nonsignificant, can substantially bias

estimates of additive genetic variance and therefore should be

avoided.

The above conclusions are moderated by the caveat that the

dominance variance estimates we obtain and use in the simu-

lations are point estimates that do not significantly differ from

zero. As stated above, we view these point estimates are rele-

vant, as they present the maximum likelihood and unbiasedly es-

timated effect sizes of dominance for a variety of traits in a wild

population. Knowledge of effect sizes from a wild population is

required to realistically explore power of detecting dominance

as well as possible erroneous inferences of additive genetic and

other variance components when ignoring dominance. This is be-

cause a simulation is always conditional upon the effect sizes one

assumes in addition to the data structure (pedigree and pheno-

typed individuals). Using estimates of dominance variance ob-

tained from lab and domesticated animals would risk being non-

representative of wild populations. Our findings imply that as-

suming 38% of genetic variance is due to dominance is a maximal

value in wild populations, rather than an average, as studies in

controlled environments suggest (Wolak and Keller 2014). Still,

the conclusions of our simulations are an a posteriori exploration

specific to our study population that may or may not be relevant

in other systems. To this end, we recommend that analysts ex-

plore the outcome of simulations tailored to their specific study

system to quantify in which variance component dominance vari-

ance ends up when ignored. Our findings combined with Wolak

(2012), Wolak and Keller (2014), and our script (Text S2) pro-

vide a good starting point for straightforward construction of such

simulations.

To conclude, this study demonstrates that unbiased point es-

timates for dominance variance can be inferred in a wild popu-

lation in situ and that dominance variance in the wild is likely

lower than estimates from controlled environments suggest. Fur-

ther, ignoring such low level of dominance does not strongly

inflate estimates of additive genetic variance and heritability as

long as variance across mothers is accounted for. We stress that

this conclusion is specific to our study and may or may not be

generalizable to other systems or to other type of traits (e.g.,

life history traits). We therefore encourage conducting simula-

tions to explore the sensitivity of inferences for ignoring domi-

nance and to report point estimates of dominance whenever es-

timable, as we need to compile estimates in a variety of natu-

ral systems to deepen our understanding of its importance in the

wild.
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