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TP53 mutations are found in 5% to 10% of patients with de novo acute myeloid leukemia (AML) and
myelodysplastic syndromes (MDSs). TP53 mutations are enriched even further in therapy-related myeloid
neoplasms1,2 because they confer resistance to conventional chemotherapeutics.3 Consequently,
patients with TP53-mutant AML/MDS have inferior response rates and extremely poor survival with stan-
dard induction chemotherapy1,4,5 and even after allogeneic hematopoietic stem cell transplantation.6

Recently, the hypomethylating agents (HMAs) decitabine and azacitidine, with or without the BCL-2
inhibitor venetoclax, have emerged as promising therapeutics for patients with TP53-mutant myeloid neo-
plasms.7 However, the various clinical studies testing HMAs, with or without venetoclax, in patients with
TP53-mutant AML/MDS have yielded conflicting results7–18 about whether TP53 mutations are predic-
tive for superior outcomes (summarized in supplemental Table 1), and several preclinical studies sug-
gested that, indeed, TP53 loss increases sensitivity to HMAs.19,20

Therefore, we set out to clarify the impact of the TP53 mutational status on the response to treatment
with HMAs, with or without venetoclax, by taking advantage of recently generated3 isogenic human AML
cell lines harboring the 6 most frequent TP53 missense mutations and null (knockout [KO]) and wild-
type (WT) alleles (Figure 1A; supplemental Table 2), as well as novel isogenic AML cell line models.
Unlike xenograft assays with primary AML/MDS patient samples, the isogenic nature of these CRISPR/
Cas9-engineered cell lines allowed us to control for possible genetic confounders.

First, we performed drug-sensitivity assays for monotherapies with decitabine, azacitidine, or venetoclax.
MOLM13-TP53 isogenic cell lines with missense or null alleles demonstrated significantly increased
resistance to all 3 drugs (Figure 1B), whereas there was no difference between MOLM13-TP53 isogenic
cells with missense or null alleles.

HMAs are being widely used in combination with venetoclax in patients with AML who are deemed unfit
for standard induction chemotherapy, including those with TP53 mutations. Combining venetoclax with
decitabine or azacitidine resulted in an additive, but no synergistic, drug effect, irrespective of the TP53
genotype, as indicated by zero interaction potency21 scores , 10 (Figure 1C). However, combined effi-
cacy was reduced in the context of TP53 mutations (Figure 1C). Similarly, combined HMA and veneto-
clax treatment increased apoptosis in an additive manner in all TP53 genotypes. However, the apoptotic
response was greatly reduced in isogenic MOLM13 cell lines with TP53 mutations compared with cell
lines with TP53WT alleles (Figure 1D; supplemental Figure 1C), corroborating recently published preclini-
cal data.22

To validate these findings in another cellular context, we CRISPR-engineered additional isogenic AML
cell lines with TP53WT or TP53KO alleles from parental MV4-11 and OCI-AML3 cell lines. Drug-
sensitivity assays revealed a significantly enhanced resistance to HMAs, similar to the MOLM13-TP53
cell lines (supplemental Figure 1A-B).
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Figure 1. TP53 mutations confer increased resistance to hypomethylating agents as well as BCL-2 inhibition in vitro. (A) Graphical representation of the

experimental workflow for generating MOLM13-TP53 isogenic cell lines and MV4-11 and OCI-AML3 TP53KO cell lines. (B) MOLM13-TP53 isogenic AML cell lines were

treated with DMSO, decitabine, azacitidine, or venetoclax at increasing concentrations for 72 hours, after which cell viability was assessed using a CellTiter-Glo luminescent
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Given that multiple HMA treatment cycles are often required to
achieve clinical effects,23 we tested the activity of HMAs, with or
without venetoclax, over extended periods of time and in direct com-
parison with isogenic TP53WT cells. Fluorescently labeled isogenic
MOLM13-TP53 cell lines were seeded at a 1:1 ratio with
MOLM13-TP53WT cells and cocultured in the continuous presence
of dimethyl sulfoxide (DMSO), decitabine, azacitidine, venetoclax, or
HMA 1 venetoclax combinations at 25% inhibitory concentration
(IC25) and IC50 values for 10 days (Figure 1E). Notably, the chosen
IC25 and IC50 values for decitabine and azacitidine, approximating
average serum concentrations in HMA-treated patients,24,25 were
sufficient to induce full depletion of DNA methyltransferase 1 pro-
tein, the main target of HMAs26 (Figure 1F). The increased resis-
tance of TP53-mutant cells to decitabine, azacitidine, or venetoclax
observed in the short-term drug-sensitivity assays translated into a
strong competitive advantage over TP53-WT cells during the
10-day monotherapy period (Figure 1G; supplemental Figure 2A).
Notably, combination therapies using decitabine 1 venetoclax or
azacitidine 1 venetoclax did not prevent clonal expansion of TP53-
mutant AML cells, but they did lead to significantly accelerated out-
growth (Figure 1G, right panel; supplemental Table 3). Moreover,
treatment with 2 repetitive cycles of HMAs, interspersed with recu-
peration periods, over a period of 28 days resulted in the rapid and
sustained outgrowth of cells with TP53null or TP53missense muta-
tions, with the latter exemplified by the R248Q variant, over
TP53WT cells (Figure 1H). Collectively, these data demonstrate that
TP53 mutations confer resistance to monotherapy with decitabine,
azacitidine, or venetoclax, as well as to combination therapies with
HMAs 1 venetoclax, in AML cell lines in vitro.

Last, to assess the therapeutic efficacy of HMA treatment in vivo,
we performed xenograft experiments. First, we engrafted NSG mice
with a 1:1 mixture of fluorescently labeled TP53WT and TP53KO or
TP53R248Q/2 isogenic MOLM13 AML cells, followed by treatment
with vehicle, venetoclax, decitabine, azacitidine, decitabine 1 vene-
toclax, or azacitidine 1 venetoclax (Figure 2A). All treatment regi-
mens favored selective outgrowth of MOLM13 AML cells with
TP53 mutations (Figure 2B-D). Next, NSG mice were engrafted
with TP53WT, TP53KO, or TP53R248Q/2 isogenic MOLM13 AML
cells expressing luciferase, followed by treatment with one 5-day
cycle of decitabine at a clinically relevant dosage of 1 mg/kg of

body weight (BW) per day, corresponding to �20 mg/m2 body sur-
face, or with one 7-day cycle of azacitidine at a clinically relevant
dosage of 3.5 mg/kg of BW per day, corresponding to �75 mg/m2

body surface. Moreover, 7-day azacitidine plus 14-day venetoclax
(at 75 mg/kg of BW per day) was directly compared with 7-day aza-
citidine monotherapy, thereby mimicking the VIALE-A trial.27 Leuke-
mia burden in engrafted mice was evaluated on specified days via
bioluminescence imaging, and Kaplan-Meier survival analyses were
performed. Decitabine treatment of mice engrafted with MOLM13-
TP53KO or MOLM13-TP53R248Q/2 cells did not prevent rapid pro-
gression of leukemia in vivo, as measured by bioluminescence (Fig-
ure 2E-F), or accelerated lethality compared with untreated mice
(Figure 2G). Yet, mice injected with MOLM13-TP53WT cells and
treated with decitabine exhibited a reduced AML burden (Figure 2E-F)
throughout the experiment, which resulted in a significant prolongation
of survival (Figure 2G). By contrast, treatment with azacitidine resulted
in a decreased AML burden (Figure 2H-I) and prolonged survival
(Figure 2K) of mice engrafted with AML cells from all TP53 genotypes.
However, consistent with the results from decitabine-treated mice,
leukemia burden was higher and survival was reduced in mice
engrafted with TP53KO or TP53R248Q/2 AML cells and treated with
azacitidine compared with azacitidine-treated mice engrafted with
TP53WT AML cells (Figure 2H-K). These differences between decita-
bine and azacitidine treatment are most likely due to the shorter half-life
paired with the shorter treatment schedule of decitabine compared
with azacitidine. Finally, the addition of venetoclax to azacitidine yielded
the greatest reduction in leukemia burden and an enhanced survival
benefit in mice engrafted with MOLM13-TP53WT cells, whereas those
engrafted with MOLM13-TP53KO or MOLM13-TP53R248Q/2 cells
experienced an inferior, yet still significantly prolonged, survival upon
the addition of venetoclax to azacitidine (Figure 2L-N), a finding in line
with clinical results from the VIALE-A trial.27 Housing and experimental
procedures on all animals were performed in accordance with the
Cantonal Veterinary Office (Zurich, Switzerland) under license number
ZH194/18, and we adhered to all ARRIVE guidelines (Animal
Research: Reporting of In Vivo Experiments).

In summary, using multiple independent isogenic CRISPR/Cas9-
engineered TP53-mutant human AML cell line models, we demon-
strate that the efficacies of monotherapy with the HMAs decitabine
and azacitidine or the BCL-2 inhibitor venetoclax, as well as

Figure 1 (continued) assay (symbols represent averages from 3 independent experiments; error bars indicate standard error of the mean). (C) MOLM13-TP53 isogenic

AML cell lines were treated with HMAs in combination with venetoclax at increasing concentrations for 72 hours, after which cell viability was assessed using a CellTiter-Glo

luminescent assay, and viabilities were plotted within a drug synergy matrix (data points represent averages of results from 2 independent experiments). Average zero

interaction potency (ZIP) scores were calculated to assess potential synergism. (D) MOLM13-TP53 isogenic AML cell lines were treated with DMSO, decitabine (Dec),

azacitidine (Aza), venetoclax (Ven), or a combination thereof at IC25 and IC50 for 48 hours. At this point, cells were stained with annexin V and analyzed by flow cytometry to

assess total apoptotic cells (bar graphs represent averages of 3 independent experiments; error bars indicate standard error of the mean. (E) Experimental workflow for

in vitro competition assays in MOLM13-TP53 isogenic AML cell lines. MOLM13-TP53mutant RFP6571 cells were mixed with MOLM13-TP53WT GFP1 cells at a 1:1 ratio and

cultured in the presence of DMSO or the indicated drugs for 10 days, during which repetitive flow cytometric measurements were performed. (F) MOLM13-TP53 isogenic

AML cell lines with TP53WT, TP53KO, or TP53R248Q/2 were treated with DMSO, Dec, or Aza at IC25 or IC50 for 24 hours, after which whole-cell protein lysates were

collected, run on a polyacrylamide gel, and immunoblotted for p53, DNA methyltransferase 1 (DNMT1), and vinculin (3 independent experiments; 1 representative image is

shown). (G) Heat maps depicting results from in vitro competition assays in MOLM13-TP53 isogenic AML cell lines. Equivalent (1:1) numbers of MOLM13-TP53mutant

(RFP6571) and MOLM13-TP53WT (GFP1) cells were seeded and cocultured in the continued presence of the indicated doses of decitabine (D), azacitidine (A), or

venetoclax (V) alone or HMAs 1 venetoclax (in this case at IC25). Cell survival was monitored by flow cytometry to track RFP6571 and GFP1 cells (average results from 2-4

independent experiments are shown). (H) Outgrowth of TP53mutant MOLM13-TP53 isogenic cell lines seeded in a 1:1 ratio with TP53WT cells and treated with 2 repetitive

cycles of DMSO, Dec, or Aza at IC25 and IC50 (symbols represent averages from 3-6 independent experiments). ***P , .001, 1-way ANOVA. CRISPR-HDR, CRISPR-

Cas9–mediated homology directed repair; CRISPR-KO, CRISPR-Cas9–mediated gene knockout; d0, day 0; d2, day 2; d4, day 4; d6, day 6; d8, day 8; d10, day 10; ns, not

significant; #, not applicable because of cell death.
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Figure 2. In vivo therapeutic efficacies of HMAs and/or BCL-2 inhibition depend on TP53 mutational status. (A) Experimental workflow for in vivo competition

AML xenograft assay. Isogenic MOLM13-TP53mutant (RFP6571) and MOLM13-TP53WT (GFP1) AML cells were transplanted at a 1:1 ratio into sublethally irradiated NSG

mice. After a 7-day (7d) engraftment period, treatment with vehicle, decitabine (Dec), azacitidine (Aza), venetoclax (Ven), Dec 1 Ven, or Aza 1 Ven commenced at the
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combination therapies of HMAs 1 venetoclax, depend on the TP53
mutational status of AML cells. TP53 mutations confer resistance to
HMAs, with or without venetoclax, in vitro and in vivo that translates
into clonal expansion of TP53-mutant over TP53WT cells, as well as
decreased survival of leukemic mice. Of note, the efficacy of HMAs,
with or without venetoclax, does not differ between isogenic
MOLM13-TP53KO cells and those harboring TP53 missense muta-
tions, suggesting that the loss of p53 function, a functional conse-
quence shared between TP53null and TP53missense alleles,3 rather
than the precise allelic configuration of TP53, determines the inferior
efficacy of HMAs. Our preclinical data strongly support the emerg-
ing clinical observation that, although HMAs, with or without veneto-
clax, retain clinically meaningful activity in patients with TP53-mutant
AML, TP53 mutations still predict inferior responses and survival
compared with AML patients with a WT TP53 status. Thus, to over-
come the negative impact of TP53 mutations in AML, novel thera-
peutic approaches are urgently needed.
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