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Abstract: Auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) are copper-
dependent oxidoreductases that use O2 or H2O2 to perform oxidative cleavage of cellulose in the
presence of an electron donor. Combined with cellulases, they can assist in a more efficient cleavage
of cellulose. AA9 LPMOs have therefore attracted considerable attention in recent years for use in
biotechnological applications. Here, a native AA9 LPMO (nTaAA9A) from the thermophilic fungus
Thermoascus aurantiacus was purified and characterized. The enzyme was shown to be active and able
to cleave cellulose and xylan to produce C1- and C4-oxidized products. It was also found to retain
about 84.3, 63.7, and 35.3% of its activity after incubation for 30 min at 60, 70, and 80 ◦C, respectively,
using quantitative activity determination. The structure was determined to 1.36 Å resolution and
compared with that of the recombinant enzyme expressed in Aspergillus oryzae. Structural differences
in the glycosylated Asn138 and in solvent-exposed loops were identified.

Keywords: monooxygenase; oxidoreductase; copper; cellulose degradation; thermostability;
thermophilic fungus

1. Introduction

Cellulose is a polysaccharide consisting of a linear chain of glucose units connected
through 1,4-β-glycosidic bonds. As the most abundant renewable organic compound
on earth, cellulose can be turned into economically viable biofuels by enzymatic degra-
dation [1]. A significant milestone in the enzymatic degradation of cellulose was the
discovery of lytic polysaccharide monooxygenases (LPMOs) that catalyze the cleavage of
1,4-β-glycosidic bonds in cellulose. Contrary to cellulases which, as glycoside hydrolases
(GHs), catalyze the breakage of 1,4-β-glycosidic bonds in cellulose via a hydrolytic mech-
anism, LPMOs follow an oxidative mechanism [2–4]. Extensive studies in LPMOs have
led to their further classification as Auxiliary Activity (AA) enzymes in the Carbohydrate
Active enZymes (CAZy; www.cazy.org; accessed on 20 November 2021) database [5], where
they form eight separate families (AA9–AA11, AA13–AA17) [6,7]. LPMOs of fungal origin
are found in the families AA9 (formerly GH61) and AA11.

The discovery of LPMOs has revolutionized the enzymatic degradation of cellulose
because LPMOs can cleave crystalline cellulose and allow cellulases, which interact with
single cellulose chains, to hydrolyze cellulose more efficiently [4,8,9]. Apart from cellulose
degradation, LPMOs have also been suggested to play a role in various other biological
processes, such as bacterial pathogenicity [10] and viral virulence [11].

LPMOs are copper-dependent oxidoreductases that employ O2 or H2O2 to carry out
oxidative cleavage of cellulose in the presence of an electron donor [4,8,9,12–15]. LPMOs
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use a cellulose degradation mechanism different from that of cellulases, as they lack a
conserved carboxylate pair and an active site groove [16]. The reaction proceeds through
an oxidative step that involves the hydroxylation of crystalline cellulose at the C1 or C4
carbon, leading to the subsequent cleavage of the glycosidic bond.

Crystal structures of ~30 LPMOs are currently known [16], including those of Ther-
moascus aurantiacus TaAA9A (PDB id 2yet) [17], Aspergillus fumigatus AfuAA9A (PDB id
6h1z) [18], Serratia marcescens SmAA10A (PDB id 2bem) [19], Aspergillus oryzae AoAA13
(PDB id 4opb) [20], and recently, McAA9F (PDB id 7ntl) [21] from the thermophilic fungus
Malbranchea cinnamomea. The available LPMO structures have revealed a planar surface
suitable for binding crystalline cellulose and the presence of a single copper ion located at
the center of the planar surface [4,12]. A remarkable catalytic characteristic of LPMOs is the
difference in regioselectivity of cellulose oxidative cleavage. It has been shown that LPMOs
are able to cleave cellulose by C1 and C4 oxidation to form non-oxidized and oxidized
cello-oligosaccharides [17,22,23].

LPMOs are also capable of breaking down xylan. Fungal AA9 LPMOs, such as LsAA9A
from Lentinus similis [12] and MtLPMO9A from Myceliophthora thermophila [24] have been
shown to cleave xylan. Xylan-active AA14 LPMO from Pycnoporus coccineus, PcAA14B, and
GH30 TtXyn30A from Thermothelomyces thermophila were found to act synergistically with a
family GH11 endoxylanase (AnXyn11) in the degradation of xylan-containing substrates,
resulting in an increase of the released total oligosaccharides [25]. A synergistic action of
keratinases with LPMOs has also been proposed [26], thus offering additional strategies to
improve keratinase performance.

Various protein engineering efforts have been carried out to improve activity and
thermostability of LPMOs. For example, a tetramutant in Af AA9A_B with remarkable
improvement in biomass conversion at elevated temperatures has been reported [18].
Genomic sequencing has shown a number of AA9 LPMOs in thermophilic fungi [27–29].
AA9 LPMOs from thermophilic fungi are potentially more thermostable than those from
mesophilic fungi; thus, they have received increased attention in recent years [17,28]. The
recombinant AA9 LPMO (rTaAA9A) from the thermophilic fungus Thermoascus aurantiacus
is well characterized, and its C1- and C4-oxidized products were previously identified
based on mass spectrometry analysis [17] and sequence and phylogenetic analysis [27].
Here, we report the purification and characterization of the native TaAA9A (nTaAA9A). The
C1- and C4-oxidized products of nTaAA9A were identified, and the thermostability of the
enzyme was studied using quantitative activity determination. nTaAA9A reaction products
with xylan as a substrate were identified as well. Furthermore, its structure was determined
and compared with that of the recombinant enzyme expressed in Aspergillus oryzae.

2. Results and Discussion
2.1. Purification

A native LPMO was purified to homogeneity from the culture filtrate of T. auranti-
acus growing in cellulose-containing medium by ion-exchange chromatography and gel
filtration (Figure 1a) and identified as TaAA9A using liquid chromatography–tandem
mass spectrometry (LC–MS/MS) (Figure S1a,b). The molecular weight of the purified
TaAA9A was estimated to be about 27.42 kDa by SDA-PAGE (Figure 1a), which is higher
than that calculated based on the deduced amino acid sequence (24.39 kDa), suggesting
glycosylation. Using NetNGlyc 1.0 Server (www.cbs.dtu.dk/services/NetNGlyc/ accessed
on 20 November 2021), a putative N-linked glycosylation site (Asn138) in the deduced
amino acid sequence of TaAA9A was predicted, indicating that the TaAA9A protein may
be N-glycosylated. Further periodic acid-Schiff staining confirmed nTaAA9A’s glycosy-
lation (Figure 1b), in agreement with the predicted results of NetNGlyc 1.0 Server and
SDS-PAGE analysis.

www.cbs.dtu.dk/services/NetNGlyc/
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Figure 1. SDS-PAGE of the purified native TaAA9A. nTaAA9A was visualized (a) by staining with 
Coomassie Brilliant Blue; (b) by staining with the Pierce™ Glycoprotein Staining Kit. Lane M, pro-
tein markers (kDa); Lanes 1 and 2, nTaAA9A. 
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TOF MS), and high-performance liquid chromatography–refractive index detector 
(HPLC-RID). TLC analysis showed that nTaAA9A can cleave cellulose to yield cello-oli-
gosaccharides with various degrees of polymerization (DP) (Figure 2). To demonstrate the 
presence of C1- and C4-oxidized oligosaccharides, a previously described chemical 
method [17,30] using methyl iodide to permethylate nTaAA9A products was employed. 
As expected, molecular ion peaks at m/z DPn + 30 and m/z DPn − 16 corresponding to C1- 
and C4-oxidized oligosaccharides were observed using MALDI–TOF MS (Figure 3). To 
further determine the presence of C1- and C4-oxidized oligosaccharides, a chemical 
method using trifluoroacetic acid (TFA) to hydrolyze nTaAA9A products was applied. 
Using HPLC–RID analysis, two C1- and C4-oxidized monosaccharides were observed 
(Figure 4a,b). These results indicate the presence of C1- and C4-oxidized oligosaccharides 
in nTaAA9A reaction products. 

 
Figure 2. TLC analysis of nTaAA9A reaction products using PASC as a substrate. nTaAA9A reaction 
products were formed following incubation of 0.5% PASC with nTaAA9A in 10 mM HOAc–
NH4OAc (pH 5.0) and 1 mM ascorbate at 50 °C for 48 h. Lane M, standard cello-oligosaccharides 
(G1–G6); Lane S, nTaAA9A reaction products; Lane CK, control sample analyzed as above, except 
that no nTaAA9A was added. 

Figure 1. SDS-PAGE of the purified native TaAA9A. nTaAA9A was visualized (a) by staining with
Coomassie Brilliant Blue; (b) by staining with the Pierce™ Glycoprotein Staining Kit. Lane M, protein
markers (kDa); Lanes 1 and 2, nTaAA9A.

2.2. Product Identification

nTaAA9A reaction products were identified using thin-layer chromatography (TLC),
matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF
MS), and high-performance liquid chromatography–refractive index detector (HPLC-RID).
TLC analysis showed that nTaAA9A can cleave cellulose to yield cello-oligosaccharides
with various degrees of polymerization (DP) (Figure 2). To demonstrate the presence of
C1- and C4-oxidized oligosaccharides, a previously described chemical method [17,30]
using methyl iodide to permethylate nTaAA9A products was employed. As expected,
molecular ion peaks at m/z DPn + 30 and m/z DPn − 16 corresponding to C1- and C4-
oxidized oligosaccharides were observed using MALDI–TOF MS (Figure 3). To further
determine the presence of C1- and C4-oxidized oligosaccharides, a chemical method using
trifluoroacetic acid (TFA) to hydrolyze nTaAA9A products was applied. Using HPLC–
RID analysis, two C1- and C4-oxidized monosaccharides were observed (Figure 4a,b).
These results indicate the presence of C1- and C4-oxidized oligosaccharides in nTaAA9A
reaction products.
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Figure 2. TLC analysis of nTaAA9A reaction products using PASC as a substrate. nTaAA9A reaction
products were formed following incubation of 0.5% PASC with nTaAA9A in 10 mM HOAc–NH4OAc
(pH 5.0) and 1 mM ascorbate at 50 ◦C for 48 h. Lane M, standard cello-oligosaccharides (G1–G6);
Lane S, nTaAA9A reaction products; Lane CK, control sample analyzed as above, except that no
nTaAA9A was added.
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Figure 3. Identification of nTaAA9A permethylated reaction products using MALDI–TOF MS.
nTaAA9A reaction products upon incubation of 0.5% PASC with nTaAA9A in 10 mM HOAc–NH4OAc
(pH 5.0) and 1 mM ascorbate at 50 ◦C for 48 h, followed by permethylation with methyl iodide.
C1-oxidized oligosaccharides (m/z +30), C4-oxidized oligosaccharides (m/z −16), and non-oxidized
oligosaccharides (m/z +0).
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Figure 4. Identification of nTaAA9A reaction products using HPLC–RID. (a) nTaAA9A reaction
products after incubation of 0.5% PASC with TaAA9A in 10 mM HOAc–NH4OAc (pH 5.0) and
1 mM ascorbate at 50 ◦C for 48 h, followed by hydrolysis with TFA. C1-oxidized products, if present,
were hydrolyzed by TFA to yield glucose and gluconic acid. The standard used was a mixture
of glucose and gluconic acid; S: nTaAA9A reaction products hydrolyzed by TFA; CK, the control
sample analyzed as above but without nTaAA9A. (b) TaAA9A reaction products upon incubation
of 0.5% PASC with TaAA9A in 10 mM HOAc–NH4OAc (pH 5.0) and 1 mM ascorbate at 50 ◦C for
48 h, followed by reduction with NaBH4 and by hydrolysis with TFA. If there were C4-oxidized
products, they were reduced by NaBH4, followed by hydrolysis with TFA to yield glucose, galactose,
and sorbitol. Standard, a mixture of glucose, galactose, and sorbitol; S: nTaAA9A reaction products
reduced by NaBH4, followed by hydrolysis with TFA; CK, the control sample was analyzed as above,
except without nTaAA9A.

It has been demonstrated that rTaAA9A expressed in Aspergillus oryzae can cleave cel-
lulose to produce C1- and C4-oxidized cello-oligosaccharides [17], using MALDI–TOF MS.
In the present study, we show that the native TaAA9A can cleave cellulose to produce C1-
and C4-oxidized cello-oligosaccharides using MALDI–TOF MS and HPLC–RID analysis,
which further confirms the nature of the C1- and C4-oxidizing activity of nTaAA9A.

The activity of nTaAA9A towards xylan was also investigated. MALDI–TOF MS
analysis of nTaAA9A reaction products with xylan as a substrate showed that nTaAA9A can
cleave xylan to produce C1- and C4-oxidized xylo-oligosaccharides (Figures 5a,b and S2),
similar to LsAA9A from Lentinus similis [12] and MtLPMO9A from Myceliophthora ther-
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mophila [24]. Notably, T. aurantiacus can simultaneously secrete three main enzymes on
biomass substrates: a GH7 cellobiohydrolase, a GH10 xylanase, and TaAA9A. These three
enzymes have been shown to be key players in efficient biomass degradation [31]. It could,
therefore, be suggested that TaAA9A may synergistically act with the GH10 xylanase on
hemi-cellulose via both oxidative and hydrolytic mechanisms to enhance the degradation
of hemi-cellulose [17].
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standard cello-oligosaccharides (G1–G6); Lane S, nTaAA9A reaction products; Lane CK, control
sample analyzed as above but without nTaAA9A. (b) MALDI–TOF MS: nTaAA9A reaction products
after incubation of 0.5% xylan with nTaAA9A in 10 mM HOAc–NH4OAc (pH 5.0) and 1 mM ascorbate
at 50 ◦C for 48 h, followed by permethylation with methyl iodide. C1-oxidized xylo-oligosaccharides
(m/z +30), C4-oxidized xylo-oligosaccharides (m/z −16), and non-oxidized xylo-oligosaccharides
(m/z +0).

2.3. Structure Quality and Description

The structure of the native TaAA9A was determined to 1.36 Å resolution to final
Rwork and Rfree of 0.151 and 0.185, respectively (Table 1). The final model contained 1762
protein atoms and 307 water molecules. The C-terminal Gly residue according to the
amino acid sequence was not visible in the electron density map and thus, it was not
modelled. Like other crystal structures of various LPMOs, nTaAA9A is characterized by a
β-sandwich fold with two twisted antiparallel β-sheets connected through loops of various
lengths and conformation. The active site is located on a flat solvent-exposed region of
the molecule, in contrast to traditional cellulases that possess a substrate-binding cleft or
tunnel. A Cu2+ ion involved in the catalytic reaction was identified at the N-terminal, as
previously observed. The Cu2+ ion was refined to a temperature factor of 13.2 Å2 and
occupancy of 1.0, suggesting a well-defined tightly bound ion. His1, one of the Cu2+-
coordinating residues, was found methylated, as also observed in other LPMO structures.
The reason, in general, of this methylation in LPMOs is still unclear, although LPMOs
that lack this post-translational modification are still catalytically active [17]. It has been
suggested that His1 methylation may convey protection against oxidative damage [17,32].
This posttranslational modification is not always present and is not expected in LPMOs
which are produced in P. pastoris [32], as for example in McAA9F [21]. The final structure
also contains two N-acetyl-glucosamine (NAG) molecules which were identified based on
the electron-density map and built in Asn138.
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Table 1. X-ray data collection and refinement statistics. Numbers in parentheses refer to the outermost
resolution shell.

Data Collection

Beamline P13 (PETRA III, DESY)
Wavelength (Å) 0.9762
Resolution (Å) 44.63−1.36 (1.41−1.36)
Space group P212121

Unit cell a, b, c (Å) 37.7, 64.2, 88.5
No. of observations 559,476 (22,595)

No. of unique reflections 43,359 (2631)
Completeness (%) 92.7 (58.5)

Multiplicity 12.9 (8.6)
Mosaicity (◦) 0.22

Rmeas 0.218 (2.993)
CC1/2 0.998 (0.251)

Wilson B factor (Å2) 22.1

Refinement
No. of reflections used 43,220

Rcryst/Rfree 0.151/0.185
RMSD in bonds (Å) 0.005
RMSD in angles (◦) 0.867

Number of protein atoms 1762
No. of water molecules 307
Average B-factor (Å2) 17.6

Ramachandran favored/outliers (%) 99.1/0.0
Clashscore 2.54

PDB id 7q1k

2.4. Structural Comparison with rTaAA9A

Structural superposition resulted in a root-mean-square deviation (rmsd) of 0.43 Å
between nTaAA9A and rTaAA9A, suggesting only subtle differences between the two
structures. The highest deviations (~0.8–2.4 Å) were found in the regions 9–13, 25–30,
184–187, 202–203, and 213–217 (Figure 6). Also, in Asn138, owing to the different glyco-
sylation in that residue. Asn138 was glycosylated with at least two NAG molecules, as
found in the crystal structure. A third glycan was found, but the density was not enough
to model it. In rTaAA9A, only one NAG molecule was attached after deglycosylation
of the expressed rTaAA9A [17]. Close inspection revealed a different orientation for the
side chain of Asn138 and, consequently, the position of the glycan moieties (Figure 7). In
nTaAA9A, the two NAG molecules can sit in a shallow groove and make interactions with
Asn13, Gln78, and Gln5. In contrast, the NAG molecule in rTaAA9A points outwards and
is exposed to the solvent. The subtle changes in surface residues may contribute to the
slightly different solvent-accessible area in the native and recombinant TaAA9A (9285Å2

and 9416 Å2, respectively).

2.5. Oligosaccharide Binding

The TaAA9A structure provides insight into the molecular basis of cellulose C1 and
C4 oxidation. TaAA9A has an active site containing a copper ion, which is coordinated by
two highly conserved His residues (His1 and His86, known as a histidine brace) to create
a copper ion-binding site and also a buried highly conserved Tyr residue (Tyr175) that
occupies the axial position. Direct structural evidence of LPMO–substrate interaction in
Lentinus similis AA9A and Collariella virescens AA9 in the presence of cellohexaose [33] has
shown that the copper ion in the active site is close to the C1 and C4 carbon atoms of the
oligosaccharides [12]. Superposition of TaAA9A onto CvAA9_A–cellohexaose (rmsd 0.9 Å
for 133 equivalent residues; Figure S3) revealed that the active site of nTaAA9A was near to
the C1 and C4 carbons of cellohexaose, supporting the C1 and C4 oxidation on cellulose by
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TaAA9A (Figure 8). An important difference between CvAA9_A, LsAA9A, and TaAA9A
is the presence of a long loop (residues 16–31) in the latter. Differences also in the length
of the active loops were identified that may play a role in the orientation of the substrate.
Individual residues could also affect binding as, for example, Leu41 could clash with the
substrate, whereas in CvAA9_A, there is a shorter residue (Thr28). Arg164 belongs to a long
external loop (157–164) and makes interactions with BGC-5. In TaAA9A, the equivalent
loop is shorter, and interactions with glucose units to provide some stabilization in the
binding are therefore not feasible. In general, different loop lengths in AA9s have been
implicated in specificity for C1, C4, or C1/C4 oxidation. Tyr212, a highly conserved residue,
makes stacking interactions with the flat pyranose ring of the substrate [34] and is likely to
support substrate binding in a similar fashion in TaAA9A as well.
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bound to CvAA9_A is shown in stick representation. nTaAA9A loops that show differences with
corresponding loops in CvAA9_A are colored in green and labeled. The CvAA9_A residues that
make hydrogen bond interactions with cellohexaose are shown as sticks and labelled. Tyr208 (Tyr212
in nTaAA9A) that provides additional stabilizing interactions with the oligosaccharide is also shown.
The structural equivalent residues in nTaAA9 are depicted and labeled. CvAA9_A residues Arg67 and
Arg164 correspond to gaps in nTaAA9A (Figure S3), and no structural equivalent residues are shown.

The structural superposition also explains difficulties in obtaining structures of the
complexes. Clashes with symmetry-related molecules in the crystal lattice usually obstruct
ligand binding in LPMOs. Lattice problems have been identified in rTaAA9A crystals and
have prevented crystallographic binding studies. Although the nTaAA9 crystals reported
here are different from those of the rTaAA9A (space group P21 and two molecules in the
asymmetric unit), residues 68–71 and 182–184 of a symmetry-related nTaAA9A clash with
three of the glucose moieties of the substrate, whereas the rest of the substrate makes no
contacts with symmetry-related molecules.

2.6. Thermostability Properties

Theoretically, AA9 LPMOs from thermophilic fungi should be thermostable. In this
study, the thermostability of TaAA9A was investigated by detecting gluconic acid in
TaAA9A reaction products hydrolyzed with TFA, using HPLC–RID. The analysis revealed
that nTaAA9A exhibits high thermostability (Figure 9), consistent with other thermostable
enzymes from thermophilic fungi [35,36]. The enzyme retained about 84.3%, 63.7%, and
35.3% of its activity after incubation for 30 min at 60, 70, and 80 ◦C, respectively. A cluster
of four residues (Val90, Ser131, Leu134, and Trp141; Figure S4) was previously identified
in TaAA9A and used to create a thermostable variant of Af uAA9A [18]. The improve-
ment in Af uAA9A thermostability was attributed to the elimination of some unfavorable
electrostatic interactions in the enzyme.

Owing to the difficulties in quantitative activity determination of LPMOs, there are
only a few reports of their thermostability using activity assay [18,33,37]. So far, the ther-
mostability of only three LPMOs from non-thermophilic fungi, AfuAA9A from Aspergillus
fumigatus, LsAA9A from Lentinus similis, and TcAA9A from Talaromyces cellulolyticus, have
been measured using differential scanning fluorimetry, differential scanning calorimetry,
and activity assay. AfuAA9A and LsAA9A exhibited a melting temperature Tm of 68–69 ◦C
and thermal inflection, Ti, of 71.8 ◦C, respectively [33], whereas TcAA9A fully lost its
activity after incubation at 50 ◦C for 8 h [37].
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Figure 9. Determination of nTaAA9A thermostability. (a) TLC analysis of nTaAA9A reaction products.
nTaAA9A was initially treated for 30 min at 50, 60, 70, 80, 90, and 100 ◦C (lanes 1–6, respectively; M:
standard cello-oligosaccharides) in 10 mM NH4OAc–HOAc (pH 5.0) without substrate. The treated
nTaAA9A was incubated with 0.5% PASC in 10 mM HOAc–NH4OAc (pH 5.0) and 1 mM ascorbate at
50 ◦C for 48 h. (b) Residual activity of nTaAA9A as a percentage of the maximum activity (100%). The
residual nTaAA9A activities were measured using HPLC–RID by detecting gluconic acid in nTaAA9A
reaction products after their hydrolysis with TFA. The experiment was carried out in triplicates.

Thermostability parameters, such as the number of charged residues, surface area,
small-volume aliphatic amino acids, and salt bridges, which have been proposed as in-
dicatives of protein thermostability [38,39], are shown in Table 2. The thermostability,
however, is sometimes a combination of different factors and not easily explained by
a single parameter. In the absence of thermostability measurements for McAA9F, the
temperature-dependent stability was calculated using the SCooP algorithm, a Gibbs–
Helmholtz equation-based program [40] which calculates all the thermodynamic quantities
associated with the two-fold transition of proteins (e.g., the melting temperature Tm, the
standard folding enthalpy Hm measured at Tm, and the standard folding heat capacity
Cp). Theoretical measurements were carried out for all enzymes. TaAA9A was found to
have a higher Tm than McAA9F, although an accurate measurement of their thermostabili-
ties would need experimental verification under similar assay conditions. Nevertheless,
more studies are required to better understand the thermostability issues for this family
of enzymes.

Table 2. Comparative statistics of thermostability parameters in AA9 LPMOs #.

Parameter nTaAA9A McAA9F (7ntl) CvAA9_A
(6yde)

AfuAA9A
(6h1z)

LsAA9A
(5n04)

TcAA9A GenBank
(GAM42970.1)

Asp + Glu (−) # 19 16 34 18 21 19
Arg + Lys (+) 7 7 24 10 10 9

Pro/Gly 0.84 1.04 0.91 0.57 1.11 0.76
Val (%) 5.3 4.1 8.7 4.4 9.8 10.3

Amino acid residues 228 222 252 229 235 246
SAS (Å2) 9285.0 9034.0 9649.0 9363.0 9456 -

Intra-chain salt bridges § 3 2 3 3 11 -
Melting temperature Tm (◦C) ‡ 56.1 49.4 57.5 57.8 51.6 -

# Amino acid calculations were carried out on ExPASy ProtParam (https://web.expasy.org/protparam/ accessed
on 20 November 2021). § Calculated with ESBRI (http://bioinformatica.isa.cnr.it/ESBRI/introduction.html
accessed on 20 November 2021) [41]. ‡ Calculated with SCooP_v1.0 (http://babylone.ulb.ac.be/SCooP accessed
on 20 November 2021) [40].

3. Materials and Methods
3.1. Strains and Chemicals

Thermoascus aurantiacus strain CGMCC3.17992 from fresh horse dung from China was
isolated according to a method described previously [42]. It was deposited in the China

https://web.expasy.org/protparam/
http://bioinformatica.isa.cnr.it/ESBRI/introduction.html
http://babylone.ulb.ac.be/SCooP
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General Microbiological Culture Collection Center (CGMCC), a publicly accessible culture
collection. A standard cello-oligosaccharide mixture was purchased from Elicityl (Crolles,
France). Avicel PH-101, xylan, ascorbate (Vc), glucose, galactose, and gluconic acid were
purchased from Sigma-Aldrich.

3.2. Purification and Identification of nTaAA9A from Thermoascus aurantiacus

The native secretory TaAA9A was purified from a T. aurantiacus culture grown at
50 ◦C for 7 days in cellulose-containing medium [43] supplemented with 0.1 mM CuSO4.
After the 7 days of incubation, the mycelium was initially filtered off, and the filtrate was
subsequently centrifuged at 10,000× g for 15 min at 4 ◦C. The resultant supernatant was
used for the purification. Ion-exchange chromatography on a DEAE-Sepharose column
(GE Healthcare, Chicago, IL, USA) followed by gel filtration on an Enrich SEC650 column
(BIO-RAD, Hercules, CA, USA) was employed. Solid ammonium sulphate was initially
added to the resultant supernatant, leading to 90% saturation. After 6 h, the resulting
precipitate was collected by centrifugation at 10,000× g for 15 min at 4 ◦C, dissolved, and
dialyzed in 50 mM Tris-HCl (pH 8.0) (buffer A). In the subsequent step, the dialyzed sample
was loaded on a DEAE-Sepharose column equilibrated with buffer A. nTaAA9A was eluted
with a 120 mL linear gradient of NaCl (0–0.3 M in buffer A) at a flow rate of 2 mL/min.
Fractions with enzymatic activity were pooled and concentrated by vacuum freeze–drying.
In the last step, 0.25 mL of the concentrated sample was applied to a gel filtration Enrich
SEC650 column. nTaAA9A was eluted with 50 mL of buffer A at a flow rate of 0.5 mL/min.
The purified nTaAA9A was visualized on an SDS-PAGE gel, and the band of interest was
cut out. The amino acid sequence of the excised nTaAA9A protein band was determined
using LC–MS/MS according to a method previously described [30]. All data were analyzed
using MASCOT 2.2 software (Matrix Science). MS/MS spectra were searched against the
TaAA9A (ACS05720.1) protein sequence database [17].

3.3. Protein Determination, SDS-PAGE, and Carbohydrate Staining

Protein concentration was measured with the Lowry method [44]. The purity of
the nTaAA9A protein was assessed using SDS-PAGE [45]. The carbohydrates in the
nTaAA9A enzyme were stained with the Pierce™ Glycoprotein Staining Kit (Thermo
Scientific, Waltham, MA, USA).

3.4. nTaAA9A Activity Assay

Phosphoric acid-swollen cellulose (PASC) was prepared as described by Phillips et al. [46].
Activity assays, including the use of xylan as a substrate, were carried out as previously
described [43]. nTaAA9A reaction products were identified using TLC, matrix-assisted laser
desorption–ionization-time-of-flight mass spectrometry (MALDI–TOF MS), and HPLC–RID
analysis.

3.5. TLC and MALDI–TOF MS

Thin-layer chromatography (TLC) was used to analyze nTaAA9A reaction products
according to a method previously described [43]. nTaAA9A reaction products were further
analyzed using MALDI–TOF MS as described in previous publications [30,43].

3.6. Permethylation and Reduction of nTaAA9A Reaction Products

Permethylation of nTaAA9A reaction products was carried out as described [47], and
reduction of TaAA9A reaction products was carried out as previously described [22].

3.7. HPLC–RID

nTaAA9A reaction products and their reduced reaction products were hydrolyzed by
TFA as previously described [22] and analyzed by HPLC–RID using an Agilent 1200 series
instrument with a refractive index detector (RID). Products were separated using an Aminex
HPX-87H column (Bio-Rad) and a 5 mM H2SO4 mobile phase. Glucose, sorbitol, and
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gluconic acid were annotated based on the elution pattern of standard glucose, sorbitol,
and gluconic acid solutions. The flow rate was 0.2 mL/min, and the column was maintained
at a temperature of 30 ◦C.

3.8. Protein Crystallization

The protein was concentrated to ~10 mg/mL in buffer NaOAc 10 mM, NaN3 0.002%,
pH 4.8. Crystals were produced at 16 ◦C using the vapor-diffusion hanging drop method
with a well solution of 0.2 M ammonium sulfate, 0.1 M HEPES-NaOH pH 7.5, 25% w/v
PEG 3350. The drops consisted of 2 µL of protein solution mixed with 2 µL of the well
solution. Crystals appeared after ~3 days, most of them in clusters. For crystallographic
data collection, single crystals were carefully separated from the clusters.

3.9. Structure Determination and Validation

X-ray diffraction data were collected at cryogenic temperatures (100 K) in the presence
of 10% v/v glycerol as cryoprotectant. Data to 1.86 Å resolution were initially collected
at ESRF (Grenoble, France), and the resolution was later extended to 1.36 Å using X-ray
data collected at EMBL-Hamburg (beamline P13 at the PETRA III ring). Data processing
was carried out with XDS [48], followed by scaling with AIMLESS [49]. Initial phases
were obtained with molecular replacement using the structure of rTaAA9A (PDB id 2yet)
as search model, leading to a single solution with TFZ = 33.8 in Phaser [50]. Refinement
was carried out with PHENIX (v. 1.19.2) [51] using maximum likelihood as the target
and simulated annealing with a starting temperature of 1000 K. Water was added at the
final stages when the Rfree (calculated using 5% of the data excluded from the refinement)
dropped below 30%. The electron difference maps were examined, and a glycosylation site
was identified at Asn138 based on the electron density difference map. Validation of the
structure was performed with Molprobity [52] and validation tools in Coot [53]. Figures of
the structures were created with Chimera [54].

4. Conclusions

In the present study, a native thermostable AA9 LPMO, nTaAA9A, from the ther-
mophilic fungus T. aurantiacus was purified and characterized. nTaAA9A was active and
exhibited C1- and C4-oxidizing activity against cellulose and xylan. The enzyme was found
to retain significant activity at elevated temperatures. The purified enzyme was found to
have a single glycosylation site with at least two NAG molecules. Structural differences
were identified with the recombinant rTaAA9A in surface loops and in the glycosylation
site. The results will help in exploiting TaAA9A in various biotechnological applications to
improve the cleavage of cellulose and xylan.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12020139/s1, Figure S1: Identification of TaAA9A using LC–
MS; Figure S2: Chemical structures of oxidized and non-oxidized xylo-oligosaccharides; Figure S3:
Structure-based sequence alignment of nTaAA9A and CvAA9_A; Figure S4: Depiction of the four-
residue cluster used for thermostability improvement.
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