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ABSTRACT
BACKGROUND: A key clinical challenge in the management of individuals at clinical high risk for psychosis (CHR) is
that it is difficult to predict their future clinical outcomes. Here, we investigated if the levels of circulating molecular
lipids are related to adverse clinical outcomes in this group.
METHODS: Serum lipidomic analysis was performed in 263 CHR individuals and 51 healthy control subjects, who
were then clinically monitored for up to 5 years. Machine learning was used to identify lipid profiles that discriminated
between CHR and control subjects, and between subgroups of CHR subjects with distinct clinical outcomes.
RESULTS: At baseline, compared with control subjects, CHR subjects (independent of outcome) had higher levels of
triacylglycerols with a low acyl carbon number and a double bond count, as well as higher levels of lipids in general.
CHR subjects who subsequently developed psychosis (n = 50) were distinguished from those that did not (n = 213) on
the basis of lipid profile at baseline using a model with an area under the receiver operating curve of 0.81 (95%
confidence interval = 0.69–0.93). CHR subjects who became psychotic had lower levels of ether phospholipids than
CHR individuals who did not (p , .01).
CONCLUSIONS: Collectively, these data suggest that lipidomic abnormalities predate the onset of psychosis and
that blood lipidomic measures may be useful in predicting which CHR individuals are most likely to develop
psychosis.
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A key clinical challenge in the management of individuals at
clinical high risk for psychosis (CHR) is that it is difficult to
predict their clinical outcomes (1). Identifying biomarkers that
could be used to stratify CHR subjects according to these
different outcomes would facilitate more personalized clinical
intervention in this group.

Recent studies have shown that metabolic comorbidities
such as weight gain, insulin resistance, altered glucose
metabolism, and dyslipidemias are common in patients with
psychotic disorders (2–4). Although these can arise as a result
of unhealthy lifestyles and treatment with antipsychotic medi-
cation (5), there is growing evidence that they are already
present at the onset of psychosis in patients who are not
obese and are medication naïve (6,7).

Changes in the concentrations of specific groups of me-
tabolites, including lipids, are sensitive and specific to several
factors that can affect the risk of psychosis, such as genetic
variation, environmental exposure, neurodevelopment, age,
immune system function, and stress (8–11). Metabolomics has
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therefore emerged as a powerful tool for the characterization of
host-environment interactions and complex phenotypes like
psychosis (11). In patients who have recently developed psy-
chosis, rapid weight gain is associated with alterations in
circulating lipids that are linked with nonalcoholic fatty liver
disease (NAFLD) and insulin resistance (10,12,13). However,
the extent to which metabolic abnormalities are evident in CHR
individuals before the onset of illness has not been
investigated.

We addressed this issue by measuring the levels of circu-
lating molecular lipids in a large sample of CHR individuals and
examining their relationship to the onset of psychosis and other
clinical outcomes in this group. We performed comprehensive
mass spectrometry (MS)–based lipidomics in serum samples
that were collected at baseline from a cohort of CHR individuals.
This cohort was then followed up for at least 2 years to deter-
mine their clinical outcomes. We first tested the hypothesis that
the CHR group (independent of clinical outcome) would show
alterations in lipidomic measures compared with a healthy
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control (HC) group. Our second hypothesis was that within the
CHR sample, the levels of molecular lipid measures at baseline
would be associated with 3 clinical outcomes at follow-up,
specifically, persistence of symptoms, transition to psychosis,
and a low level of functioning.

METHODS AND MATERIALS

Study Population

The EU-GEI (European Network of National Schizophrenia
Networks Studying Gene-Environment Interactions) High Risk
study is a multicenter longitudinal observation study of CHR
individuals. A total of 344 CHR individuals identified according
to Comprehensive Assessment of At-Risk Mental States
(CAARMS) criteria (14) were recruited at 11 sites (Amsterdam,
Barcelona, Basel, Cologne, Copenhagen, London, Melbourne,
Paris, São Paulo, The Hague, and Vienna). Sixty-seven HC
subjects were recruited at 4 of these sites (Amsterdam, Lon-
don, Melbourne, and The Hague). Each site obtained ethical
permission for the study, and written informed consent was
obtained from all participants. CHR and HC participants were
interviewed at baseline, had repeated assessments at 12 and
24 months, and then further clinical follow-up for up to 5 years.
Within the CHR group, 65 (18.9%) developed psychosis during
the study, 57 within 2 years and 8 after 2 years.

Inclusion and Exclusion Criteria. Presence of the inclu-
sion criteria for the CHR state were determined with the
CAARMS. Exclusion criteria for CHR and HC were past or
present diagnosis of a psychotic disorder, inadequate under-
standing of the language local to the site, and not able or
willing to provide a blood or saliva sample. Previous exposure
to antipsychotic medication was not an exclusion criterion for
CHR subjects, but it was for HC subjects.

Demographic and Clinical Measures. Data on age, sex,
ethnicity, height, and weight were obtained using the
modified Medical Research Council Sociodemographic
Schedule (15). At baseline and follow-up, trained raters
assessed participants using the CAARMS and the Global
Assessment of Functioning (GAF) split scale (16). Inter-rater
reliability was assessed using online CAARMS and GAF
training videos. The results of that assessment have been
previously published (17). In brief, GAF = 0.83, CAARMS
(Positive Items, intensity scores) = 0.78, CAARMS (Positive
Items, frequency scores) = 0.90. CHR participants were
determined to be in remission if they no longer met the
criteria for the CHR state (assessed using the CAARMS) at
follow-up. Demographic characteristics of the study popu-
lation are presented in Table 1.

Lipidomic Analysis

Nonfasting serum samples, stored at 280�C, were analyzed
using an established global lipid profiling protocol, based on
ultra-high-pressure liquid chromatography (UHPLC) coupled
with high-resolution quadrupole time-of-flight MS (18), with the
data processed using the MZmine (version 2.18) open source
software package (19). The protocol is described in detail in the
Supplemental Methods.
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Statistical Methods

Statistical Design. At the baseline, the lipidomics dataset
was divided into 2 study groups, CHR (n = 263) and HC (n =
51). Subsequently, during the follow-up period, some CHR
subjects underwent symptomatic remission, such that they no
longer met clinical criteria for the CHR state (CHRr), some had
persistent symptoms of the CHR state (CHRp), and others
developed psychosis (CHRt) (Figure 1).

Data Transformation, Quality Control, and Visual-
ization. The data were log2 transformed. Homogeneity of the
samples were assessed by principal component analysis (20),
and no outliers were detected (Figure S1). The R statistical
programming language (version 3.6.0) (21) was used for data
analysis. Principal component analysis was performed using
the prcomp function included in the stats package. Heatmap.2,
boxplot, beanplot, gplot, and ggplot2 libraries and packages
were used for data visualization.

Quantifying the Effect of Factors on the Lip-
idome. The effect of different factors such as age, sex, body
mass index (BMI), site, subject (study group) status, ethnicity,
use of antipsychotics, and transition status on the lipidomics
dataset were evaluated. The data were centered to zero mean
and unit variance (autoscaled). The relative contribution of
each factor to the total variance in the dataset was estimated
by fitting a linear regression model where the normalized in-
tensities of metabolites were regressed to the factor of interest,
and thereby median marginal coefficients (R2) were estimated.
This analysis was performed using the Scater package.

Model-Based Clustering. Clustering of the lipidomic data
was applied by using the mclust R package (version 5.4.5).
mlust is a model-based clustering method where the model
performances are evaluated by the Bayesian information
criterion (Figure S2). Generally, the model with the highest
Bayesian information criterion is chosen. At first, lipidomic
clusters (LCs) were generated for the HC group, and the
mean value of the lipids in each cluster was estimated.
Similarly, clustering was performed on the lipidome from the
total CHR sample, and the mean value of the lipids in each
cluster was estimated. A 2-sample t test was performed to
assess the significance of the mean difference in the in-
tensities of the lipids between the HC and CHR groups within
each cluster. Differences in the intensities of the lipids be-
tween the CHR subgroups and HC were assessed using 1-
way analysis of variance, followed by Tukey’s honestly sig-
nificant difference at a significance threshold of p , .05.

Sparse Partial Least Squares Discriminant Ana-
lysis. Pairwise sparse partial least squares discriminant
analysis (sPLS-DA) (22) models, comparing the lipid intensities
of CHR versus HC at baseline and follow-up, were developed,
and variable importance in projection scores (23) were calcu-
lated. sPLS-DA modeling was performed using the splsda
function coded in the mixOmics package (version 6.3.2).
Moreover, the sPLS-DA models were cross-validated by 7-fold
cross-validation and model diagnostics were generated using
the perf function.
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Table 1. Demographic Characteristics of the Study
Population

Variable Control Clinical High Risk

No. of Subjects 51 263

Age, Years 22.76 6 4.13 22.47 6 4.84

Sex

Male 29 141

Female 22 122

Body Mass Index, kg/m2 22.69 6 3.45 24.18 6 4.96

Ethnicitya

White 33 184

Black 9 23

Mixed 4 25

Asian 5 9

North African 0 11

Other 0 10

Baseline GAF Disability Score 85.82 6 10.51 54.89 6 11.43

No. of Transitions – 50

CAARMS Positive Symptoms ($1)

Disorganized speech – 164

Perceptual abnormalities – 218

Unusual thought content – 197

Use of Antipsychotic Medication – 28

Values are presented as mean 6 SD or n.
CAARMS, Comprehensive Assessment of At-Risk Mental States;

GAF, Global Assessment of Functioning.
aEthnicity could not be determined for 1 CHR participant.
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A Consensus Multiunivariate Approach for Variable
Selection. The multivariate analysis was complemented by
univariate analysis (2-sample t test) using the t.test function, in
order to identify differences in the concentration of individual
lipids between CHR and HC groups at baseline and follow-up.
The consensus approach enabled us to select the altered lipid
species with higher confidence. All lipids that passed the alpha
criterion of variable (lipid) selection from both multi- and univari-
ate approaches, that is, with sPLS-DA model areas under the
receiver operating curve (AUCs) $ 0.6, regression coefficients .

0.05, variable importance in projection scores. 1, and padjusted (t
test) ,.1, were listed as significant at baseline; p values were
subjected to false discovery rate adjustment using p-adjust.

However, the mean differences in the lipid intensities be-
tween the CHR subgroups and/or HC at follow-up did not pass
the false discovery rate (padjusted , .1), and therefore a nominal
p value threshold (p , .01) was used for the selection of the
lipids based on the univariate analysis. These lipids also
exhibited regression coefficients . 0.05 and variable impor-
tance on projection scores . 1, as estimated by the multi-
variate (sPLS-DA) models (AUCs $ 0.6).

Twenty-one common lipids that were significantly altered
between CHR and HC at baseline or at follow-up had fold
changes (FCs).1.2, which were then considered for predictive
logistic ridge regression (LR) modeling.

Partial Correlation Analysis. The qpgraph R package
(version 2.18.0) was used for partial correlation network anal-
ysis. The qpNrr function was used to estimate the nonrejection
rates of the correlation between the lipids and/or the clinical
B

variables. About 10,000 tests for nonrejection were performed
for each pair of variables included in the correlation matrix. This
analysis was performed separately for the HC, CHRp, CHRt,
and CHRr groups. All the spurious correlations/associations
(nonrejection rates # 0.5) were removed. Spearman’s rank
correlation coefficient was estimated using the rcorr function
coded in the Hmisc package (version 4.2-0).

Penalized LR and Variable Importance. In order to
understand the relative importance of LCs and clinical and
demographic variables in stratifying HC and CHR subjects
at baseline, we performed LR modeling (24). Here, 70% of
the lipidome data was used to train the model and 30% as
test data. LR modeling was performed using the cv.glmnet
function in the R package glmnet (version 2.0-18). The
dataset was sampled for 10,000 times. All of the LR models
with AUC . 0.60 (with 10-fold cross-validation) were
considered. The mean AUC, mean model coefficient, and
standard error for each variable were estimated. Positive or
negative coefficient of a variable denotes direct or inverse
relationship of that particular variable with the outcome
(e.g., classification of CHR vs. HC groups at baseline). A
coefficient of zero suggests that no relationship exists be-
tween the variable of interest and the outcome.

Predictive LR Modeling and Selection of the Optimal
Lipids. LR models were developed to stratify CHR versus
HC, CHRt versus CHRp 1 CHRr, and CHRr versus CHRp 1
CHRt. Twenty-one significantly changed lipids between
HC, CHRp, CHRt, CHRr were used either singly or in
combination for LR modeling. A recursive feature elimina-
tion scheme was implemented for the optimal selection of
the lipids. The lipids in LR models were either incorporated
or removed in an iterative manner, starting with all 21
selected lipids. The models were adjusted for age, sex, and
BMI. Accuracy of prediction was determined by AUCs. The
mean AUC of a model was estimated by bootstrapping,
that is, resampling 1000 times with replacements and
partitioning (70% training and 30% test sets) of the lip-
idomic dataset using the createDataPartition function
coded in the caret package (version 6.0.84). The model
with the highest mean AUC was considered to be the best
model, which was assessed by their receiver operating
characteristic curves using the pROC package (version
1.15.3). Regularized ridge models in cv.glmnet requires a
hyperparameter l. Here, lminimum, which corresponds to
the minimum cross-validation error, was determined by 10-
fold cross-validation. Maximization of sensitivity and
specificity of an LR model at an optimal threshold was
determined by the Youden index.

Differential Analysis of GAF Scores. To identify dif-
ferences in the serum lipid levels between the CHR in-
dividuals with high or low GAF scores at follow-up, we
divided the CHR group into 2 subgroups with either high
GAF (.65) or low GAF (#65) at follow-up, corresponding
to relatively good or poor levels of functioning, respec-
tively. Welch’s t test was used to assess the differences
in the mean lipid levels.
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 3
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Figure 1. Study overview. (A) Study design and description. (B) Contributing factors affecting the variance of the lipidome. % of explained variances of all
the factors across the lipid samples are shown. (C) Lipid clusters and their mean differences between clinical high risk (CHR) and healthy control (HC) groups.
*Statistically significant difference (2-sample t test: p , .05) of group means. Lipid types within each cluster are presented in Table 2. (D) Model coefficients of
different lipid clusters and demographic variables for classifying CHR vs. HC. Antipsy, antipsychotics; AUC, area under the receiver operating curve; BMI, body
mass index; CI, confidence interval.
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RESULTS

Lipid Signature of CHR Group

Lipidomic analysis, using UHPLC-MS, was performed on
baseline serum samples from CHR individuals (n = 263) and
Table 2. Lipid Types in Each Cluster at Baseline

Cluster Size Lipid Type(s)

LC1 24 CE, Cer, PC, PI CE

LC2 10 TG TG

LC3 9 Cer, TG Ce

LC4 18 PCs, SM PC

LC5 11 LPC, LPE LP

LC6 22 PCs, SM PC

LC7 22 PC, PE PC

LC8 5 PE PE

LC9 16 TG TG

LC10 23 TG TG

LC11 9 TG TG

LC12 4 TG TG

CE, cholesterol ester; Cer, ceramide; LPC, lysophosphatidlycholine;
phosphatidylethanolamine; PI, phosphatidylinositol; SM, sphingomyelin; TG

4 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
HC subjects (n = 51) (Figure 1A; Table 1). A total of 173
identified lipids (based on matched UHPLC-MS/MS spectra)
were included in the final lipidomic dataset (Table S1). Among
these lipids, the following classes were represented: choles-
terol esters (CEs), ceramides (Cers), lysophosphatidlycholines
Representative Lipids in the Cluster

(20:3), PC(40:5), PI(18:0/20:4)

(16:0/18:2/22:6), TG(54:7), TG(56:8)

r(d18:1/18:1), TG(50:2), TG(56:6)

(16:0/16:0), SM(d34:1), SM(d41:1)

C(20:3), LPC(16:1), LPE(18:1)

(16:0/18:1), SM(d18:2/14:0), SM(d32:1)

(O-22:2/22:3), PC(O-40:5), PE(P18:0/22:6)

(16:0/18:1), PE(34:2), PE(38:6)

(14:0/16:0/18:1), TG(14:0/18:1/18:1), TG(48:3)

(18:1/18:1/16:0), TG(54:2), TG(56:2)

(18:0/18:0/18:0), TG(51:2), TG(55:5)

(O-50:1) or TG(P-50:0), TG(O-52:1) or TG(P-52:0), TG(O-52:2) or TG(P-52:1)

LPE, lysophosphatidylethanolamine; PC, phosphatidlycholines; PE,
, triacylglycerol.
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Figure 2. Molecular lipids in clinical high risk for psychosis (CHR). (A) Lipid species that are altered between CHR vs. healthy control (HC) groups at baseline,
as detected by both multivariate (sparse partial least squares discriminant analysis [sPLS-DA]: areas under the receiver operating curve [AUCs] = 0.60,
regression coefficients [RCs] . 60.05, and variable importance in projection [VIP] scores . 1) and univariate (2-sample t test: padjusted , .1) analyses.
(B) Scatter plot showing the number of acyl carbons and double bonds in individual triacylglycerols. Spearman’s coefficient (d) is color coded with red as
positive and blue as negative correlation between the triacylglycerol levels in CHR vs. HC. (C) List of lipids that are altered between males and females within
the CHR and HC groups at baseline, as identified by both multivariate (sPLS-DA: AUCs = 0.60, RCs . 60.05, and VIP scores . 1) and univariate (2-sample t
test: padjusted , .1) analyses. CE, cholesterol ester; Cer, ceramide; FC, fold change; LPC, lysophosphatidlycholine; LPE, lysophosphatidylethanolamine; PC,
phosphatidlycholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, sphingomyelin; TG, triacylglycerol.
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(LPCs), lysophosphatidylethanolamines (LPEs), phospha-
tidlycholines (PCs), phosphatidylethanolamines (PEs), phos-
phatidylinositols (PIs), sphingomyelins (SMs), and
triacylglycerols (TGs).

As expected, the variables that explained most of the lipid
variance were BMI, sex, and age (Figure 1B). Therefore, the
confounding effects of these variables were taken into account
in the regression analyses. The effect of antipsychotics on the
baseline lipids levels was, however, minimal, contributing to
,0.5% of explained variance.

Owing to the high degree of coregulation between lipids
within the same structural class, we analyzed the lipidomics
data using model-based clustering, which generated 12 LCs
(Table 2; Table S2). At baseline, the levels of LCs 1, 2, 4, 9, 10,
and 11 were significantly higher in the CHR group than in the
HC group (Figure 1C). LCs 2, 9, 10, and 11 comprised TGs,
while LC1 contained a mixture of CEs, ceramides, PCs, and a
PI, and LC4 included PCs and some SMs.
B

Combining the LC data and the clinical variables
(Figure 1D), an LR model was built which discriminated be-
tween CHR and HC at baseline with AUC = 0.76 (95% CI
0.64–0.82). Based on the mean model coefficients, LC4 and
LC5 had the greatest impact on the separation of CHR and
HC groups, whereas demographic variables such as
ethnicity, BMI, study site, antipsychotics, and age had rela-
tively little effect. Sex was the only demographic factor that
had a positive impact on the regression model (Figure 1D). A
partial correlation analysis between various demographic
variables and lipid clusters in CHR and HC subgroups is
shown in Figure S3.

At the individual molecular lipid level, in line with the findings
at the LC level, the lipids that passed the threshold test for
significance (see Statistical Methods) in both the multivariate
and univariate tests were higher in the CHR group than in the
HC group (Figure 2A), with more than half being TGs. Most of
the TGs that were at higher levels in the CHR group had a low
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 5
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Figure 3. Clinical high risk for psychosis (CHR) and health outcomes in follow-up. (A) Lipid clusters at baseline for 4 study groups: CHRp (remained CHR in
follow-up), CHRt (transition from CHR to psychosis), and CHRr (remission from CHR), and healthy control (HC). *Statistically significant difference of the group
means as determined by analysis of variance and post hoc Tukey’s honestly significant difference (HSD). (B) List of lipids that were altered between CHR vs.
HC, CHRt vs. CHRr 1 CHRp, CHRr vs. CHRt1CHRp, and CHRr vs. HC groups at baseline and in follow-up (fold changes [FCs]. 1.2) in at least one condition,
as identified by both multivariate (sparse partial least squares discriminant analysis: area under the receiver operating curve . 0.60, regression coefficient
. 60.05, variable importance in projection score .1) and univariate (2-sample t test: padjusted , .01) analyses. *padjusted , .01.
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carbon number and double bond count. In contrast, levels of
several TGs containing longer and polyunsaturated fatty acyl
chains were lower in CHR subjects than in HC subjects
(Figure 2B).

As there was a strong effect of sex in the LR model, we also
examined differences in relation to sex. There were 13 lipids
that differed by both sex and by group (CHR vs. HC)
(Figure 2C, Figure S4). The majority of these were SMs, all of
which were at lower levels in male compared with female CHR
and HC individuals (Figure 2C; and Figure S4, D–F).
Conversely, levels of 4 TGs were higher in male compared with
female CHR and HC individuals (Figure 2C; Figure S4, G–I).
Lipid Signatures of Clinical Outcomes in CHR
Subjects

The same 12 LCs described above for the CHR versus HC
comparisons were used to compare the CHR outcome sub-
groups and the HC group. Five LCs significantly differed be-
tween these subgroups at baseline. For 4 of these clusters
(LC1, LC2, LC9, and LC10), the subgroups that contained
subjects who had persistent symptoms or were psychotic at
follow-up (CHRp and CHRt) had higher levels than the sub-
groups that contained subjects who were in remission (CHRr)
or the HC group (Table 2; Table S2; Figure 3A).

In terms of individual lipids, there was a trend for lower levels
in the CHRt subgroup than in the CHR subgroups containing
subjects who did not become psychotic (CHRs 1 CHRr)
(Figure 3B). Among these lipids, the levels of 2 ether phos-
pholipids, PC(O-22:2/22:3) and PC(O-32:0), were significantly
6 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
lower in the CHRt than in the CHRr and CHRp subgroups
(Figure 3B). Two lipids, SM(d34:2) and SM(d18:1/24:0), had
higher levels in the CHRr subgroup than in the HC group.

Lipids as a Predictor in CHR for Psychosis

Next, we examined whether the lipids that significantly differed
(p , .05) between the CHRp, CHRt, and CHRr subgroups
could be used to stratify individuals within the total CHR
sample (Figure 4). These lipids were subjected to LR modeling
in an iterative manner, and optimal sets of lipids were identi-
fied. Cer(d18:1/24:0), LPC(22:5), PC(38:4), PC(40:5), PC(O-
32:0), SM(d18:1/24:0), SM(d36:0), and SM(d36:1) were able
to distinguish the total sample of CHR individuals from the HC
group with a good level of accuracy (mean AUC = 0.83, 95%
CI = 0.71–0.95) (Figure 4A). Cer(d18:1/24:0), LPC(22:5),
PC(38:4), PC(40:5), and PC(O-32:0) were able to differentiate
CHRt from CHR subjects who did not develop psychosis
(mean AUC = 0.81, 95% CI = 0.69–0.93) (Figure 4B). Ether
phospholipid PC(O-32:0) was diminished in CHRt compared
with CHR individuals who did not develop psychosis
(Figure 4E). CHRr were distinguished from CHR subjects who
did not achieve remission by Cer(d18:1/24:0), LPC(22:5),
PC(38:4), PC(40:5), PC(O-32:0), and SM(d18:1/24:0) (mean
AUC = 0.83, 95% CI = 0.72–0.95) (Figure 4C).

Association Between Lipids and Functional
Outcomes

When comparing baseline serum lipids between CHR subjects
with high and low GAF disability scores at follow-up, no

http://www.sobp.org/journal


A B C

D E F

Figure 4. Predictive models of clinical high risk (CHR) conditions. Logistic ridge regression (LR) models showing lipids as predictive markers to stratify
patient groups of healthy control (HC) subjects and/or CHR subjects (divided into CHRp [remained CHR in follow-up], CHRt [transition from CHR to psychosis],
and CHRr [remission from CHR]). (A–C) Receiver-operating characteristic curves showing the performance of the LR models (CHR vs. HC, CHRt vs. CHRp 1
CHRr, and CHRr vs. CHRp1 CHRt) with highest mean areas under the curve (AUCs). The light blue shaded area denotes the 95% confidence intervals (CIs) as
calculated using bootstrapping. Specific lipids that compose each of these models are shown. Sensitivity and specificity of the LR models CHR vs. HC, CHRt
vs. CHRp 1 CHRr, and CHRr vs. CHRp 1 CHRt were, respectively, 0.69 and 0.83, 0.52 and 0.88, and 0.64 and 0.90. Maximization of sensitivity and specificity
of an LR model at an optimal threshold was determined by the Youden index. (D–F) Log2 fold change in the intensities of the lipids corresponding to the LR
models. CE, cholesterol ester; Cer, ceramide; LPC, lysophosphatidlycholine; LPE, lysophosphatidylethanolamine; PC, phosphatidlycholine; PE, phosphati-
dylethanolamine; PI, phosphatidylinositol; SM, sphingomyelin; TG, triacylglycerol.
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significant differences were found after correction for multiple
comparisons. Four TGs passed the nominal p value threshold
of p , .05 (Welch’s t test): levels of TG(52:2), TG(52:3),
TG(52:4), and TG(56:6) were higher in the subjects with low
GAF disability scores (Figure S5). Iterative LR modeling of
these TGs identified TG(52:3), TG(52:4), and TG(56:6) as an
optimal set for distinguishing between subjects with high and
low GAF disability scores at follow-up (mean AUC = 0.80, 95%
CI = 0.68–0.90) (Figure S6).
DISCUSSION

Our first major finding was that the blood levels of many lipids
were higher in individuals at CHR than in HC subjects. The
types of lipid that were different were similar to those previ-
ously seen in comparisons of patients with psychosis and HC
subjects (25,26). The identification of lipidomic differences
before the onset of psychosis is consistent with similar findings
in healthy children who subsequently reported psychotic ex-
periences in later life (9) and in siblings of psychotic patients
(27), and suggests that altered serum lipid levels are related to
an increased vulnerability to psychosis and not simply a sec-
ondary consequence of the disorder or its treatment.

The higher levels of TGs in the CHR group were primarily
TGs with low acyl carbon number and double bond count (i.e.,
B

those containing shorter and more saturated fatty acyl chains).
A similar TG lipid signature was previously observed in a
subgroup of first-episode psychosis patients who rapidly
gained weight after presentation (10). Serum TGs with low acyl
carbon number and double bond count are also increased in
NAFLD (13) and precede clinical type 2 diabetes (28). In
NAFLD, these TGs characterize the subtype of NAFLD asso-
ciated with obesity and insulin resistance (12). At least in part,
changes in these TGs may be related to increased de novo
hepatic lipogenesis, a hallmark of NAFLD (29,30).

When comparing the 3 CHR subgroups at the LC level
(Figure 3), individuals whose symptoms remitted had a lipid
profile similar to HC subjects. Although the lipids tended to be
higher in CHRr than in HC, the only significant difference at the
individual lipid levels was in 2 SMs, SM(d34:2) and SM(d18:1/
24:0), with these 2 lipids being elevated also in the total CHR
sample compared with the HC group. These SMs were pre-
viously found to be associated with obesity and insulin resis-
tance (31), and SM is considered to be a risk factor of coronary
artery disease (32). Altered SM levels compared with HC in
CHRr may thus reflect impaired metabolic profile in CHR
individuals.

Using a machine learning approach, we developed diag-
nostic signatures that discriminated subgroups within the CHR
sample with distinct clinical outcomes. The relatively high
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 7
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accuracy of the model suggests that measures of blood lipids
may help clinicians predict outcomes in this population. CHR
individuals who later developed psychosis were discriminated
from those who did not by lower levels of ether phospholipids.
Ether phospholipids are highly enriched in brain (33) and have
many structural and functional roles (34). Plasmalogens are a
structural subgroup of ether phospholipids that are supplied to
the brain by the liver (35). They are thought to be scavengers of
free radicals and may act as endogenous antioxidants (36,37).
Our data thus raise the possibility that CHR individuals who
develop psychosis may have an increased vulnerability to
oxidative stress. This is of particular interest, as an indepen-
dent body of work has implicated oxidative stress in the
pathophysiology of psychosis (38). We have also collected
measures of oxidative stress from the present sample and will
assess the relationship between these and ether phospholipids
in a forthcoming study.

An unexpected finding was that within the total CHR
sample, there were marked sex differences in lipid profile.
Although the trend of lipid changes, when comparing CHR
and HC subjects, was the same for both sexes, sex differ-
ences were much more pronounced in the CHR group than in
HCs. While TGs and LPCs were increased, SMs were
decreased in male relative to female CHR subjects. Plasma
SMs are known to be elevated in females (39), which reflects
the effect of 17b-estradiol on serum SM levels (40). This
finding suggests that sex may be an important confounder
that needs to be considered in studies of lipid metabolism in
psychosis. Another potential cofounder in the present study
was the fact that the samples were not collected in a fasted
state. The CHR population is difficult to recruit to studies in
general, and requiring fasting would have been a major limi-
tation to recruitment.

In conclusion, although the mechanisms linking dysregula-
tion of lipid metabolism with the pathophysiology of psychosis
is unclear, our findings suggest that metabolic abnormalities
are evident in people who are vulnerable to psychosis but do
not have the disorder and have not been treated. A similar lipid
profile is observed in patients with NAFLD and in prediabetes,
as well as in nonobese first-episode psychosis patients who
later gain weight. In addition, our data suggest that assess-
ment of the circulating lipidome may assist in the identification
of CHR individuals who are at the highest risk for transition to
psychosis. Our AUC of 0.83 for predicting transition is prom-
ising, but the model must be validated in similar independent
CHR datasets. The predictive power of lipidomic data may be
enhanced by combining these with measures of other factors
that may influence clinical outcomes in CHR individuals, such
as neuroimaging data, psychopathology, oxidative stress,
proteomic, and inflammatory markers (41).
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