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Abstract

In this paper, a large amount of different financial and macroeconomic variables
are used to predict the U.S. recession periods. We propose a new cost-sensitive
extension to the gradient boosting model which can take into account the class
imbalance problem of the binary response variable. The class imbalance, caused by
the scarcity of recession periods in our application, is a problem that is emphasized
with high-dimensional datasets. Our empirical results show that the introduced
cost-sensitive extension outperforms the traditional gradient boosting model in
both in-sample and out-of-sample forecasting. Among the large set of candidate
predictors, different types of interest rate spreads turn out to be the most important
predictors when forecasting U.S. recession periods.
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1 Introduction

Recessions are painful periods with a significant and widespread decline in economic
activity. Early warning signals of recessions would be important for different kinds of
economic agents. Households, firms, policymakers and central bankers could all utilize
the information concerning upcoming economic activity in their decision making. The
probability of a recession is fairly straightforward to interpret and can be easily taken
into consideration in all kinds of economic decision making.

But what are the indicators that consistently lead recessions? Since the early work
of Estrella and Mishkin (1998) there has been a large amount of empirical research
concerning the predictive content of different economic and financial variables (see e.g.,
Nyberg, 2010; Liu and Moench, 2016). The amount of potential recession indicators
is growing rapidly as the constraints related to data-availability and computational
power keep diminishing. Traditionally used binary logit and probit models can only
handle small predictor sets at a time, which makes the search for the best predictors
quite difficult.

Recent developments in the machine learning literature provide a solution to this
problem. State of the art supervised learning algorithm called gradient boosting is able
to do variable selection and model estimation simultaneously. Non-parametric boosting
can handle huge predictor sets and the estimated conditional probability function can
take basically any kind of form. The main objective of this research is to explore how
we can exploit high-dimensional datasets when making recession forecasts with the
gradient boosting model.

The business cycle consists of positive and negative fluctuations around the long-
run growth rate of the economy. These fluctuations are also known as expansions
and recessions. The official business cycle chronology for the U.S. is published by the
National Bureau of Economic Research (NBER). Recessions are shorter events compared
to expansion periods leading to quite heavily imbalanced binary class labels. In our
dataset less than 14 percent of the monthly observations are classified as recessions. This
class imbalance and the effects on classification is well covered in the machine learning
literature (see e.g., Galar et al., 2012). Suprisingly the scarcity of recession periods has
not been properly taken into consideration in previous economic research.

Two approaches are usually considered when dealing with imbalanced classes:
resampling techniques and cost-sensitive learning methods (see e.g., He and Garcia,
2009). Resampling is the easiest and most commonly used alternative. The dataset
could be balanced by drawing a random sample without replacement from the majority
class, which is called undersampling. In the recession forecasting setup the size of the
dataset is already very limited so this could create problems when estimating the model,
especially with high-dimensional data. In the oversampling approach the idea is to



sample with replacement from the minority class. He and Garcia (2009) argue that the
duplicate observations from the minority class can lead to overfitting.

Instead of replicating existing observations from the minority class one could learn
the characteristics in this class and create synthetic samples based on feature space
similarities. This synthetic minority oversampling technique also known as SMOTE is a
popular alternative when dealing with imbalanced data. Blagus and Lusa (2013) how-
ever find that variable selection is needed before running SMOTE on high-dimensional
datasets.

Cost-sensitive learning methods can take the class imbalance into account without
artificially manipulating the dataset. In a variety of real-life classification problems,
such as recession forecasting or fraud detection, misclassifying the minority class can
be considered very costly. The cost-sensitivity can be incorporated into the model
by attaching a higher penalty for misclassifying the minority class. Several modified
versions of the adaboost algorithm by Freund and Schapire (1996) exist, where the
weight updating rule of the original algorithm is modified to better account for the class
imbalance (see e.g., Sun et al., 2007; Fan et al., 1999; Ting, 2000).

This is natural since weight updating is a crucial part of the adaboost algorithm
designed purely for classification problems. However this is not the case with the
more general gradient boosting algorithm presented by Friedman (2001) that can handle
variety of problems beyond classification and the cost-sensitivity have to be incorporated
otherwise. We propose a cost-sensitive extension to the gradient boosting model by
introducing a binary class weight to each observation in the dataset that reflect the
asymmetric misclassification costs. To the best of our knowledge cost-sensitive gradient
boosting model using class weights has not been utilized in previous economic research.

The traditional gradient boosting model has been utilized in previous economic
research with mixed results. Ng (2014) uses the gradient boosting model with stump
regression trees to predict recession periods in the U.S. The dataset used by Ng (2014)
has a fairly large predictor set and is from the same source as the dataset used in this
paper. With this model setup Ng (2014) concludes that the gradient boosting model is
far from perfect in forecasting recessions.

Berge (2015) uses a smaller predictor set to forecast U.S. recessions with the gradient
boosting model. The results show how boosting outperforms other model selection
techniques such as Bayesian model averaging. Moreover, the results highlight the im-
portance of non-linearity in recession forecasting as boosting with non-linear smoothing
splines outperforms boosting with a linear final model. Dopke, Fritsche and Pierdzioch
(2017) succesfully forecast German recession periods with the gradient boosting model
using regression trees. Unlike Ng (2014) they build larger trees which allow for potential
interaction terms between predictors. This approach is used in this study as well.

Our results confirm the finding of Blagus and Lusa (2017) who note that the per-



formance of a gradient boosting model can be rather poor with high class imbalance,
especially when a high-dimensional dataset is used. The out-of-sample forecasting
ability of the traditional gradient boosting model is quite heavily deteriorated compared
to the in-sample results. The cost-sensitive extension to the gradient boosting model
using class weights can take the class imbalance problem into account and produces
strong warning signals for the U.S. recessions with different forecasting horizons.

The cost-sensitive gradient boosting models estimated using huge predictor sets
rely heavily on different kinds of interest rate spreads. This is also the case with the
short and medium term forecasting horizons although different variables related to the
real economy are also available in the dataset. The internal model selection capability
of gradient boosting confirms that predictors with predictive power beyond the term
spread are quite hard to find (see e.g., Estrella and Mishkin, 1998; Liu and Moench,
2016).

The results also show how the chosen lag length for a predictor can vary substantially
from the forecasting horizon considered. A similar observation has been made by
Kauppi and Saikkonen (2008) in the conventional probit model. The term spread is the
dominant predictor when forecasting recessions one year ahead, which is a common
tinding in the previous literature (see e.g., Dueker, 1997; Estrella and Mishkin, 1998).

The rest of the paper is organized as follows. The gradient boosting framework and
the cost-sensitive extension to the gradient boosting model are introduced in Section 2.

The dataset and the empirical analysis are presented in Section 3. Section 4 concludes.

2 Methodology

The following theoretical framework for the gradient boosting model follows closely
the original work of Friedman (2001).

2.1 Gradient boosting

Considering two stochastic processes y, and x,_; of which ¥, is a binary dependent
variable of form

(1)

1, if economy in recession at time t
Y = . . . .
0, if economy in expansion at time t

and x;_; is a p x 1 vector of predictive variables. The lag length k of each predictor must
satisfy the condition & > h, where h is the forecasting horizon. If E;_;(-) and P,_(-)
denote conditional expectation and conditional probability given the information set

available at time ¢t — k£ and by assuming the logistic transform A(-) the conditional



probability can be written as

Et_k(yt) = Pt_k(yt = 1) =Pt = A(F(Xt—k))- (2)

We can model this conditional probability by estimating the function F(x;_;) with
the gradient boosting model. Exponential loss and binomial deviance are popular
alternatives for the loss function to be minimized with binary classification problems.
These are second order equivalent (Friedman, Hastie and Tibshirani, 2000). In this
research the conditional probability is estimated with the gradient boosting model by
minimizing the binomial deviance loss function.

In the general estimation problem the goal is to find the function F(x,_;) that

minimizes the expected loss of some predefined loss function

F(x¢—x) = argmin F [L (y¢, F'(X¢—1))]- 3)

F(x¢—k)
Even for a simple parametric model, where F'(x,_;) is assumed to be a linear function
of the covariates, numerical optimization techniques are usually needed for solving the
parameter vector that minimizes the expected loss in equation (3). Steepest descent
optimization technique is a simple alternative. The parameter search using steepest

descent can be summarized with the following equation

M M

m=0 m=0

where 3, is the initial guess and {3,,}}_, are steps towards the optimal solution. The
negative gradient vector —g,,, determines the direction of each step and 4,,, is the stepsize
obtained by a line search.

With gradient boosting the optimization takes place in the function space instead
of the conventional parameter space. Similarly as in the parametric case numerical
optimization methods are needed when searching for the optimal function. Some
further assumptions are required in order to make the numerical optimization in the
function space feasible with finite datasets. By restricting the function search to some

parameterized class of functions the solution to numerical optimization can be written

as o o
F*(thk) = Z fm(xtfk) = Z(Smb(xtfk;’)lm)a (5)
m=0 m=0

where 9,, is the stepsize obtained by line search as in equation (4). Now the step
"direction" is given by the function b(x;_x;~,,) also known as the base learner function.
This can be a simple linear function or highly non-linear such as splines or regression

trees. In this paper regression trees are used and the parameter vector ~,, consists of the
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splitting variables and splitpoints of the regression tree. Equation (5) also incorporates
the original idea of boosting. The possibly very complex final ensemble F(x;_;) with
strong predictive ability is a sum of the fairly simple base learner functions f,,(x;_x).
Using the sample counterpart of the loss function in equation (3) and by plugging in
the additive form introduced in equation (5) the estimation problem can be written as

{5771 77m}r]¥1,1=1 —

L
min NZ: (yt,z (X¢—k; ’)’m)> (6)

This minimization problem can be approximated using forward stagewise additive
modeling technique. This is done by adding new base learner functions to the expansion
without altering the functions already included in the ensemble. At each step m the base
learner function b(x;_y; ~y,,) which best fits the negative gradient of the loss function is
selected and added to the ensemble. Using least squares as the fitting criterion while
searching for the optimal base learner function leads to the general gradient boosting
algorithm by Friedman (2001):

Algorithm 1 Gradient boosting

Fo(xi—x) = argmlnNZL (ye, p

t=1
form<—1t0Mdo.

~ 8L(yt,F(Xt_k))

Yy = — OF (x¢_ k) ,tzl,...,N

‘F(xt k)=Fm—1(x¢—x)

= argmlnz — 0b(x;_ k,’y)]

N
pm = argmin > L (g, Fou 1 (x41) + pb(Xe kY1)

p t=1

Fm(xt—k) = Fm—l(xt—k) + pmb(xt—k; ’Ym)
end for

Friedman (2001) suggests a slight modification to Algorithm 1 when regression trees
are used as the base learner function. Regression trees are a simple yet powerful tool
that partition the feature space into a set of J non-overlapping rectangles and attach a
simple constant to each one. The base learner function of a J-terminal node regression

tree can be written as

J

bk {cj, Bi})o) =D cil(xik € Ry), )

j=1

where the functional estimate is a constant ¢; in region R;. According to Friedman (2001),

the additive J-terminal node regression tree in equation (7) can be seen as a combination



of J separate base learner functions. One base learner for each terminal node of the
regression tree. Therefore after estimating the terminal node regions { R, }7_, at the
mth iteration with least squares on line 4 of the Algorithm 1 the line search step on line
5 should produce separate estimates for each terminal node of the regression tree. This

minimization problem can be written as

J

{¢jm}]—; = argmin ZL(yt, m1(Xek) + ch](xt_k € ij)>. (8)

1) A p— j=1

The ensemble update on the last line of Algorithm 1 is then a sum of these .J terminal

node estimates obtained in equation (8)

J
Fm(xt—k) - Fm—1<xt—k) + Z éij(Xt—k € ij)

=1

2.2 Cost-sensitive gradient boosting with class weights

With a high class imbalance there is a risk that the estimated binary classifier is skewed
towards predicting the majority class well (He and Garcia, 2009). An algorithm can be
made cost-sensitive by weighting the dataspace according to the misclassification costs
(Branco, Torgo and Ribeiro, 2016). This weighting approach is sometimes referred to
as rescaling in the previous literature (see e.g., Zhou and Liu, 2010). The asymmetric
misclassification costs, which are the building block of cost-sensitive learning, are
incorporated to the gradient boosting model by introducing a binary class weight for
each observation in the data. In the traditional gradient boosting model the sample
counterpart of the loss function is the sample mean and the minimization problem
can be written as in equation (6). By introducing a vector of class weights we end up
minimizing the weighted average of the sample loss function

min - —— Z w; (yt, Z mb(Xe—k; ’Vm)> : ©)
{0m,Ym % 1 =1 m=1
Zw
t=1
If the weights w; are equal for each observation the weighted average in equation (9)
reduces to the sample mean.
Elkan (2001) suggests weighting the minority class observations according to the
ratio in misclassification costs. Suppose ¢,y denote the cost when we fail to predict a
recession and c¢;; when we give a false alarm of recession. The optimal weight for the

minority class observations is then

w* =20, (10)
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In many cases the exact misclassification costs are unknown and we must rely on
rules such that misclassifying the minority class is more costly (Maloof, 2003). The
class weights are basically arbitrary as they depend on the unknown preferences how
harmful different types of misclassification is considered to be. In this paper we use
the data-based approach by Zhou (2012) and choose the weights according to the class
imbalance observed in the dataset

N
Zt:}\[(l_yt), if Yy = 1
’LUt — thlyt . (]'1)
]_, lf Yy = 0

As can be seen from equation (11) the weights depend on the ratio of the number of
datapoints in both classes. These binary weights ensure that the sum of weights are
equal in both classes. The aim of choosing these weights is to force the algorithm to
provide a balanced degree of predictive accuracy between the two classes.

The cost-sensitive gradient boosting algorithm with class weights follows the steps
described in Algorithm 1 but the binary class weights can have an effect on each step
of the algorithm. Table 1 illustrates how the class weights alter different parts of the
gradient boosting algorithm, when J-terminal node regression trees are used as the
base learner functions and the loss function to be minimized is the binomial deviance.

Table 1: The effect of class weights on the gradient boosting algorithm

Step Value
Loss function | —2i= welye F(xi_) ~log(1+e" 4 1))
Zi\le wt
N
Initial value Fo(x¢_y) = log(=2t=tuebe )

25:1 wi(1—yt)

Gradient Tim = Y — Pt where
_ 1
be = 1+6—Fm71(xt—k)

Split criterion | i*(R;, R,) = %(ﬁz — gr)%, Wi=>,, .er Wt

— 1 ~
. g = lea;t_keletytm
Terminal node Yoy per; we(ye—pt)

. Cim =
estimate I Yy er; wept(1=pt)

Note that the values for each step of the ordinary gradient boosting model can be
obtained from Table 1 by setting all the weights equal to one. The cost-sensitive and the
traditional gradient boosting algorithms differ starting from the initial values. As the
first gradient vector is based on the initial value the gradients are also different. The
biggest differences between these two algorithms however are related to the estimation

of the regression tree base learners at each iteration m of the algorithm. Blagus and
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Lusa (2017) argue that the class imbalance problem of the gradient boosting model with
high-dimensional data is related to the inappropriately defined terminal regions R;.

Next we will consider how class weights can have an effect on both the estimated
terminal node regions and the terminal node estimates of the regression tree base
learner. When J-terminal node regression tree is used as the base learner function,
the J — 1 recursive binary splits into regions R; and R, dividing the predictor space
into J non-overlapping terminal node regions {R;}7_, are obtained by maximizing
the least-squares improvement criterion. These splits are based on a slightly different
criterion if class weights are used. For this reason the estimated terminal node regions
and the terminal node estimates can be different between the two algorithms.

From Table 1 we can see how the split criterion is based on two parts. The first

W, W,
part 37 5

boosting is based on the sum of weights in these two categories instead of the number

illustrates how each split into regions R; and R, in cost-sensitive gradient

of observations. The latter part of the split criterion (g, — g.)? shows that instead of the
average gradient we compare the weighted average of the gradient in the regions, when
searching for the optimal split point. From the last row in Table 1 one can note how the
terminal node estimates are functions of both the terminal node regions and the class

weights itself and hence the final estimates can be different between the two algorithms.

2.3 Regularization parameters in gradient boosting

Friedman (2001, 2002) introduces several add-on reqularization techniques to reduce
the risk of overfitting or to improve the overall performance of the gradient boosting
algorithm. The parameters related to these techniques are often called tuning parameters
since it is up to the user to finetune the parameter values for the particular problem at
hand. Tuning parameters with the gradient boosting technique can be divided into two
categories: parameters related to the overall algorithm and parameters related to the
chosen base learner function.

Friedman (2001) incorporates a simple shrinkage strategy to slow down the learning
process. In this strategy each update of the algorithm is scaled down by a constant
called learning rate. The ensemble update on the last line of Algorithm 1 can then be

written as

Fm(Xt—k) - Fm—l(xt—k:) + Upmb(xt—k; ’Ym)a

where 0 < v < 1 is the learning rate. Learning rate is a crucial part of the gradient
boosting algorithm as it controls the speed of the learning process by shrinking each
gradient descent step towards zero. Friedman (2001) suggests to set the learning rate
small enough for better generalization ability. Bithlmann and Yu (2010) reach a similar
conclusion.

Breiman (1996) notes that introducing randomness when building each tree in an



ensemble can lead to substantial gains in prediction accuracy. Based on these findings
Friedman (2002) develops stochastic gradient boosting in which subsampling is used
to enhance the generalization ability of the gradient boosting model. At each round
of the algorithm a random subsample of datapoints is drawn without replacement
and the new base learner function is fitted using this random subsample. Simulation
studies show that subsampling fraction around one half seems to work best in most
cases (Friedman, 2002).

The total amount of iterations M needed however moves in the opposite direction
to learning rate and subsampling. Gradient boosting is a flexible technique which can
approximate basically any kind of functional form with sufficient amount of data. This
flexibility can also come with a cost. Overfitting the training data is a risk that must be
taken into consideration as it can lead to decreased generalization ability of the model.
The optimal amount of iterations is usually chosen with early stopping methods such
as using an independent test set or cross-validation.

When the amount of observations is scarce K-fold cross-validation is often the
only alternative since we can not afford to set aside an independent test set. K-fold
cross-validation is based on splitting the data into K non-overlapping folds. Each of
these folds is used as a test set once while the model is estimated using the remaining
K — 1 folds. To reduce the effect of randomness the K-fold cross-validation process
can be repeated R times (Kim, 2009). In the repeated K-fold cross-validation approach
the estimate for the optimal stopping point is based on the average validation error
produced by the K folds at each of these R repeats.

Instead of the traditional repeated K-fold we use a more conservative cross-vali-
dation approach since the risk of overfitting the data in the high-dimensional setup
is fairly high. In this conservative approach only the validation error produced by
the fold, which first reaches its minimum and therefore first starts to show signs of
overfitting, is selected out of the K folds at each repetition. By denoting the found
"weakest" fold in repetition r as k., the number of observations in this fold as V;- and
the model estimated without this fold as F'~*7(x,_,) the conservative cross-validation
estimate for the prediction error can be written as

N *
]_ R 1 kT Afk*
CV = = ; N ;L(yt, F7R (%)), (12)

where binomial deviance is used as the loss function L(-). The final estimate for the
amount of iterations is the point where the estimated prediction error in (12) reaches
its minimum. To the best of our knowledge this simple conservative approach has not
been used in the previous academic research.

The complexity of the regression tree base learners is controlled by the number of



terminal nodes J in each regression tree. The amount of inner nodes (J — 1) in the
regression tree limit the potential amount of interaction between predictors as shown

with the ANOVA expansion of a function

F(Xt_k) = Z fj(l‘j) + Z fjk(:l?j, l‘k) + Z fjkl(xj, T, ZL’[) + e (13)
J Jk

gkl

The simplest regression tree with just two terminal nodes can only capture the first term
in equation (13). Higher order interactions are needed to be able to capture the latter
terms, which are functions of more than one variable. These higher-order interactions
require deeper trees. Hastie, Tibshirani and Friedman (2009) argue that trees with more

than ten terminal nodes are seldom needed with boosting.

3 Results

3.1 Data and model setup

The dataset used in the empirical analysis is the FRED-MD monthly dataset. The
selected timespan covers the period from January 1962 to June 2017. After dropping out
variables that are not available for the full period the FRED-MD dataset consists of 130
different economic and financial variables related to different parts of the economy.!
Three different forecasting horizons & are studied in the empirical analysis: short (h = 3),
medium (h = 6) and long (h = 12).

All the available lag lengths k of the predictors up to 24 months are considered as
potential predictors (assuming k£ > h). The total amount of predictors in the dataset take
the value of 2860, 2470 or 1690 depending on the length of the forecasting horizon. For
example, the total amount of predictors with the shortest forecasting horizon is 2860,
which includes 22 different lags of these 130 variables. See Christiansen, Eriksen and
Moller (2014) for a similar study where each lag is considered as a separate predictor.

The term spread has been noted as the best single predictor of recessions and
economic growth in general in the U.S. (see e.g., Dueker, 1997; Estrella and Mishkin,
1998; Wohar and Wheelock, 2009). To see if it is actually worthwhile to go through these
huge predictor sets with the gradient boosting models, we use a simple logit model
with the term spread as a benchmark model. Kauppi and Saikkonen (2008) note that
setting the lag length £ equal to the forecasting horizon h may not be optimal in all cases.
To take this into account we introduce the six nearest lag lengths of the term spread as
additional predictors. The term spread is measured as the interest rate spread between

1 All ISM-series (The Institute for Supply management) have been removed from the FRED-MD
dataset starting from 2016/6. These series have been re-obtained using Macrobond. For more general
information about the dataset see https:/ /research.stlouisfed.org/econ/mccracken/fred-databases/
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the 10-year government bonds and the effective federal funds rate as this is included in
the FRED-MD dataset.

The estimated conditional probabilities for different models are evaluated using the
receiver operating characteristic curve (ROC). The area under the ROC-curve (AUC)
measures the overall classification ability of the model without restricting to a certain
probability threshold. AUC-values closer to one indicate better classification ability
whereas values close to one half are no better than a simple coin toss. For a more
comprehensive review of the AUC-measure in economics context see e.g., Berge and
Jorda (2011) and Pénkéd and Nyberg (2016).

The gradient boosting model involves internal model selection as the regression trees
selected at each step of the algorithm may be functions of different predictors. Some
predictors are chosen more often than others and can be considered more important.
Breiman et al. (1984) introduce a measure for the relevance of a predictor z, in a single

J-terminal node regression tree T’
(1) =) il(v; =p), (14)

where v; is the splitting variable of inner node j and i is the empirical improvement
in squared error as a result of this split. The least squares improvement criterion was
introduced in Table 1.

The measure in equation (14) is based on a single tree, but it can be generalized to
additive tree expansions as well (Friedman, 2001). The relative influence of a variable
z, for the entire gradient boosting ensemble is simply an average over all the trees
{T:»}M_, in the ensemble

1 M
Iy =57 D1 (T). (15)
m=1

The relative influence measure in equation (15) is used to illustrate the most important
recession indicators with the gradient boosting model. The relevance of a predictor z,,
in the recursive out-of-sample forecasting is the average IE of the estimated models.

The following results are obtained using the R programming environment for statisti-
cal computing (R Core Team, 2017). The GBM-package (Ridgeway, 2017) with bernoulli
loss function is used to estimate the gradient boosting models. With such huge predictor
sets it is likely that there are interaction between some predictors. For this reason the
maximum tree depth is set to 8 leading to regression trees with nine terminal nodes.
Dopke et al. (2017) use 6-terminal node regression trees while predicting recessions in
Germany with a much smaller predictor set.

The minimum number of observations required in each terminal node of a regression

tree is set to one allowing the tree building process to be as flexible as possible. Similar
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results are obtained when setting the minimum number of observations to five as is used
by Dopke et al. (2017).? Learning rate is set to a low value of 0.005 and the default value
of 0.5 is used as the subsampling fraction. The conservative cross-validation approach
presented in equation (12) is conducted using 5 folds and 5 repeats throughout this
research to find the optimal amount of iterations. In order to keep the computational

time feasible the maximum amount of iterations is set to 800.

3.2 In-sample results

Three different models are compared in the in-sample analysis using the full dataset.
The benchmark model (bm) is a simple logit model with seven lags of the term spread
as predictors. GBM is the ordinary gradient boosting model and wGBM stands for the
cost-sensitive gradient boosting model with class weights. The class weights are formed
according to equation (11). The binary response variable for each model is the business
cycle chronology provided by the NBER.

Table 2 summarizes the in-sample performance as measured with the area under the
ROC-curve (AUC) of these three models for all the different forecasting horizons. The
rows of the table present the different models and the columns stand for the forecasting
horizons considered. The validation AUCs from the 5-fold cross-validation repeated

tive times are reported in parenthesis.

Table 2: In-sample AUC (1962/01 - 2017/06)

Forecast horizon, Months

Model specification 3 6 12
Benchmark 0.890 (0.881) 0.910 (0.902) 0.914 (0.897)
GBM 1.000 (0.985) 1.000 (0.980) 1.000 (0.956)
wGBM 1.000 (0.987) 1.000 (0.981) 1.000 (0.961)

As expected, the non-linear gradient boosting models do a better job forecasting
recessions in-sample. The larger information set and the more flexible functional form
of the GBM-models allow for a more detailed in-sample fit. The perfect in-sample
AUC:s for the GBM-models can raise questions of overfitting. As a result of using these
moderate sized regression trees as base learner functions the GBM-models achieve
nearly perfect classification ability after only a few iterations. This can be confirmed by
training a shallow single decision tree to the full dataset. The single decision tree alone

is sufficient to produce very high in-sample AUCs, even after restricting the predictor

2 Results upon request.
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space to consider only the eight different interest rate spreads (and their lag lengths).?
Thereby it is not completely surprising that an ensemble of trees yield a perfect in-
sample fit as measured with AUC. For example, the cost sensitive GBM-model with
the shortest forecasting horizon reaches an AUC value of 0.997 after just five iterations.
However it should be noted that the estimated conditional probabilites at this point
range between 0.488 and 0.512, values that are only slightly different from the initial
value of one half because of the shrinkage strategy described in Section 2.3. It could be
argued that the AUC may not be the most suitable criterion when evaluating the in-
sample performance in this setup. But since the main emphasis is on the out-of-sample
performance of the models the AUCs are reported here for comparison.

The validation AUCs reported in Table 2 provide additional insight into the poten-
tial overfitting problem since large deviations between the in-sample and validation
performance is typically seen as a sign of overfitting. The validation AUCs for the
GBM-models are of similar magnitude as the in-sample AUCs and therefore do not
indicate overfitting. Dopke et al. (2017) also report validation AUCs close to one when
forecasting recessions in Germany with the gradient boosting model. The validity of
the traditional random sampling techniques used in cross-validation with such a highly
autocorrelated binary response variable should be further examined. This however is
beyond the scope of this research.

Table 2 shows how the cost sensitive GBM-model outperforms the other two models
as measured with the validation AUC, although the difference between the two GBM-
models is small. The gap in validation AUCs between the benchmark and GBM-
models decreases slightly as the forecasting horizon grows. Graphical illustrations
are an important part of recession forecasting since these can give a better picture of
the false alarms and other potential problems related to the models. The estimated
conditional probabilities that the economy is in recession h-months from now are
calculated according to equation (2). These in-sample estimated conditional probabilites

are illustrated in Figure 1 for each of the three models and forecasting horizons.

3 The in-sample AUCs with a single decision tree are close to or well above 0.95 depending on the
forecasting horizon. On the other hand, restricting the GBM-models by considering only the simplest
stump regression trees and / or only the interest rate spreads as predictors are not sufficient as models
produce in-sample AUCs of one or really close to it. Results upon request.
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Figure 1: In-sample estimated conditional probabilities

The conditional probabilities for both GBM-models can be seen to mimic the shaded
recession periods quite nicely. The in-sample fits for the two GBM-models have a
rather similar shape without any major differences, which is in line with the results in
Table 2. However, the recession signals produced by the cost-sensitive GBM-model are
constantly stronger compared to the other two models with all the forecasting horizons.
It is also noteworthy how the benchmark logit model produces a lot weaker signals
for the last three recessions compared to the GBM-models. Figure 1 also shows how
the estimated conditional probabilities for the GBM-models are not exactly zero or one
and the in-sample fit is not perfect in probability terms. Using forecast performance
evaluation criterion other than AUC, such as the binomial deviance or the quadratic
probability score, would not indicate perfect in-sample fit.

3.3 Out-of-sample results

Good in-sample results may not always reflect the out-of-sample predictive ability of
the model. An expanding window forecasting procedure is used to examine the true
predictive ability of the models. Both Berge (2015) and Ng (2014) use rolling window

when forecasting U.S. recessions. To ensure the maximum sample size for the estimation
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of each model an expanding window approach is used in this study.

The out-of-sample evaluation period covers the period starting from December 1988
to June 2017. Because of high computational cost the GBM-models are re-estimated only
once a year in December. The class weights are updated according to equation (11) as
the proportion of zeros and ones change for the binary response. The business cycle
recession and expansion periods are not available in real time. The publication lag of
the NBER business cycle chronology is thus assumed to be 12 months.

The results from the recursive out-of-sample forecasting procedure are reported in
Table 3. The out-of-sample performance as measured with the area under the ROC-curve

is illustrated for the different models at each of the three forecasting horizons.

Table 3: Out-of-sample AUC (1988/12 - 2017 /06)

Forecast horizon, Months

Model specification 3 6 12
Benchmark 0.748 0.811 0.919
GBM 0.841 0.816 0.867
wGBM 0.915 0.861 0.928

The out-of-sample AUCs show that the cost-sensitive GBM-model outperforms the
other two models with all the forecasting horizons. The difference in AUCs between
the traditional and cost-sensitive gradient boosting models are quite similar with all the
forecasting horizons. The average difference of the AUCs between the two GBM-models
is 0.06.

The out-of-sample performance for the traditional GBM-model is quite heavily de-
teriorated when compared to the in-sample AUCs reported in Table 2. The standard
GBM-model can outperform the benchmark model only at the shortest forecasting hori-
zon. This diminished out-of-sample forecasting ability of the traditional GBM-model
could indicate problems related to the class imbalance of the response. Blagus and Lusa
(2017) note that the traditional GBM-model can perform poorly on high-dimensional
data with class imbalance. Figure 2 illustrates the out-of-sample estimated conditional
probabilities calculated according to equation (2) for all the different forecasting horizons
and models.
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Figure 2: Out-of-sample estimated conditional probabilities

Figure 2 shows how the recession probabilities for each of the models with the short
and medium term forecasting horizons spike just before the actual recession period in
the early ninetees. Although these spikes are considered as false alarms and decrease the
out-of-sample performance of the models, this hightened risk of an upcoming recession
could have considerable practical importance.

Figure 2 also illustrates the problems related to the diminished out-of-sample per-
formance of the traditional GBM-model. The traditional GBM-model provides several
false alarms, especially at the short and medium term forecasting horizons. With the
longest forecasting horizon the traditional GBM-model give a rather weak signal of
the upcoming recession period in the early ninetees when compared to the other two
models.

The cost-sensitive GBM-model on the other hand provides clear warnings of the
upcoming recession periods in the short and medium term without any major false
alarms. Although the recession signal for the second recession period with the shortest
forecasting horizon is quite modest. It should be noted that the magnitude of the
recession signals are diminished for each of the three models when compared to the

in-sample probabilities in Figure 1.
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With the 12-month forecasting horizon the cost-sensitive GBM-model provides
strong warning signals for each of the three recessions. The estimated recession proba-
bilities of the cost-sensitive GBM-model bears a close resemblance to the benchmark
model. This also includes the two false alarms that are typical when predicting reces-
sions with the term spread (see e.g., Kauppi and Saikkonen, 2008; Nyberg, 2010).

To further consider the composition of the estimated cost-sensitive GBM-models
Table 4 presents the ten most important out-of-sample predictors according to the

relative influence measure presented in equation (15).

Table 4: Top-10 out-of-sample predictors for wGBM

h=3 h=6 h =12

Variable Relinf | Variable Rel.inf Variable Rel.inf

6mth - FFrate_4 5.464 6mth - FFrate_6 8.722 10yr - FFrate_12 18.051

10yr - FFrate_9 4.920 10yr - FFrate_9 4.979 Syr - FFrate_15 6.347
6mth - FFrate_6 4744 5yr - FFrate_15 4.026 5yr - FFrate_14 3.634
émth - FFrate_5 4,581 lyr - FFrate_6 3.941 10yr - FFrate_13 2.778
6mth - FFrate_7 3.103 6mth - FFrate_7 3.739 5yr - FFrate_16 2.466

Syr - FFrate_15 2.988 3mth - FFrate_6 3.570 10yr - FFrate_14 2.400

10yr - FFrate_8 2.757 10yr - FFrate_8 3.111 Syr - FFrate_13 1.808
3mth - FFrate_6 2.337 lyr - FFrate_7 2.512 AAA - FFrate_12 1.787
lyr - FFrate_6 2.310 6mth - FFrate_8 2.175 5yr - FFrate_12 1.688
lyr - FFrate_7 2.254 10yr - FFrate_11 2.048 PERMITS_15 1.496

The cost-sensitive GBM-models rely heavily on different kinds of interest rate
spreads as can be seen in Table 4. The only non-interest rate based predictor is the
tifteenth lag of the new private housing permits variable (PERMITS_15) with the longest
forecasting horizon. This is a bit surprising at the short and medium term forecasting
horizons since variables describing the real economy are often found useful when pre-
dicting recessions with these forecasting horizons (see e.g., Berge, 2015). The heavy
usage of interest rate spreads confirms that predictors with forecasting ability beyond
the term spread are quite hard to find (see e.g., Estrella and Mishkin, 1998; Liu and
Moench, 2016).

Models based on different kinds of interest rate spreads can be affected by the
problems related to the predictive power of the term spread noted in the previous
literature. Several studies show how the term spread forecast U.S. output growth less
accurately after the mid 1980s (see e.g., Estrella, Rodrigues and Schich, 2003; Stock and
Watson, 2003). The slightly lower out-of-sample AUCs reported in Table 3 for each of
the three models, including the benchmark model, are in line with this finding.
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Table 4 shows how the interest rate spread between the 6-month treasury bill and the
effective federal funds rate with the fourth lag (6mth - FFrate_4) is the most important
predictor when predicting recessions three months ahead. The same predictor with the
sixth lag is the most important predictor with the medium term forecasting horizon.
The composition of the top-10 out-of-sample predictors are quite similar between the
short and medium term horizons.

The chosen lag lengths of the predictors with the short and medium term horizons
can deviate quite substantially from the length of the forecasting horizon. For example,
the spread between the 5-year treasury bond and the effective federal funds rate with
the fifteenth lag (5yr - FFrate_15) is an important predictor with both of these horizons.
Similar observation can be made with the spread between the 10-year treasury bond
and the effective federal funds rate with the ninth lag (10yr - FFrate_9). With the longest
forecasting horizon the term spread with lag length equal to twelve (10yr - FFrate_12)
has a very strong impact on the models as measured with the relative influence. Such

dominance of a single predictor is not found with the short and medium term horizons.

4 Conclusions

This paper introduces a new cost-sensitive gradient boosting model which can take
into account the class imbalance of the binary response variable. The cost-sensitive
gradient boosting model is applied to predicting binary U.S. recession periods with
a high-dimensional dataset of financial and macroeconomic variables. The internal
model selection of the cost-sensitive gradient boosting algorithm provides important
information about the most useful recession indicators and chosen lag lengths with
different forecasting horizons.

The empirical results show how the cost-sensitive extension to the gradient boosting
model produces stronger and more stable recession forecasts for the U.S. with each
forecasting horizon compared to the traditional gradient boosting model. A logit model
based on the term spread is used as a benchmark model to see if the more complex
gradient boosting models provide predictive power beyond the best known simple
model. The cost-sensitive model outperforms the benchmark model with each fore-
casting horizon whereas the traditional gradient boosting model is able to outperform
the benchmark only at the shortest forecasting horizon. Different kinds of interest
rate spreads are the most important predictors, even with the short and medium term
forecasting horizons. The term spread is the dominant predictor when forecasting
recessions one year ahead.

The current research can be extended in several ways. First of all, the binary values
for the class weights were chosen so that both the minority and the majority class
receive similar attention in the learning process. Different choices for the class weights
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could be further examined. Especially in cases where the class imbalance is even more
radical. The cost-sensitive approach could also be extended to multinomial classification
problems, where different types of class imbalance problems can emerge. There could
be for example more than one minority class with a multinomial response variable.
Introducing model dynamics is another potential area for future research. This would
allow iterative forecasts to be used instead of the forecast horizon-specific forecasts as
in this study.
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