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Abstract Aggressive technology scaling and intensive computations have caused
acceleration in the aging and wear-out process of digital systems, hence leading to
an increased occurrence of premature permanent faults. Online testing techniques
are becoming a necessity in current and near future digital systems. However, state-
of-the-art techniques are not aware of the other digital systems’ power/performance
requirements that exist in modern multi/many-core systems. This chapter presents
an approach for power-aware non-intrusive online testing in many-core systems.
The approach aims at scheduling at runtime Software-Based Self-Test (SBST) rou-
tines on the various cores to exploit their idle periods in order to benefit the po-
tentially available power budget and minimize the performance degradation. Fur-
thermore, a criticality metric is used to identify and rank cores that need testing
at a time and power and reliability issues related to the testing at different voltage
and frequency levels are taken into account. Experimental results show that the pro-
posed approach can i) efficiently perform cores’ testing, within less than 1% penalty
on system throughput and by dedicating only 2% of the actual consumed power, ii)
adapt to the current stress level of the cores by using the utilization metric, and iii)
cover all the voltage and frequency levels during the various test.
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1 Introduction

The aggressive technology scaling in the fabricated chips has brought to the integra-
tion of several cores within the same chip. At the same time, the drawback of such
a transistor shrinking has been an increase in the susceptibility of the digital cir-
cuits to internal defects, device variability and malfunction in execution units [1, 2].
As a matter of fact, aging and wear-out mechanisms, including time dependent di-
electric breakdown (TDDB), negative bias temperature instability (NBTI), and elec-
tromigration (EM), are among the most increasingly adverse factors that can lead
to timing errors and components’ breakdowns causing system malfunctioning and,
eventually, its overall failure. In addition, downscaling of CMOS technologies to
the deep submicron levels has exacerbated the trend of high failure rate. This phe-
nomenon has lead to an increased power densities and consequently operating tem-
peratures in a device, being the main cause of the aging phenomenon. Thus, there is
an increasing quest for reliability in modern computing systems.

In such a scenario, in order to handle such reliability quest, and in particular to
detect and manage the occurrence of permanent failures in operational components,
concurrent error detection and online testing may represent viable solutions. How-
ever, concurrent error detection is generally implemented by means of redundancy-
based technique [3], such as duplication with comparison (DWC) or triple modu-
lar redundancy (TMR), which present a high cost due to area occupation. For this
reason they are generally considered only in the design of systems specifically tar-
geted for critical applications, such as the aerospace appliances where the cost is
secondary concern. Similarly, within the online testing field, Built-in-Self-Testing
(BIST, [4, 5]) circuitries are not commonly integrated in devices targeted to the
consumer market, even if they present a more limited impact on the chip area with
respect to the above discussed techniques. Another strategy for online testing is
Software Based Self-Test (SBST, [6, 2]), which consists of periodic execution of
specific testing routines devoted to the functional solicitation of the circuitry for the
detection of permanent failures in the various execution units. Since such strategy
does not require any additional circuitry (or, in some situations, a reduced one), it
represents the most promising solution for consumer electronic devices. Indeed, an
example of its large scale employment is in the automotive on-board computing
systems [7].

Many-core systems fall under this umbrella of the digital devices requiring
SBST [8]. In fact, they commonly do not feature any integrated hardware for on-
line testing and, moreover, they are subject to a considerable stress caused by the
intensive data-processing workload. However, this scenario presents two relevant
issues:

1. The workload to be executed consists of applications requiring strict perfor-
mance levels. This leads to the necessity of a transparent test scheduling be-
cause it is not possible to interrupt the nominal activities.

2. The system is characterized by a physical limit in the power budget which im-
poses that all the cores cannot be active at the same time at a full frequency.
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At the opposite a relevant portion of them have to be put dark for power limits
(such phenomenon is dubbed as Dark Silicon [9, 10]). This issue implies the
necessity to consider also power consumption during the test scheduling, thus
necessitating of a power-aware testing approach.

Hence, the employment of SBST in many-core systems presents at the same time
new opportunities and challenges. We claim that in the scenario of the dark silicon
era there is a quest for a power-aware test scheduling approach to detect at run-
time permanent faults occurring in many-core architectures while not degrading the
overall system performance.

An interesting and challenging aspect of modern many-core systems for test
scheduling is the high dynamicity and heterogeneity of the executed workload.
This makes the amount of dark area on the chip (i.e., total chip utilization) highly
variable. Furthermore, due to the emergence of dim silicon [11] as a way to min-
imize dark areas and increase the number of active cores, the system might reach
up to 100% utilization of its cores (if the majority of running application are not
performance-demanding) by making use of power management features such as
Dynamic Voltage and Frequency Scaling (DVFS) [12]. This makes the behavior of
such systems to be highly related to the characteristics of the workload where at
different moments of time it is possible to have considerable dark areas with small
resource utilization, due to the fact that some other group of cores are set on a high
voltage-frequency level thus reserving the majority of the overall power budget,
or small dark areas with large resource utilization by globally setting a very low
voltage-frequency level. Therefore, if suitable scenarios are intelligently identified
(when there is enough room in power budget), such temporary dark areas can be fa-
vorable targets for online testing in order to improve the system reliability [13, 14].

Nevertheless, DVFS knobs introduce also other issues in the testing activity, as
shown in the literature [15], systems should be tested at multiple voltage-frequency
settings, since faults are manifested in different ways in different configurations.
Therefore, the test scheduling needs to take into account the fact that SBST routines
should be executed on the various cores in different voltage-frequency levels.

Given these motivations, this chapter presents an approach for a transparent
power-aware online test scheduling in many-core systems in the dark silicon era.
The proposed approach benefits from the large amount of cores and the available
power budget to dynamically schedule SBST routines on the idle cores that have
experienced a high stress in the recent past. In particular, the approach exploits a
criticality metric, computed on the basis of a measure of the utilization of the cores,
to select the units to be tested. Then, a test mapping and scheduling approach selects
among the candidates the actual cores to be tested on the basis of two conditions:
such cores must be idle (i.e., not currently involved in the execution of an applica-
tion) and there must be some available power not currently used for the execution of
the running applications. Further, the test scheduling approach selects also the opti-
mal possible voltage-frequency settings to execute the SBST routine by considering
the system’s power budget.

The rest of the chapter is organized as follows. Section 2 reviews the related
work discussing the limitations which motivate the work. In Section 3 the back-
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ground on many-core systems is discussed, presenting also the considered architec-
ture and application models. Then Section 4 describes suitable scenarios for online
testing by means of a running example, showing power consumption and online
testing issues. The proposed dark silicon aware online testing approach is presented
in Section 5, while Section 6 proposes an enhancement to handle testing at differ-
ent voltage-frequency levels. Section 7 discusses the experimental results presenting
some statistics and a comparison against a state-of-the-art approach to demonstrate
the effectiveness of the proposed approach. Finally, Section 8 draws the conclusions.

2 Related Work

Software-based Self Testing (SBST) has been known as a useful mechanism in re-
cent studies on online testing as it can be applied easily without any need to extra
hardware resource [16, 6, 2]. Furthermore, it has been used widely for online testing
in multi-/many-core system testing recently [17, 8]. The main challenge in online
testing in multi-/many-core systems is to minimize the overhead of testing mech-
anism on the overall system performance [18]. Several works have been presented
in the literature studying the impact of online error detection on the performance of
multi- and many-core systems [18, 19, 6, 20, 2, 8]. In [21], a SBST scheduling algo-
rithm is proposed for testing cores at runtime while the system is working. In [22]
the authors proposed online testing algorithm for many-core systems to achieve high
fault coverage for both routers and PEs. In [23] and [24], a structural level process
is presented to develop test softwares. In [4, 25, 26, 27] deterministic, random, and
hybrid method were used for generating software tests. However, none of the state-
of-the-art approach considers current available power budget while applying test
process. In fact they are not power-aware.

Power-aware testing should not be confused with power-constrained testing. In
power-constrained testing, the goal is to minimize the offline Test Application Time
(TAT) by parallelization of testing the cores, e.g., using test access mechanisms,
while avoiding peak power violation. Many studies have been done to achieve min-
imal TAT [28, 29, 5]. In fact, as the power consumption of the single core during
test process is generally greater than that in normal operation mode [30], in power
constrained testing the focus is on how to test the cores without damaging it due to
thermal violation. However, in power-aware testing the target is to test the core(s)
when the other cores are working in their normal mode. That is why a power feed-
back from the system is needed to know when we have enough power budget in
runtime to test the cores.

As the fault model and testing strategy for multi-core and many-core systems
with advanced dynamic power management features changes, recent studies is fo-
cused on proposing new techniques for testing such systems. In general these recent
studies can be categorized into two groups 1) the techniques that considers the effect
of such power management capabilities to new error manifestation and 2) strategies
that get benefit such power management features to control the test power while TAT
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minimization process [31]. Most of these strategies have been proposed for offline
testing purposes. Even though we can find a limited number of online testing meth-
ods in these two categories, they do not yet consider any power feedback from the
system at runtime and instead use a pre-defined dedicated power budget for testing.
An example of power-aware optimization of the SBST has been presented in [32],
where the authors propose an optimal approach to test the L1 cache in microproces-
sors considering power profile. However, this work is not either fully power-aware
as the authors use a pre-defined power model of the microprocessors for different
applications, which lacks an online power feedback from the system.

Using SBST in online testing can be done in two different ways: intrusive and
non-intrusive [2]. In intrusive online testing, test process is done during a fixed pe-
riod in which the normal system operation is interrupted and the cores, or a subset
of them, are reconfigured to test mode at runtime, and then run the test program.
It can be concluded that, as in intrusive testing the normal operation of the system
is interrupted, testing process might has negative effect on the performance of the
system. On the other hand, in non-intrusive testing, each core executes the test pro-
gram individually whenever the core is in idle state. As mentioned before, the power
consumption needed for the test purpose is considerably higher than the power con-
sumption of the system in the normal operation mode. As the power budget of the
system is limited specially in the dark silicon era, it is not possible to perform a fully
parallel intrusive testing as the power consumption can easily exceed the available
budget and endanger the chip reliability. Furthermore, as the system is concurrently
running multiple independent applications with different requirements, interrupting
all or some of these might lead to deadline miss for some applications. Due to these
facts, our focus will be on non-intrusive testing while honoring power budget.

Based on the above discussion, it can be concluded that online testing is grad-
ually reshaping to power-aware online testing in the dark silicon era, especially
for many-core systems. The main ground for this statement is that due to thermal
and power constraints, the fraction of transistors that can operate at full frequency
is decreasing with each technology generation. This highlights the fact that power
budget is an extremely crucial resource in those technologies where the dark sil-
icon phenomenon is more challenging to address (e.g., 22nm or 16nm). In such
technologies, a many-core system demands an efficient power-aware online testing
method capable of minimizing the usage of power for the online testing purpose. In
other words, the online testing method should have the lowest negative impact on
the system performance by efficiently using the power budget.

3 Adopted Many-core Architecture

Figure 1 shows an overview of the considered architectural platform and the above
software stack, composed of a runtime management layer and a set of running ap-
plications.
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Fig. 1: A NoC-based many-core system with mesh topology supporting DPM and RTM

The target platform is the classical many-core architecture, such as the Intel
Single-chip Cloud Computer [33], or the Kalray MPPA manycore [34]. The archi-
tecture is composed of a set of homogeneous processing cores, each one provided
with a private memory for instructions and data, and connected to the system’s com-
munication infrastructure. The communication infrastructure consists of an M×N
2D-mesh Network-on-Chip (NoC), using a message-passing protocol based on a
X-Y deterministic wormhole routing schema.

The considered many-core architecture is generally adopted for the acceleration
of intensive data-processing applications, such as image, video or audio processing.
Each application is generally implemented with a pipelined dataflow paradigm [33].
Thus, the application can be modeled by means of a task graph, where nodes repre-
sent the various computation tasks, each one characterized by a specific execution
time, and the direct edges represent data dependencies (in terms of data to be trans-
mitted) between a source task to a target one.

In order to execute an application, each task is assigned, or mapped, to a specific
core that will execute it. In other words, we may also say that a core is allocated for
the execution of the task. Moreover, the execution model does not support multi-
tasking, therefore at most one task can be mapped on a single core in a specific
instant of time. As a motivation of this choice, Intel in 2011 [33] stated that, given
the abundance of execution units in a many-core architecture, a one-to-one mapping
may ease the execution management. Then, the mapped application is executed in
a pipelined fashion: each core can perform a run of the hosted task each time it
receives all required input messages and at the end of the execution it sends out
the output messages. The NoC is in charge of routing and dispatching the messages
from the senders to the receives. Actual transmission latencies will depend on the
infrastructure operating frequency, the message size and the distance between the
source and the target.

The right part of Figure 1 shows an example of the described system. The archi-
tecture is an 8×8 grid of cores, on which 5 different applications are mapped. In the
detail in the right-bottom part of the figure, the task graph of a Gaussian Elimination
application (retrieved from [35]) is shown.



1 Online Software-Based Self-Testing in the Dark Silicon Era 7

The left part of Figure 1 shows the runtime management layer. This layer is a
software module running on a controlling hardware unit, that may be a dedicated
core in the NoC or an external host machine. The runtime management layer is
composed of two main modules, called Runtime Mapping Unit and Dynamic Power
Management Unit, that are discussed in the next.

The considered systems are generally employed in scenarios characterized by a
highly variable workload. Indeed, applications arrive with an unknown trend de-
pending on the requests of the various users. Moreover they may have different
characteristics in terms of structure of the task graph and different requirements,
for instance, on the minimum required throughput or on the amount of the pro-
cessed data. As an intuitive example in Figure 1, applications are annotated with
realtime/non-realtime requirements. In order to deal with this variable scenario, the
runtime management layer contains a unit devoted to the runtime mapping (RTM).
This unit receives the request of applications’ execution arriving from the users, and
maps them on the available cores by using a specific runtime strategy (e.g. [36]) to
satisfy the specified performance requirements. It may also happens that in a certain
instant of time there is no enough resources to run the newly-incoming application;
in that case, the application will be delayed until it is not possible to satisfy its re-
quirements.

On the other side, physical limits in circuit cooling, packaging, and power de-
livery in modern chips cause the many-core systems to have non negligible power
issues, expressed in terms of a limited power budget. According to such power bud-
get, only a part of the available cores can be used at the same time while the other
ones have to be switched off, thus causing the dark silicon phenomenon. For in-
stance, Figure 1 shows in gray the set of cores that are switched off (i.e., dark).
Moreover, running applications may cause different power consumptions, depend-
ing on the number of allocated cores and the voltage/frequency levels at which cores
work. This heterogeneity and the mentioned dynamicity in the workload will cause
the amount of dark area to relevantly vary during the execution. In fact, in some situ-
ations, the allocated cores have to work at a high voltage-frequency level to provide
the necessary performance in order to fulfill the required application throughput.
Such cores will use a large part of the power budget, thus causing other units to be
temporary set as dark. In other situations, it may happen that the set of applications
to be executed do not demand high operating frequencies, and therefore it is pos-
sible to use the total chip utilization at a low voltage-frequency level, leaving no
dark area on the chip. Such discussion motivates the necessity of a dynamic power
management (DPM) within the runtime management layer.

Figure 1 shows the DPM Unit within the runtime management layer. Such a unit
is connected to the RTM Unit to take coordinated decisions about the application
mapping and power management. In particular, the aim is to achieve applications’
performance requirements while respecting the power limit. The available budget
is defined either at design time, by using the Thermal Design Power (TDP [9]),
or dynamically managed at runtime with another feedback loop, by means of the
Thermal Safe Power (TSP [37, 38]). Then, as in [39, 40, 41], the DPM Unit is
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implemented as a feedback-loop that monitors the consumed power by means of
on-chip power sensors and acts on per-core DVFS and power gating knobs.

In conclusion, for each arrived application, RTM and DPM Units work together
in order to decide if there is enough power budget available for the execution of
such application, to define a mapping and a DVFS setting to achieve required per-
formance while not violating the power budget. If such conditions are not satisfied,
the application is delayed until some other application leaves the system and releases
enough resources and power.

4 Suitable Scenarios for Online Testing

Nowadays, many-core system are generally employed for high performance com-
puting in different fields spanning from data centers to high-end embedded and mo-
bile appliances. All these scenarios are subject to highly varying workloads: dif-
ferent types of applications arrive with an unknown trend and are characterized by
different performance requirements, variable amount of data to be elaborated, dif-
ferent request of processing resources and so on. Therefore, in each instant of time,
the running workload will cause a different working configuration in the many-core
system, in terms of the set of currently running applications, their actual mapping
on the cores’ grid, and related power consumption. Figure 2 depicts a taxonomy of
the main working situations. For each situation, Figure 2 reports the allocated cores
to different applications and idle cores, and, if any, the size of the new application
requested to be mapped. Moreover, each subfigure reports also the related power
consumption graph reporting the actual power consumption (with a solid line) and
the given power budget (with a dashed line). In each of these situations, we have
analyzed the possibility to perform a non-intrusive online testing on a selected can-
didate core. These scenarios are commented in the following paragraphs.

Scenario (a). At time t1, three applications with strict performance requirements
are running on the system. Due to the performance requirements, the active cores are
set to a high frequency-voltage level, thus leading the overall power consumption
to be too close to the available budget. Therefore the other cores are forced to be
dark. In this case, although there are idle cores that can be tested without affecting
the nominal activities of the system, there is not enough available power budget to
be dedicated to online testing.

Scenario (b). At time t2 eight applications with a performance requirements ex-
actly fit on the available cores. In such a scenario, the low power requirement caused
by each of the applications allows to use 100% of the available resources as the dim
area. Consequently, even though there is available amount of power budget for the
testing activity, in order to execute the SBST routine it would be necessary to intru-
sively interrupt one of the running applications. However, this violates our goal of
transparency.

Scenario (c). At time t3, the system is almost unloaded, since a few applications
are running and the power consumption is quite low. This is the best scenario, since
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SBST routines can be executed by using the remaining power budget and on the idle
cores, i.e. in a transparent way since the system performance is not degraded.

Scenario (d). At time t4, the RTM Unit receives a request to execute a new appli-
cation having eight tasks. However, the RTM strategy [36] may decide that it is not
convenient to immediately execute the applications. The reason is that, even though
there is room in the power budget, the current system status is characterized a high
dispersion of the idle cores. This would imply an inefficient choice in terms of per-
formance and energy consumption due to the communication costs. Therefore, since
the RTM Unit delays the application execution until a contiguous region composed
of at least eight cores will be available, the system can employ the available power
budget to run the test process on the idle cores. Dispersed cores in such scenarios
are the best candidates for being non-intrusively tested without any degradation of
the system performance.

Scenario (e). At time t5, the RTM Unit receives a request to execute an applica-
tion with nine tasks. In this scenario, even if the available power budget is sufficient
for the execution of the application, there are not enough cores available in the sys-
tem to map the arrived application. Once again, the available power budget can be
exploited for non-intrusive online testing of the available cores.

Scenario (f). At time t6, the RTM Unit receives the request to execute a new
application having nine tasks. When considering the current system status, the ap-
plication can be potentially executed in that moment due to the availability of more
than nine idle cores. Unfortunately, according to the pre-mapping power estimation
performed by the DPM Unit (with specific techniques, such as [39]), the available
power budget is not large enough to support the arrived application. At the same
time, the DPM Unit is also not able to reduce the power consumption of the other
applications currently running on the system due to their performance requirements.
This scenario represents another situation in which the available power budget can
be used to test a number of unallocated cores.

There are also other issues regarding online testing in the considered scenario:
when conditions on the availability of resources and power are satisfied (as in sce-
narios from (c) to (f)), it is also necessary to choose the candidate cores to be tested.
However, the concurrent test of all the idle cores generally overcomes the available
power budget. Moreover, as discussed in Section 1, testing activities, and in par-
ticular SBST, have to be executed at several voltage-frequency levels to ensure the
correct behavior of the system with the various settings [42, 15]; as a consequence,
it is necessary to take into account that each of these configurations will have a
different power consumption/execution time trade-off. As a result, in the scenarios
(d), (e), (f), it is also necessary to consider such aspect to run the SBST routines
with a low voltage-frequency setting on several cores at the same time, or, when it
is required, to run a single test with a high voltage-frequency setting on a specific
core.

The accurate analysis of the presented scenarios clearly shows the promising
opportunity to perform non-intrusive online testing in many-core systems. Actually,
the highly variable and evolving status of the many-core system due to the dynamic
workload presents periods with a high resource and power utilizations and period
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with a low utilization. Therefore, an opportunistic online test scheduling method can
take advantage of the second kind of situations in order to test the dark cores as long
as there is enough room in the remaining power budget. This chapter will present a
possible solution to this online test scheduling problem in the era of dark silicon.

5 Dark Silicon Aware Online Testing Framework

The proposed framework for dark silicon aware online testing is presented in Fig-
ure 3. It is an extension of the classical runtime management framework discussed
in Section 3, with some additional components devoted to the execution of the test-
related activities.

The goal of the proposed approach is to transparently run SBST routines dur-
ing the system activities without affecting the execution of the nominal workload.
Thus, the aim is to guarantee that processing cores are not affected by permanent
failures and, at the same time, to maintain the required level of performance for the
running workload. The basic idea is to test each core with a rate proportional to
the stress it has been affected due to its utilization. If a core is frequently used for
execution of applications, it is highly stressed and therefore needs frequent tests.
On the other side, if the core has been rarely allocated, it does not require urgent
testing in the near future. The benefit of this approach is to guarantee the necessary
test frequency without performing cores’ over-testing that would have a negative ef-
fect on the execution of the nominal workload in terms of larger power consumption
and unnecessary resources occupation, or cores’ under-testing that would reduce the
reliability of the system.

The proposed testing approach introduces a new component to the system, Test
Scheduling Unit (TSU), that is devoted to select the cores that need to be tested
according to the experienced stress and the scheduling of the testing task on those
cores. The experienced stress is estimated by means of a criticality metric. It is
computed according to a specific hardware component integrated within each core
counting the number of executed instructions. The TSU works in a tightly-coupled
way with RTM and DPM units to define a proper test scheduling. In particular, the
RTM unit has been slightly modified in order to take into account the fact that if
a core is candidate for the test procedure, it should not be considered for mapping
purposes. In the following subsections, the various activities of TSU are discussed
in details together with the internal modifications to RTM Unit necessary to handle
the test information received by TSU.

5.1 Monitoring Cores’ Stress

The first activity of the Test Scheduling Unit is to select the cores to be tested. Such
activity is performed by monitoring the stress experienced by each core.



12 Authors Suppressed Due to Excessive Length

DPM Unit

RTM Unit

TS Unit

Power Budget

(TDP or TSP)

DVFS

App. Info

Allocation
Execution 

Request

Power 

Supply

NoC-based Many-core System

Utilization
Meter & tc 
Calculator

Core

...

...

DVFS

V-Gate

Per-core tc

-+

PCPG

Power 

Monitroing

Fig. 3: The system architecture including the online testing framework

As many modern multi-core architectures are not provided with aging sensors, in
order to measure the experienced stress, some past testing approaches [8, 17] have
exploited the available per-core hardware counters of the executed instructions. An
example of architecture provided with such counters is the Intel SCC platform [33]).
For instance, the approach proposed in [17] schedules a test on a core every time
the instruction count, also dubbed as utilization metric, reaches a specified threshold
i.e., 10M, 100M, or 1B instructions. Moreover, in [8], a similar more fine-grained
approach envision the availability of counters for each execution unit in order to
reduce the execution time.

Therefore, we assume that each core with coordinates (i, j)) is equipped with an
instruction counter, called Utilization Meter (UM), which value αi j is incremented
every time an instruction is executed and is reset when the core is tested. Based on
the αi j, the UM computes a test criticality parameter tci j indicating the urgency of
a core to be tested due to the experienced stress. More precisely, the parameter is
computed according to the following equation:

tci, j =
αi j

δ
−1 (1)

where δ is a threshold stating the number of executed instructions that triggers
the test procedure. According to this definition, tci j assumes a value in the range
[−1;+∞). As long as tci j is lower than 0.0, αi j value is still below the specified
threshold δ and therefore the core does not need to be tested. Then, whenever tci j
exceeds 0.0, it means the corresponding core needs to be tested at the earliest con-
venient moment. The UMs send tci j matrix to the TSU at fixed time intervals, by



1 Online Software-Based Self-Testing in the Dark Silicon Era 13

using an interrupt-based mechanism to minimize redundant communications. Then,
TSU collects all candidate cores requiring to be tested so that they can be analyzed
in the subsequent test-aware mapping and test scheduling phases.

Finally, when TSU starts the execution of the SBST routine on a core, it also
resets the corresponding αi j counter; consequently, the tci j value becomes −1.

5.2 Testing-aware Mapping

The mapping of the nominal workload and the testing execution are two conflicting
activities since both require processing resources and consume power. A classical
approach of interrupting nominal execution to execute test procedures as soon as the
triggering condition is violated, as in [8], cause a considerable performance degrada-
tion, especially if there is a high requests’ rate. In fact, execution of test procedures
use a share of the power budget, and, moreover, the mapping-agnostic selection
of cores to be tested would increase fragmentation in cores’ occupation [43, 44].
On the other hand, prioritizing the mapping of the nominal workload would neg-
atively affect the reliability of the system by delaying test procedures. Indeed, test
execution should be dynamically adapted to transparently “intersect” with nominal
applications’ execution. In this way the goal of the approach is achieved: one should
not cause any performance degradation in the workload execution while satisfying
reliability issues.

In the considered system, the RTM unit uses a strategy which maps the tasks
of the same application on a contiguous set of cores [43, 44]. In this way, power
consumed by communication and latencies are considerably reduced. In the RTM
unit, such a region of neighboring cores is identified through a metric called Squared
Factor SFi j, introduced in [43]. In particular, SFi j metric relates to the number of
almost-contiguous available nodes around a given node.

In this scenario, TSU needs to prevent the RTM unit from allocating cores with
tci j > 0.0. Unallocated cores can be later scheduled for testing in an appropriate
time, when there is enough available room in the power budget. However, if TSU
directly disables the cores having tci j > 0.0, it may cause a dispersion of the planned
contiguous allocations. For instance, let us assume that an application with 10 tasks
has to be executed on the system depicted in Figure 4. As the SFi j of the node (4,5) is
10, it will be selected to map the application onto its surrounding nodes. However, if
two cores of this region have tci j > 0.0, the RTM unit has to allocate some available
nodes from south-west region of the system which leads to a high dispersion.

To avoid such performance crippling dispersions, the RTM unit has been en-
hanced by means of a newSFi j value, which is the number of cores with tci j > 0.0
from the original SFi j value. As a result, the newSFi j value shows the number of
available cores around a given core that are not candidates for testing. For instance,
the new SF value of the core in Figure 4 will be newSFi j = 10− 2 = 8. Thus, the
core will not be selected as the first node for mapping an application with 10 tasks,
but with 8 tasks instead. It is worth mentioning that apart from the disabling of the
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cores with tci j > 0.0, this approach for computing the newSFi j will not necessarily
prevent such cores from executing a task. Instead, the metric will only discourage
using that area, possibly privileging other areas with a lower number of cores to be
tested.

5.3 Test Scheduling

Test Scheduling Unit (TSU) implements test scheduling algorithm that determines
the cores to be tested among the candidate ones. The core selection strategy in the
scheduling algorithm is based on the following considerations. Due to limits on the
available power budget, it may not be possible to test all the candidate cores at the
same time. Therefore, it is necessary to define a ranking strategy to assign a priority
to the testing activities. In an intuitive way, a possible ranking strategy may be:
the higher the tci j is, the more critical it is to schedule a SBST routine on that core.
However, by means of a systematical analysis of several possible working scenarios,
we noted that if there are several cores with similar tc values, the ones with vacant
vicinity should be ranked higher for testing.

The latter consideration is based on the idea that cleaning up regions of idle cores
facilitates future application mappings. In fact, isolated cores with or without tci j >
0.0 are, nevertheless, not suitable for being allocated. More concretely, if we test a
core with busy neighbors instead of the one with idle cores around, this will lead
to a high dispersion of applications and hence degrading the system performance.
At the opposite, if we clean up regions with a large amount of contiguous cores, we
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Fig. 4: Example of SF calculation of a node for a given system configuration
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Algorithm 1 Selecting Cores for Test Scheduling
In predefined intervals:
1: if there is available resource and power for test then {// One of the suitable scenarios shown

in Figure 2}
2: Sort available cores based on their tri j values;
3: while there is enough power budget for test and # of (cores under test) < τ#Test do
4: Schedule the first core in the ranked list for testing;
5: end while
6: end if

will increase the possibility to map applications and achieving higher performance.
Finally, testing applications may be power-hungry. We should avoid placing them
in close proximity to each other or to other running applications. Otherwise, testing
several adjacent cores together can cause high power densities, and consequently
high local temperatures, as shown in the example in Section 7.

Based on the above considerations, a new metric has been defined to rank can-
didate cores by considering at the same time test criticality and the number of idle
cores in the proximity. The metric is defined as:

tri j = tci j +

√
SFi j

total number o f cores
(2)

where SFi j value is normalized to the total number of cores in the system. As a
metric, SFi j estimates the number of vacant cores around a given core; i.e., the larger
the SFi j value of a core is, the more idle cores are around it. Moreover, we use a
square root of SFi j value to limit its impact to the cases where tci j values are too
close to each other. For instance, in case of equal tci j values in Figure 4, the cores
(3,4) and (4,6) will be ranked higher than the core (7,3).

Algorithm 1 shows the pseudo-code for the selection of cores to be tested. A
peculiarity of the algorithm is an additional control of negative impact of testing
on system performance. This is implemented by limiting the maximum number of
cores that can be simultaneously tested by means of a given threshold, τ#Test . The
motivation is that we have to cope with a highly evolving scenario; while there
might be enough power at the moment to test even more cores, this can change in
the near future. Other applications might enter the system, or the power demand and
behavior of running applications might change.

In general, execution time of the SBST routine is short compared to applications’
execution time. However, regardless of the application types, the overhead of the
SBST routine is almost independent of the applications’ execution time. The test
criticality value of a core (tci j) depends on the number of instructions executed over
time. In case of short applications, tci j becomes greater than 0 only after execution
of several applications. While, in case of long applications, the allocated core might
need to go under test after the application execution. In this case, the overhead would
be again negligible compared to execution time of the application.
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Finally, it is worth of noting that the tci j value increases significantly in case of
executing very long applications. Such situation would be managed by means of
task migration. However, we leave such an aspect as a future work.

6 Test Scheduling for Different Voltage-Frequency Settings

Based on the recent studies, some specific faults manifest themselves in a particu-
lar voltage-frequency (VF) settings [45]. These studies have concluded that multi-
/many-core systems equipped with DVFS feature should be tested at multiple volt-
age levels to ensure that cores can operate reliably at different conditions. Testing at
multiple voltage levels is more challenging compared to single voltage level testing
as in each voltage level a separate SBST routine execution is needed and the maxi-
mum possible operating frequency is limited [46]. Applying the trivial and straight-
forward test scheduling and repetitively run a test process for every voltage level,
drastically increases the overall Test Application Time (TAT) that have a direct im-
pact on the overall system performance. At low voltage levels, test process becomes
slower as the frequency is lower that resulting in a longer TAT. In this section, an
efficient technique is proposed to test cores at different voltage levels with the aim
of providing a uniform testing probability for all the levels while minimizing the
performance overhead.

To apply online testing on cores running at different voltage levels, it is essen-
tial to use a test scheduling policy with the minimum negative impact on system
performance. To this end, allocated cores(s) need to be detected and enough power
budget need to be available for the test purpose so that the upper power consumption
bound will not be violated. However, as test power consumption at different voltage
levels considerably varies, the suitable frequency level in each voltage level should
be properly determined at runtime.

In multi-/many-core systems equipped with DVFS feature, usually for each volt-
age level, an upper bound for the maximum frequency that can operate at that volt-
age level is defined. For example, in Intel SCC platform, 7 voltage levels for each
island are defined where each voltage level has a maximum possible frequency, thus
forming more than 15 VF levels per island which can be changed at runtime. In each
particular voltage level, different operating frequencies used for testing result in dif-
ferent test power/energy. As the system is tested at runtime with functional methods,
and a test at a certain voltage level can be performed at different frequencies (i.e.,
equal or lower than the maximum frequency at the respective voltage [46]), we de-
fine a VF set as the set of different available frequencies (i.e., VF levels) that can be
selected for testing at a given voltage level. At low VF levels, power consumption
is lower at the cost of longer TAT, compared to high VF levels where higher power
consumption is needed to achieve a shorter TAT. This raises a question whether it is
more efficient to use a low VF level and save the power to have parallel testing of
multiple cores or to use a higher VF level and reduce the TAT for individual cores.
Our solution to address this issue is inspired by the traditional 2D rectangular pack-
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Fig. 5: An example of rectangular packing model for power aware testing

ing model used in power-constrained testing. Figure 5 shows an example of using
2D rectangular model when three cores are tested over time at different VF levels.
Each rectangle depicts a test process as a triplet (Ci,Vj,Fk) where Ci is the core to be
tested, Vj is the voltage of test, and Fk is the frequency of test. The width and length
of the rectangle correspond to the test power consumption and TAT, respectively,
where the total summation of test power at each moment of time should not exceed
the maximum available power budget for test. It can be observed that when power
budget is limited and an optimal test scheduling algorithm is used, the total areas of
the all test rectangles determine the overall test time. This area is the TAT-test power
product which can be called as energy consumption for test. We use the energy con-
sumption for test as a metric to choose the proper VF level for test when there is an
option to select one VF level among the available VF levels in a particular VF set.

In Figure 6, we have compared the normalized energy with different frequency
levels when the voltage is fixed. As can be seen, by increasing the frequency up to
the maximum possible frequency, the energy consumption exponentially decreases.
That is because of the fact that for a constant voltage, the static power remains con-
stant, and by decreasing the frequency, the penalty of unchanged high static power
superimposes the overall power and energy accordingly. From these two observa-
tions, we propose a general rule for our test scheduling algorithm that for a given
voltage level, the test frequency should be increased as much as possible while mon-
itoring and honoring the total power budget.

Algorithm 2 shows in more details the proposed test scheduling strategy for test-
ing the cores at different VF levels. Algorithm 2 is the extension of Algorithm 1 to
consider VF levels in test scheduling, thus offering the system manager the option to
choose two different test scheduling policies with contrasting reliability-complexity
trade-offs. The input of the test scheduler is the instantaneous power consumption
of the system (i.e., Pc) which is provided by the chip power sensor and the output
of the test scheduler is the core(s) targeted for being tested at specified VF level(s)
(i.e., set of (Ci,Vj,Fk) where Vk and Fk are the voltage and frequency of the core Ci
during the test process).

First the amount of available power budget (i.e., availablePower) is calculated
which is the available portion of power budget that can be used for test purpose (Line
1 in Algorithm 2). If it is less than or equal to zero, it means there is no available
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Fig. 6: Power versus energy in a fixed voltage level

power for the test purpose. If availablePower is greater than zero (i.e., there exists
available power for the test purpose) and the number of cores under test is smaller
than the maximum threshold (i.e., τ#Test ), the algorithm will find the first core in the
list of cores sorted based on their tri j values as the target for test (Line 3-4). If such
a core exists in the system, for each VF set (i.e., V Fset) at which the core has not
been tested yet, the algorithm will check if the available power can be used to test
the core at that VF set or not (Line 5-12). Based on a pessimistically pre-calculated
test power for each VF level, the function minPower returns the minimum required
test power (i.e., CUTpower) and the corresponding voltage and frequency (i.e., (Vj,
Fk)) to test the core at one of the VF levels at that specific VF set (i.e., V Fset j). If the
test power is less than the available power, then the core and voltage-frequency for
test will be added to the set of target cores for test (i.e.,CUTset ) and availablepower
will be updated accordingly (Line 7-11). Whenever a core is selected for test, the tr
value for other cores will be updated based on the consideration of the selected core
as an occupied node. This causes the next core for test to be selected in other vacant
areas.

Searching for faster test process continues as long as τ#Test threshold is reached
or availablePower is less than zero. availablePower is the amount of power budget
that can be used for test purpose. As the power for testing the cores in different VF
levels can be measured in design time and it is determined in runtime, the max-
imum VF level at which cores can be tested without violating availablePower is
calculated in the algorithm through a trial-and-error process (Line 14-19). Highest
possible VF level is calculated by function maxV F . If such a level exists, then the
new voltage-frequency for testing will be added to the updated set of target cores for
test (i.e., CUT ′set ) and availablepower will be updated. This process continues until
either availablePower is larger than zero or all the cores in CUTset are selected. To
determine the appropriate VF levels for test purpose we make use of the ideas ap-
plied for the traditional power constrained testing in multi-clock domain SoCs [47].
In such works, the problem is to achieve the best TAT while for testing the cores
in an SoC, while each core can be run on different VF level. The only difference



1 Online Software-Based Self-Testing in the Dark Silicon Era 19

Algorithm 2 Selecting Cores for Test Scheduling with VF selection algorithm
Inputs: Pc: Instantaneous power measurement from the sensor;
Pmax: The maximum power budget (i.e., TDP or TSP);
Output: CUT ′set : The target core(s) to be tested at specified VF level(s) (i.e., set of
(Ci,Vj,Fk));

Variables: availablePower: Available power for test;
CUTset : Temporary variable for the target core(s) and their VF level(s) for test;
CUTpower: Core under test power consumption at a given VF level;
Constant: τ#Test : Maximum number of core(s) under test;

Body:
1: availablePower← Pc - Pmax;
2: while availablePower > 0 and # of (cores under test) < τ#Test do
3: Sort available cores based on their tri j values;
4: Ci ← The first core in the ranked list for testing;
5: if Ci is not tested in V Fset j then
6: (CUTpower,Vj,Fk)← minPower(V Fset j);
7: if CUTpower < availablePower then
8: CUTset ← (Ci, Vj, Fk);
9: Update tr for all cores;

10: availablePower← availablePower - CUTpower;
11: end if
12: end if
13: end while
14: while availablePower > 0 and there is unselected core(s) in CUTset do
15: select core (Ci,Vj,Fk) from CUTset ;
16: (CUTpower,Vj,F ′k)← maxV F((Ci,Vj,Fk), availablePower);
17: CUT ′set ← (Ci,Vj,F ′k);
18: update (availablePower);
19: end while

from such works with our problem solving attempt is that the maximum power for
test for those power constrained testing is fixed since the test process is done offline,
while in our online test scheduling availablePower changes during the time. How-
ever, if the test time is short enough (which is reasonable assumption as discussed
in Section 5.3), we can assume that the power budget for test does not change and
two problems are the same. More details regarding the efficiency of this method can
be found in [47]. It is worth noting that the proposed algorithm for test scheduling
is targeted for platforms featuring per-core DVFS. The extension to also consider
per-cluster DVFS is left as a future work.
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Table 1: The system settings for different experiment setups

Technology System Area NoC
Node Type (mm2) Size

First Experimental Setup 16nm medium 138 12×12
Second Experimental Setup 22nm large 232 11×11
Third Experimental Setup 32nm large 254 8×8
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Fig. 7: Throughput penalty for different experiment setups and δ values while using TDP

7 Experimental Evaluation of the Approach

To experimentally evaluate the proposed approach, we implemented a system-level
simulation platform for the described many-core architecture together with accom-
panying runtime management layer and testing procedures in SystemC on the ba-
sis of Noxim NoC simulator [48]. The basic core has been characterized by using
the Niagara2-like in-order core specifications obtained from McPAT [49]. Physical
scaling parameters, power model, voltage-frequency scaling model, and TDP cal-
culation were extracted from the Lumos [11], a framework to analytically quantify
power/performance characteristics of devices in near-threshold operation. The phys-
ical scaling parameters have been calibrated via circuit simulations with a modified
Predictive Technology Model [50]. Then, we integrated HotSpot 5.0 [51] for mod-
eling the thermal behavior of the device. To demonstrate the efficiency of our dark
silicon aware online testing approach on many-core systems, we defined three in-
stances of the architecture by considering different technology nodes and different
grid sizes as described in Table 1. Finally we defined a variable workload consisting
of both synthetic task graphs with 4 to 35 tasks using TGG [35], and real applica-
tions, such as MPEG-4, UAV and VOPD, from [52].

The proposed runtime management layer has been defined by using the runtime
mapping algorithm presented in [36] and the dark silicon aware power management
(DSAPM) technique presented in [39]. In this power management strategy, a PID
(Proportional Integral Derivative) controller is used for dynamic power management
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Fig. 8: Throughput penalty for different experiment setups and δ values while using TSP

that considers a fixed power budget (i.e., TDP). As an alternative, we have also
integrated the TSP calculation tool from [37] to evaluate the dynamic power budget
based on the number of active cores at each moment of time.

To prepare the SBST program, we first generate deterministic test patterns from
the netlist of HDL implementation of Niagara2- like cores using the technique pro-
posed in [53]. In particular, NetlistGen.exe is used for generating netlists of the
synthesized cores and fault simulation has been performed with PLI library in HDL
environment [54]. Then, we develop test macros based on the generated determinis-
tic test patterns. The overall coverage for the cores’ datapath and controller are 79%
and 63%, respectively. The duration of the SBST routine is 9000 cycles for each
core. Dynamic and static power consumption of the test process has been measured
by using the adopted models [11]. Finally, we set τ#Test to 4.

In a first experiment we analyzed the throughput penalty in terms of executed in-
struction per unit of time of the proposed test scheduling approach when the δ is set
to 10M, 100M, and 1B instructions. Moreover, we defined power budgets by using
both TDP and TSP methods. The results for the two different power limits are shown
in Figures 7 and 8, respectively. As can be seen from the bar charts, the proposed on-
line testing method has a negligible throughput penalty for both TSP and TDP based
approaches. In all the cases except for 10M, the overhead is less than 1.5%; when δ

is set to 10M, the execution frequency of the test procedure introduces an overhead
up to 6% for the architecture designed with the 32nm technology. An interesting
aspect is that, for both TDP and TSP experiments, the minimum throughput penalty
is observed for the architecture designed with the 16nm technology (first experi-
mental setup), that is the newest node technology, where power limitation is more
challenging and the system size, i.e. the total number of cores, is larger than in the
other experiments. This shows that the proposed approach will have even more op-
portunities in the future technologies to find suitable scenarios for online testing. It
can be noticed that the penalty while using TSP as the maximum power limit is very
similar to the penalty of using TDP. Finally, we can also note that the throughput
penalty obtained by the proposed method is considerably lower than in the existing
online testing methods reported in [17, 18]. The reason of such improvement is that
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(b) For 22nm Technology (second experiment setup)
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(c) For 32nm Technology (third experiment setup)

Fig. 9: The number of completed applications vs. time (TDP-based approach)

our method adapts on the working status of the system. In particular, it takes ad-
vantage of non-intrusive testing of the cores that are temporarily located in the dark
area by exploiting available power budget.

In the subsequent experimental sessions, we delved more into details of the per-
formance overhead analysis of the proposed approach by comparing it against most
relevant state-of-the-art methods [55]. Notice that, this earlier method dedicates a
fixed amount of power budget to the test process. Thus, we re-run the same ex-
periment with δ set to 10M (that is the worst case scenario) for 250 seconds and
we plotted the system throughput over time as shown in Figure 9 and 10 when
using TDP and TSP, respectively. Each of these figures compares the throughput
of the proposed approach against classical dark silicon aware power management
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(c) For 32nm Technology (third experiment setup)

Fig. 10: The number of completed applications vs. time (TSP-based approach)

(DSAPM) strategy without testing option and the DSAPM strategy coupled with
with the technique presented in [55]. It can be seen that the proposed online test-
ing approach achieves a better performance over time compared to the DSAPM
approach with dedicated power for test procedures. In particular, the throughput
penalties for DSAPM coupled with the technique presented in [55] for 16nm, 22nm,
and 32nm technologies are 23%, 20%, and 16%, respectively for the TDP-based
approach, and 25%, 23%, and 22% for the TSP-based approach which is larger
compared to the corresponding results obtained by the proposed approach, reported
in the previously discussed Figures 7 and 8. Furthermore, it can be noted that ap-
plications complete and leave the system with almost the same trend for the both
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Fig. 11: The power consumption of the system with and without online testing approach for differ-
ent experiment setups, (a) 16nm, (b) 22nm, and (c) 32nm

DSAPM with online testing and DSAPM without online testing. This confirms ca-
pability of the proposed approach to perform transparent scheduling by using the
available power budget and resources at runtime for testing the cores with a negli-
gible penalty on the system performance.

Within the same experimental setup we also evaluated the power consumption of
the system over time. Figure 11 shows the power consumption of the system when
running a group of random applications while using DSAPM with and without the
proposed online testing approach. As it can be observed from the power curves, the
total power consumption does not violate the available power (defined with TDP)
for both approaches. At the same time, when the power budget is changed, the ap-
proach is able to adapt to a new condition. This shows that even though a dedicated
power budget is not allocated to the test purpose, the DPM unit efficiently honor
the TDP bound even when the TDP is changed at runtime. The power curves show
that small throughput penalties are experienced in scenarios when the system is fre-
quently busy and the total chip power consumption is most of the time close to
the upper bound. In a last series of graphs (Figure 12), it is shown we the actual
power consumption dedicated for testing over time. It is worth noting that a bar
chart is used since test power is not continuous but it is dedicated in specific pe-
riods. The maximum value never exceeds 3W on the available 50W for 16nm and
22nm technologies, and 4.5W on the available 70W for 32nm technology. More-
over, in average such test power is around 2% of the overall power consumption.
This demonstrates that the approach is able to limit the instantaneous test power by
distributing SBST routine execution over time.
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(c) For 32nm Technology (third experiment setup)

Fig. 12: Test power consumption of the system in 16nm, 22nm, and 32nm technology, respectively

We also analyzed efficiency of the test scheduling approach in avoiding temper-
ature hotspots. In particular we analyzed the effect when considering square factor
of (SF) in Equation 2. For this, several thermal snapshots are monitored during sys-
tem runtime and compared against a modified version in which such parameter is
not considered in Equation 2, dubbed as non-thermal-aware scheduling. Figure 13
shows the temperature profile of the system while running non-thermal-aware and
thermal-aware test scheduling at a given instant of time (with τ#Test = 4). As can be
seen, the non-thermal-aware scheduling selects four neighboring cores which causes
high temperatures in a restricted area of the chip. At the opposite the thermal-aware
strategy selects cores which are far from each other to avoid thermal hotspots.

Finally, we analyzed the effectiveness of the testing procedure at different volt-
ages/frequency (VF) settings. We characterized the simulation platform with 6 VF
sets, i.e. voltage levels, for a total of 29 VF levels. Table 2 reports these different
VF sets, by specifying for each of them the related voltage and available frequen-
cies in each set. The target VF level to be assigned to the core under test is chosen
among all the options in each VF set. The results of the experiments, performed with
the same setup discussed above, are reported in Figure 14, for the three considered
technologies, respectively. In particular, each pie chart reports a share of each VF
set used for testing activities from the total number of tested cores at the end of the
simulations. As can be noticed, VF sets are selected in almost similar way hence
demonstrating the fairness of the proposed DVFS-aware test scheduling algorithm.
As the sets with higher VF levels consume more power, their shares are a little bit
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Fig. 13: Heat maps while running non-thermal-aware and thermal-aware test scheduling

Table 2: Voltage-Frequency sets for test

Technology 16nm
VF set for test Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

VF Level 1-5 6-10 11-15 16-20 21-25 26-29
Voltage(V) 0.47 0.51 0.56 0.59 0.63 0.68

Frequency(GHz) 0.4-0.64 0.4-1 0.4-1.54 0.4-2 0.4-2.6 0.4-3.1
Technology 22nm

VF set for test Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
VF Level 1-5 6-10 11-15 16-20 21-25 26-29

Voltage(V) 0.49 0.54 0.6 0.65 0.7 0.74
Frequency(GHz) 0.4-0.67 0.4-1.1 0.4-1.6 0.4-2.1 0.4-2.8 0.4-3.2

Technology 32nm
VF set for test Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

VF Level 1-5 6-10 11-15 16-20 21-25 26-29
Voltage(V) 0.52 0.58 0.63 0.69 0.75 0.8

Frequency(GHz) 0.4-0.68 0.4-1.13 0.4-1.6 0.4-2.2 0.4-2.8 0.4-3.2

lower than the sets with lower VF levels. As a conclusion the sets with lower VF
levels have a better chance to use the available power than the other sets.

8 Conclusions

This chapter presented a power-aware online testing strategy for many-core systems
in the dark silicon era. The strategy consists of a non-intrusive online test scheduling
algorithm using software-based self test techniques to test idle cores in the system
while respecting the system’s power budget. Moreover, a criticality metric is used
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Fig. 14: The share of every particular VF set from the total number of tested cores (%) for 16nm,
22nm, and 32nm technologies

to identify and rank cores that need testing. The goal of the approach is to guarantee
prompt detection of the occurred permanent faults, while minimizing the overhead
and satisfying the limited available power budget. The presented experimental re-
sults show that the proposed power-aware online testing approach can 1) efficiently
utilize temporarily unused cores and available power budget for the testing purposes,
within less than 1% penalty on system throughput and by dedicating only 2% of the
actual consumed power, 2) adapt to the current stress of the cores by using the uti-
lization metric, and 3) cover and balance all voltage-frequency levels during various
test procedures.
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