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A B S T R A C T   

Analyzing the reliability of autonomous ships has recently attracted attention mainly due to epistemic uncertainty (lack of knowledge) integrated with automatic 
operations in the maritime sector. The advent of new random failures with unrecognized failure patterns in autonomous ship operations requires a comprehensive 
reliability assessment specifically aiming at estimating the time in which the ship can be trusted to be left unattended. While the reliability concept is touched upon 
well through the literature, the operational trustworthiness needs more elaboration to be established for system safety, especially within the maritime sector. 
Accordingly, in this paper, a probabilistic approach has been established to estimate the trusted operational time of the ship machinery system through different 
autonomy degrees. The uncertainty associated with ship operation has been quantified using Markov Chain Monte-Carlo simulation from likelihood function in 
Bayesian inference. To verify the developed framework, a practical example of a machinery plant used in typical short sea merchant ships is taken into account. This 
study can be exploited by asset managers to estimate the time in which the ship can be left unattended. Keywords: reliability estimation, Bayesian inference, 
autonomous ship, uncertainty.   

1. Introduction 

Studies on Maritime Autonomous Surface Ship (MASS) revealed that 
the more the artificial intelligence and autonomy degree (AD) increases, 
the more the systemic safety and resilience solution is needed (Felski and 
Zwolak, 2020). That is mainly due to the advent of new random failures 
with unrecognized failure patterns in ship operations while approaching 
a higher degree of autonomy. Recently IMO (2018) introduced four 
degrees of autonomy through a regulatory scoping exercise for the use of 
MASS (Goerlandt, 2020). Different researches aiming at predicting the 
functional capacity (Chaal et al., 2020; Chang et al., 2021), resilience 
(Zhou et al., 2020; Insaurralde, 2013; Abaei et al., 2022), reliability 
(Thieme et al., 2018; BahooToroody et al., 2022), availability (Chun 
et al., 2021) and maintainability (Montewka et al., 2018; Abaei et al., 
2020; Liu et al., 2021) of autonomous ship, the application of studies are 
still traditional ships, though. The studies on MASS can be classified 
according to two main criteria: (1) type of research (qualitative and 
quantitative) and (2) application of research (autonomous navigation 
system, unattended machinery system, etc.). Reviewing the conducted 
studies revealed that the focus is well balanced in the first category 
between qualitative and quantitative research. In a recently published 

chapter by (Montewka et al., 2021), various qualitative and quantitative 
models (including Bayesian Network) were presented for the autono-
mous ship to show the differences in results obtained by applying both 
types of models. In this context, Utne et al. (2020) Outlined a qualitative 
methodology based on an integration of STPA and Bayesian Belief 
Network for online risk modeling of MASS. Valdez Banda, Kannos et al. 
(2019) highlighted the necessity of enlarging a systemic hazard analysis 
(i.e. STPA) starting from the earliest design phase of the lifecycle of an 
autonomous vessel through an application of two autonomous vessel 
concepts for urban transport. Zhou, Liu et al. (2019) projected a quan-
titative model of situation awareness based on the system safety control 
structure of unmanned vessels to propose a probabilistic model for 
directing the future evaluation of the navigation safety of fully auton-
omous ships. Recently, Abaei, Hekkenberg et, al. (2021) integrated the 
multinomial probability distribution and Bayesian inference to predict 
the safety level of failure-sensitive components operating in the auton-
omous system. Application of Bayesian inference aid to overcome data 
limitation for evaluating the reliability of system in the new advanced 
stage of MASS. The advancement of random-effect models (REM) and 
specially the advent of Markov Chain Monte Carlo (MCMC) simulation 
(BahooToroody, De Carlo et al., 2020a; Leoni, BahooToroody et al., 
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2021a), makes the application of Bayesian inference extended dramat-
ically in different engineering projects (BahooToroody, Abaei et al., 
2019a; Song et al., 2020; Khalaj et al., 2020; Leoni, De Carlo et al., 
2021b; Kelly and Smith, 2009; Yazdi et al., 2021; Basnet et al., 2022; 
BahooToroody et al., 2021). 

While, the focus on second category is not as balanced as the first 
one; meaning that greater attention is devoted to autonomous naviga-
tion system than other applications such as machinery set up onboard 
the MASS. An intelligent guidance is presented by Perera et al. (2014) to 
support safe autonomous navigation and avoid collision of ship ma-
neuvers. Ozturk and Cicek (2019) presented an extensive literature re-
view on methods of collision risk assessment to ensure navigational 
safety in MASS. Bolbot et al. (2021) developed a novel hybrid process to 
comprehensively assess the safety of an autonomous inland waterways 
ship at design phase. In this study, autonomous navigation and 
communication were touched upon. Lee et al. (2021) applied Fault Tree 
Analysis to estimate the availability of autonomous navigation function 
of a short sea shipping vessel. Bolbot et al. (2020) proposed a novel 
cybersecurity risk assessment targeting the increased connectivity of 
systems as a result of enhanced autonomy of ship systems. Recently, a 
probabilistic machine learning based resilience study is proposed by 
Abaei., et al. (2022) on machinery system considering unexpected per-
turbations, disruptions, and operational degradations. 

Considering the conducted studies, neither of reviewed studies 
considered the change in autonomy degree while the ship is operating 
through their proposed framework. A question still needs to be touched 
upon is how the performance of a ship system may change while the ship 
moves through the phased functional maturation approach to higher 
ADs. To enhance safety, the AD of ship might change during the voyage 
depending on the environmental situation and the level of ship self- 
awareness. To this end, this paper considers the limit state concept for 
studying the reliability of MASS. With a fundamental phenomenon of 
comparing the present condition of a given system with its critical 
threshold, the limit state concept has been widely applied to define the 
failure function of different operations probabilistically (Abaei, Arzaghi 
et al., 2018c; Khalaj et al., 2022; Arzaghi et al., 2018; Chen et al., 2018; 
Leoni et al., 2019). 

In this paper, executed risk control strategies onboard a ship (any 
maintenance, check, or replacement) and reported failures are specified 
as potential disturbances and disruptions through the operations. The 
interarrival times between failures and executed risk control strategies 
are appointed as an input to form a system reliability distribution 
through the application of Bayesian inference. Up to now different 
models and approaches have been trained to estimate the reliability 
function of repairable systems (Islam et al., 2017; Abaei et al., 2019; 
Keshtegar et al., 2019; Yazdi et al., 2020; Zarei et al., 2021). The novelty 
of these studies mainly relies on the level of quantified uncertainties. 
The more the uncertainty is quantified, the more the reliability function 
can be righthand. Establishment of Bayesian inference herein aimed at 
representing the fluctuations that come with operational data, such as 
the variability between the source of data, and the correlation between 
data. 

To demonstrate the applicability of the developed methodology a 
case study of machinery plant of a typical short sea merchant ship is 
offered. The proposed framework can be exploited as a tool to assess the 
reliability of ship systems given that the vessel is independent of any 
human intervention. 

2. Methodology 

The proposed method is presented in two subsections; first a brief 
discussion on Bayesian modeling with hierarchical structure, and then, 
model specification aimed at covering the branded research gap. 

2.1. Model of the world; Bayesian inference 

Apart from the motivation of being an intelligent system, the real- 
time operational data (raw data) from the health condition of the sys-
tem and perceived value of the asset are accounted for the development 
of the model of the world. Upon establishing the model, there are three 
crucial steps to estimate and predict the reliability of an autonomous 
system; information processing, knowledge gathering, and finally 
making actions based on concluded inference to achieve a safe and 
resilient design (Aven, 2013). A summary of the process for performing 
inference using data and a probabilistic model is presented in Fig. 1. A 
model of the world should be framed to manipulate the information. 
Both deterministic or probabilistic models are available for this purpose 
(Kelly and Smith, 2009). Different types of uncertainties (epistemic; also 
known as state-of-knowledge uncertainty, and aleatoric; stochastic) 
must be incorporated into the model if the efficiency is important 
(Paté-Cornell, 1996). To this end several methods and models can be 
applied (Aven, Baraldi et al., 2013b; Ferdous et al., 2013; Bhandari et al., 
2015; Abbassi et al., 2017; Yazdi et al., 2019). As an understandable 
model, Bayesian statistics can be applied to describe aleatoric un-
certainties, including the fluctuations associated with variability be-
tween the source of data and the correlation of observations. The 
resulting posterior distribution can properly represent these un-
certainties (Kelly and Smith, 2009; Leoni, BahooToroody et al., 2021c) 
given by Equation (1). 

π1(θ|x) =
f (x|θ)π0(θ)∫

θf (x|θ)π0(θ)dθ
(1)  

where θ is the unknown parameter of interest, π0(θ) represents the prior 
knowledge, f(x|θ) is the likelihood function, and π1(θ|x) is the posterior 
distribution. 

The Bayes theorem utilizes multistage prior distribution to present 
the population variability through different hierarchy levels. Corre-
spondingly, the first-stage prior denoted as π1(θ|φ) is accounted to 
denote the variability between the source of data for the parameter of 
interest indicated by π0(θ), as follow (BahooToroody, Abaei et al., 
2019b): 

π0(θ) =
∫

∅

π1(θ|φ) π2(φ)dφ (2)  

where, φ is a vector of hyper-parameters. 

2.2. Model specification 

A machine learning based framework is developed in this study to 
propose a reliability function for ship machinery systems through 
different ADs. The sequence of the proposed model incorporating the 
key element of Bayesian inference establishment is plotted in Fig. 2. 

Predicting the reliability of a system is mainly based on the inter- 
arrival times between successive breaks or stops during the operation. 
Therefore, the first step is to collect the time of occurred interruptions; 
disturbances (any maintenance, check or replacement) and disruptions 
(failures). In order to estimate the reliability of a ship system, the AD in 
which the operation is on the go and its associated human availability 
onboard the ship must be specified. These two variables can be defined 
based on the regulatory scoping exercise for the use of MASS initiated by 
IMO (2018) (outlined in Table 1). 

Then based on the specified degree of autonomy, human availability, 
and type of captured interruptions, a limit state concept is considered to 
specify the event time for studying the health state of MASS. That is 
when any unplanned interruptions such as disturbances or disruptions 
cannot be managed in the voyage operation. The limit state G, is adopted 
as follows here; 
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G = ah – ar (3)  

where ah, is actual human availability according to AD specification 
reported by IMO (2018) and can be expressed as; 

ah =

⎧
⎪⎪⎨

⎪⎪⎩

3 for AD1
2 for AD2
1 for AD3
0 for AD4

(4) 

Meanwhile, ar represents the required human intervention for 
different unplanned interruptions classified as below; 

ar =

⎧
⎪⎪⎨

⎪⎪⎩

1 for check
2 for Maintenance
3 for Replacement
4 for Failure

(5) 

Consequently, any interruption represents an event if G < 0. The 
resulted event time for different ADs is outlined in Table 2. 

Next is to form a probabilistic distribution for determined event 
times. There are two common assumptions; either the event times are 
assumed to be dependent (resulting in an occurrence rate following a 
Non-Homogeneous Poisson Process (NHPP) (Sheu et al., 2018; Abbassi 
et al., 2021; Li, Zhang et al., 2021a, Seghier, Keshtegar et al. 2021)) or 
independent (occurrence rate will be constant in time and follows Ho-
mogeneous Poisson Process (Barabadi et al., 2014; BahooToroody et al., 
2016; Toroody et al., 2016; Li, Zhang et al., 2021b)). BahooToroody 
et al. (2020b) explained both assumptions’ differences, advantages, and 
weaknesses, concluding that relaxing the HPP assumption (constant 
failure rate) and considering the time dependency between the failure 
times results in a more accurate reliability function. Accordingly, given 
that the time between successive events of the system is not independent 

Fig. 1. An overview of the knowledge engineering process and its key elements.  

Fig. 2. Developed framework for reliability estimation.  

Table 1 
Description of autonomy degree for MASS and its associated human availability; 
IMO (2018).  

ADs Description Human availability 

AD1 Ship with automated process and decision support Human on board 
AD2 Remotely controlled ship Seafarers on board 
AD3 Remotely controlled ship No human on board 
AD4 Fully autonomous ship No human on board  

Table 2 
Event times specification according to human availability for different AL.  

ADs Event times (ET) 

One (current 
situation) 

Time to Failure (TTF) 

Two Time to Failures and Replacement (TTFR) 
Three Time to Failures, Replacement, and Maintenance (TTFRM) 
Four Time to Failures, Replacement, Maintenance, and Check 

(TTFRMC)  
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and identically distributed (iid), the Bayesian inference with hierarchi-
cal structure is developed. To model the nonlinearity of λ(t) including 
the integrated stochastic trend, the power-law model is adopted herein 
with the relationship expressed by Equation (6) (Ross et al., 2004) as 
suggested by Kelly and Smith (2009) and Abaei, Arzaghi et al. (2018a); 

λ(t)=
α
β

(
t
β

)α− 1

(6) 

Upon modeling the time to first observations by power-law function, 
a two-parameter Weibull distribution, (t, β, α) is generated (Leoni, 
Cantini et al., 2021d). Different types of prior distribution can be 
assigned for generated shape parameter, α, and scale parameter, β. In 
this study, a non-informative gamma distribution with independent 
diffuse hyperpriors, assumed as the prior distribution of hyper-
parameters (Kelly and Smith, 2009; Abaei, Arzaghi et al., 2018b). Given 
’Bayes’ Theorem, to obtain the posterior probability distribution, in 
addition to prior distribution, a likelihood function must be formulated. 
Considering the dependency of observational times, Ti, for any opera-
tional time interval [ti− 1, ti], a conditional probability must be defined as 
an appropriate likelihood function expressed by Equation (7) (El-Gher-
iani et al., 2017); 

f (ti|ti− 1)= f (ti|Ti > ti− 1)=
f (ti)

Pr(Ti > ti− 1)
(7) 

The Markov Chain Monte-Carlo simulation via open-source simula-
tion software packages, i.e., OpenBUGS (Spiegelhalter et al., 2007) is 
proposed to obtain the joint posterior distribution of hyper-parameters. 
The mean time to events, then estimated from the predicted value of 
hyperparameters. 

3. Model and results 

The application of the proposed methodology is explained via a 
practical example of a machinery plant fitted with four-stroke diesel 
engines used in three typical short sea merchant ships (cargo RoRo (Roll- 
on/Roll-off) ships with age ranging from 14 to 18 years) operating in the 
same sea region; the Mediterranean Sea. The interarrival times between 
events for cylinder cover, gear box, stern tube, piston cylinder, 
manoeuvring system, clutch, attached pump, driving gears, turning gear 
and tuning wheel was adopted in time series from the ship alarm system 
records, the maintenance records, and the engine logbooks (see Fig. 3). 
To structure the data for this study (including the definition of in-
terruptions), survey analysis and interviews were conducted with the 
ship machinery crew. Accordingly, check is defined as inspection 
(visually or with a dedicated tool). While maintenance is pre-scheduled 
actions according to the prescription given by the manufacturer, 
replacement is defined as an unplanned operation conducted due to an 
abnormal performance. Lastly, failure is defined as inability to meet the 

requirements. 
A General overview of machinery plants representing the linear and 

nonlinear interaction between different sub-systems and individual 
subsets is plotted in Fig. 4. 

Based on ET in different ADs, the MCMC simulation, with 1000 burn- 
in iterations, is followed by 3 × 105 iterations through three chains with 
an over-dispersed initial value of α and β. To validate the calculation in 
MCMC, the convergence of chains was monitored through trace plot and 
history of iterations of hyper-parameters. The expected value of α and β 
are 1.573 and 262.5 for AL1, 1.123 and 50.07 for AL2, 1.025 and 17.46 
for AL3 and 1.019 and 3.071 for AL4, respectively. Shape factors of all 
ADs are more than one, depicting that the number of events increases 
over time, supporting the NHPP assumption considered in this study. 
Fig. 5 presents the posterior probability density function of shape pa-
rameters α for all ADs as well as their history of iterations to check how 
the chains reach the convergence. As it can be seen, there are three 
colors in the history plot representing three initiated chains for carrying 
out the Monte Carlo estimation of the formulated posterior distribution. 
The illustrated history plot is confirming the convergence and mean-
while validating the estimated posterior values for α and β. 

The expected values of the posterior distribution of α and β can be 
applied to predict the trusted operational time of the ship system in 
different ADs (the time in which the system is expected to be safe 
without experiencing any event and subsequently can be trusted to be 
left unattended). Different results inferred from the proposed model are 
discussed in the ensuing section. 

4. Discussion 

The data scarcity associated with smart shipping specifically the 
functionality and performance of the ship system in AL4 and AL3, is one 
of the primary challenges in estimating the reliability function. An event 
perception model based on the limit state concept was proposed to 
overcome this lack of knowledge and reduce the integrated epistemic 
uncertainty. Later, the event rate has been introduced probabilistically 
with a Weibull distribution using Bayesian inference and MCMC simu-
lation. Establishment of Bayesian inference in this study mainly aimed at 
accounting the uncertainty associated with variability between the 
source of data and correlation between data. 

The proposed model can estimate the probability of event occurrence 
for the ship system in any desired time interval. To this end, a condi-
tional probability (see Equation (7)) for the obtained Weibull distribu-
tion was offered to estimate the posterior predictive probability of 
events (PPPE). Accordingly, the PPPE in t = n + 1 was estimated, given 
that an event was observed in t = n. The calculations were then followed 
by calculating the PPPE in t = n+ 1, assuming that the event also 
occurred in t = {n − 1, n − 2, …} . For this purpose, a cumulative func-
tion must be developed. Fig. 6 depicts the cumulative posterior predic-
tive number of the event over the voyage time for different ADs with its 

Fig. 3. Operational data including event times (ET).  
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associated probability (with what probability, how many events will 
happen per week). 

As an example, if the ship system approaches the second degree of 
autonomy, it is predicted that the main engine will have four events 

within the first 170 weeks, while this number of the event is expected to 
happen in 680 weeks through AL1, 67 weeks in AL3 and within 13 weeks 
in AL4. The type of event depends on the degree of autonomy, i.e., an 
event in AL2 referred to failure and replacement, while in AL1 it is only 

Fig. 4. A schematic arrangement of the machinery plant.  

Fig. 5. Estimated posterior probability density function (left-hand side) as well as the history of iterations (right-hand side) for shape parameters, α, for all ADs.  
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failure. This result can deliver a road map to achieve a higher level of 
trustworthiness while the ship moves through the phased functional 
maturation approach to higher ADs as it can figure out the time in which 
the human intervention might be needed. 

The mean time to the first event can also be inferred through the 
presented cumulative function; that is where the cumulative probability 
function reaches the level of 0.5, and the cumulative event number hit 
the level of; 235.7 for AD1, 47.9 for AD2, 17.2 for AD3 and 3 for AD4 
(numbers are in week). In the upper figures (cumulative event), the 
model depicts the time that system will experience the second event, the 
third event, the fourth event, and so on if the ship’s autonomy moves 
through higher degrees. A predictive policy can be adopted accordingly 
to avoid the events. 

As a foreseen future work, it is suggested to utilize the event 
perception phase of the proposed model by the application of Machine 
Learning. This will lead to empowering the dataset for modeling the 
reliability function probabilistically. 

5. Conclusion 

This paper presents a probabilistic reliability assessment methodol-
ogy to predict the trusted operational time of the ship system in which 
the ship can be left unattended. While the maritime industry is still away 
from producing autonomous ships, this study can be used to understand 
how much present ships with the current design, capacity, and perfor-
mance are ready for semi or fully autonomous operations. To this end, a 
two-parameter Weibull distribution (t, β, α) is generated to model the 
trusted time. MCMC simulation through Bayesian inference was later 
adopted to formulate an appropriate likelihood function for obtaining 
the joint posterior distribution of hyper-parameters (alpha and beta). 
Three chains were run to check the convergence through the calcula-
tions. The predicted shape parameters of all ADs were higher than 1, 
supporting the NHPP assumption given for the probabilistic modeling in 
this study. The results suggest a remarkable reduction of mean time to 
event as the AD of the ship moves from one to two; 235 to 48, from two 
to three; 48 to 17 and from three to four; 17 to 3. The developed 
framework can be exploited to predict ship performance through 
different autonomy degrees considering the uncertainties integrated 
with data scarcity. A limit state concept has been proposed to treat the 
lack of data for estimating the reliability function; however, as a future 
study, it is recommended to generate a more powerful dataset using 
different machine learning applications. Moreover, the main challenge 
of the present study is overlooking autonomous feature of MASS. 
Therefore, as a direction for future study, the developed model can be 
improved by estimating the impact of self-governance of autonomous 
ship on its reliability status. 
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