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Machine learning as a tool 
to engineer microstructures: 
Morphological prediction 
of tannin‑based colloids using 
Bayesian surrogate models
Soo‑Ah Jin, Tero Kämäräinen,  Patrick Rinke,  
Orlando J. Rojas,*  and Milica Todorović* 

Oxidized  tannic acid (OTA) is a useful biomolecule with a strong tendency to 
form complexes with metals and proteins. In this study we open the possibility to 
further the application of OTA when assembled as supramolecular systems, which 
typically exhibit functions that correlate with shape and associated morphological 
features. We used machine learning (ML) to selectively engineer OTA into particles 
encompassing one-dimensional to three-dimensional constructs. We employed 
Bayesian regression to correlate colloidal suspension conditions (pH and pKa) with 
the size and shape of the assembled colloidal particles. Fewer than 20 experiments 
were found to be sufficient to build surrogate model landscapes of OTA morphology 
in the experimental design space, which were chemically interpretable and endowed 
predictive power on data. We produced multiple property landscapes from the 
experimental data, helping us to infer solutions that would satisfy, simultaneously, 
multiple design objectives. The balance between data efficiency and the depth 
of information delivered by ML approaches testify to their potential to engineer 
particles, opening new prospects in the emerging field of particle morphogenesis, 
impacting bioactivity, adhesion, interfacial stabilization, and other functions inherent 
to OTA.

Introduction
Tannic acid (TA) is an abundant and versa-
tile bio-based material, which readily affords 
synthetic pathways for the isolation of its 
elementary building blocks. TA contains 
many hydroxyl groups, allowing it to form 
complexes with different macromolecules 
via hydrogen-bonding, hydrophobic and 

cation-π interactions.1,2 Abundant hydroxyl 
groups make TA highly soluble and stable 
in aqueous solutions. In alkaline condi-
tions, TA undergoes  oxidation3,4 and pro-
duces oxidized tannic acid (OTA) followed 
by oligomerization. Concomitant olig-
omerization of OTA leads to the formation 
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of compounds with higher molecular weight and thereby 
decreases the solubility of the substance.4 In this form, OTA 
can interact with different molecules and serve as coatings,3,5 
surface  modifiers1,6 and emulsion stabilizers,1,3,6,7 or act as 
stabilizing and reducing agents to aid in inorganic nanopar-
ticle growth,8–10 all the while imparting beneficial biological 
functionality.11,12 For instance, tannic acid has recently been 
shown to suppress SARS-CoV-2 as a dual inhibitor of the viral 
main protease.13 All these favorable aspects of OTA and other 
phenolic particles have fueled research into a wide spectrum 
of applications.14

OTA can also be crystallized into particles with structural 
properties that are highly sensitive to the experimental syn-
thesis. Previously, Bhangu et al.10 developed a sonochemical 
method to chemically transform amorphous tannic acid into 
nano-/micro-sized crystalline particles without the use of re-
agents or organic solvents. They obtained OTA particles of dif-
ferent size and shape by simply varying ultrasonic parameters. 
Kämäräinen et al.4 further presented a facile and scalable pro-
tocol to prepare OTA of varying morphologies by altering the 
TA oxidation conditions. The dimensions, shapes, and the yield 
of these crystalline particles were highly sensitive to initial TA 
concentration, reaction time, initial pH, and pKa of the base.

While OTA particulate constructs can facilitate a range of 
new applications, particle morphology is a key consideration. 
In many high surface area systems that incorporate particulate 
matter, particle morphology and size are major contributors to 
their overall performance through, for example, relationships 
between morphology and packing,15 percolation,16 rheology,17 
and bioactivity.18 Consequently, morphology plays an important 
role in many applications ranging from heterogeneous  catalysts19 
and electrochemical  cells20,21 to drug delivery systems.22

In this work, we employ machine learning (ML) to explore 
the morphology landscape of OTA particles in the chemical 
design space of processing conditions. As illustrated in Fig-
ure 1, we start with OTA synthesis experiments and digital-
ize them into data points for particle morphology. We apply 
Gaussian process regression (GPR),23 an ML tool for super-
vised learning, to compute a surrogate model for OTA mor-
phology. Based on the morphology model in the design space 
of material fabrication, we consider which particle shapes are 
available and learn how to tune the processing conditions to 
achieve an optimal outcome for a targeted application.

GPR has been employed in materials science for experi-
mental materials design,24–30 often in combination with 

Bayesian optimization.31–33 Given data within the phase space 
of N design parameters, GPR produces the statistically most 
likely N-dimensional landscape, which serves as a surrogate 
model of a target property.23 Gaussian processes (GPs) are 
capable of good data interpolation, allowing us to build good 
quality surrogate models with relatively few data points. They 
produce smooth and continuous landscapes that reflect the 
continuous chemical process underpinning the data, and can 
account for experimental uncertainties as data noise. All of 
these characteristics makes GPR well suited to experimental 
applications.

The previous study of OTA particle fabrication employed 
principal component  analysis34,35 (PCA, an ML tool for unsu-
pervised learning) on experimental data to ascertain that pH 
and pKa used in the OTA solution correlate most strongly 
with particle shape. We proceed to consider OTA morphol-
ogy in the two-dimensional (2D) search space of pH and pKa. 
Sample characterization was performed by scanning electron 
microscopy (SEM) imaging. To digitalize the particle shape 
information, we quantified the physical dimensions allowed by 
OTA simple crystalline habits and took note of experimental 
uncertainties.

While PCA is a versatile tool, it was unable to offer further 
insight into morphology types, nor indicate optimal process-
ing conditions. Conversely, GPR allowed us to visualize OTA 
particle morphology as a function of pH and pKa and delivered 
a chemically interpretable model. Based on the morphology 
landscape, our objective was to drive the morphology of par-
ticles from one-dimensional (1D) to three-dimensional (3D) 
shapes. Moreover, by extracting particle yield and volume 
from each experiment we were able to generate surrogate 
models for multiple experimental properties at no further 
cost, allowing us to pursue multi-target tuning of OTA par-
ticulate structures. In this article, we present the entire work-
flow necessary to carry out supervised ML applications on 
experimental data, with the aim to motivate similar work in 
the community. Data-efficient ML tools from computer science 
have the potential to renew experimental practices in materi-
als engineering and boost the search for advanced sustainable 
compounds.

Materials and methods
OTA particle synthesis
OTA particles were synthesized using the protocol reported 
previously.4 Briefly, aqueous tannic acid solution (2% w/v) 

was prepared by adding tannic acid 
powder (1701.20 g/mol, Sigma-
Aldrich) into Milli-Q water and rig-
orously stirring (magnetic bar) until 
completely dissolved. The pH of the 
solution was adjusted to a desired 
pH value with either 1 M KOH, 45% 
 (CH3)3 N, 1 M NaOH, 0.5 M  Na3PO4 
or 25%  NH4OH (see Figure 2a). 

data acquisition digitalization & ML morphology model optimal outcome

pKa

pH

Figure 1.  Workflow for machine learning (ML)-guided morphology control of synthesized 
oxidized tannic acid particles.
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Alkaline conditions required for the OTA synthesis reaction 
to proceed made us select pH > 7, but the base choice was 
varied widely and resulted in a pKa in the range [9.25, 14.9]. 
All chemicals were reagent-grade and purchased from Sigma-
Aldrich. Solutions were covered with perforated Parafilm and 
were shaken continuously with an orbital shaker for 14 h. All 
reactions were carried out at room temperature. The grown 
and precipitated OTA particles were collected and stored at 
room temperature for further characterization. Despite the 
simplicity in particle fabrication, multiple experiments were 
needed to accurately define the conditions that resulted in the 
given morphology. This required arduous experimentation, as 
well as time, since each setup produced a specific morphology 
depending on the reaction conditions.

SEM image analysis
The synthesized OTA particles were imaged using a field-emis-
sion SEM (Sigma VP, Zeiss, Germany) with Schottky emitter 
at 1.5 kV without stage bias. For this purpose, aqueous suspen-
sions of the OTA particles were cast onto pre-cleaned silicon 
wafers, dried in ambient laboratory conditions and sputter-
coated with 4 nm Pd/Au. All imaging was performed on the 
same day with the OTA suspensions freshly prepared. Collected 
SEM images were then analyzed using ImageJ  software36 to 
measure the dimensions of the particles typically numbering in 
the tens (Figure 2b). We measured the length, width and height 
of OTA particles as  d1,  d2, and  d3, such that  d1 >  d2 >  d3. The 
average values are reported here as the best estimate of parti-
cle dimensions. Standard deviations were recorded to estimate 
the experimental uncertainty on particle dimensions. All data 
points, error analysis, and the SEM images are presented in the 
Supplementary Material document.

Gaussian process regression 
algorithm
GPR is a kernel-based algorithm for 
supervised regression that relies on 
GP models to represent black box 
functions.23 Given data and the GP 
prior, Bayes’ rule is applied to com-
pute the GP posterior. The GP pos-
terior mean serves as the surrogate 
model, the statistically most likely 
form of the unknown function. The 
GP posterior variance supplies a 
local measure of confidence in the 
model, typically rising in regions of 
search space where data are scarce 
and decreasing in well-explored 
regions.

For GPR fitting we used an 
uninformative zero mean GP prior 
and the radial basis function (RBF) 
kernel to obtain smooth and con-
tinuous landscapes. Data noise was 

Gaussian-distributed with zero mean. To make the model more 
robust, we applied inverse gamma priors on the hyperparame-
ters of the kernel, the length scale and variance. During regres-
sion, the two hyperparameters were fitted in an automated 
way by maximizing marginal likelihood: this standard GPR 
procedure ensures that the results do not depend on manual 
hyperparameter choices.23

To compute the surrogate model, we carried out GPR 
implemented in the Bayesian Optimization Structure Search 
(BOSS) code. BOSS is an open-source Python  code37,38 
for performing GPR and Bayesian optimization (BO) tasks 
to solve problems in materials science.39–42 It can read pre-
recorded data sets or acquire data on-the-fly with acquisi-
tion functions. BOSS post-processing capabilities allowed 
us to construct surrogate model landscapes and analyze their 
features.

Results and discussion
We employed 10 experimental data points on crystallized OTA 
particles collected by Kämäräinen et al.4 to initialize the GPR 
model. In a departure from earlier work, the prospect of super-
vised learning required us to carry out experimental data ana-
lytics and consider different experimental outcomes, as well 
as measurement uncertainties. Supervised learning calls for 
a clear outcome, or label, so samples with ill-defined mor-
phologies were not included into the ML model. Another key 
part of data digitalization was the conversion of experimen-
tal observations into customized descriptors for OTA particle 
morphology.

We started by analyzing the OTA particle morphology 
landscapes obtained in the 2D search space of pH and pKa for 
shape predictions. To test the predictive power of the model, 

Base

14 h reaction

d1
d3

d2

Tannic Milli-Q
acid water

1 µm
200 nm

a

b

Figure 2.  Schematic illustration of the experimental protocol used for data acquisition:  
(a) oxidized tannic acid colloidal particle synthesis; (b) scanning electron microscope image 
analysis and particle dimension according to characteristic lengths  d1,  d2, and  d3.
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we performed seven more experiments in key regions of the 
design space. The additional data also served to refine the 
morphology model. We validated the morphology landscapes 
against all experimental data collected, including the samples 
which were not employed in building the model. Finally, we 
demonstrated how additional property models for particle 
yield and volume were built from the same set of experiments 
and consider multi-objective materials design.

Experimental data set
The experimental data set was adapted for GPR supervised 
learning by presenting each point in [x, y] pair format. Here x 
is the location in the design space of OTA particle processing 
conditions, and y is the label, the morphology design objective 
for which we construct the surrogate model. Depending on the 
number of design parameters, x can be N-dimensional. In this 
work, x = (x1, x2) with x1 assigned the pH of the solution and 
x2 the value of base strength pKa. We limited the design space 
of the processing conditions (pH, pKa) to the range of ([7.0, 
12.2], [9.0, 15.5]) to reflect the range of the processing condi-
tions within which the experiments were realized.

The morphology of particles was quantified from their 
measured dimensions  (d1,  d2,  d3). To facilitate comparison 

between data points, the particle dimension data was scaled 
by the magnitude of the leading dimension (normalizing the 
longest dimension to 1.0 for each data point). We defined the 
morphology label y as:

This label allows us to distinguish between 1D and 3D 
morphology conditions as follows:

While the 1D–3D signal difference across the realistic par-
ticles may be considerably lower than the ideal [0, 2] range, 
the choice of a physically meaningful property as label y 
allowed us to formulate interpretable surrogate models and 
gain immediate insight from GPR applications.

Next, we review the range of experimental outcomes and 
discuss their suitability as input for ML application. Unlike 
in computational research where a numerical result is guar-

anteed, any experimental data point 
may result in one of the following 
outcomes of experimental fabrica-
tion, illustrated in Figure 3a: (a) no 
particle precipitate; (b) non-quanti-
fiable, ill-defined particle morphol-
ogy; (c) good quality precipitates 
with quantifiable dimensions; and  
(d) multi-morphology precipitates. 
Too many experimental observa-
tions in the first two categories 
would suggest that the chosen 
design variables are not the key 
drivers of the material synthesis, 
and that the experimental design 
space needs further consideration.

In our work, 74% of experiments 
(17 points) resulted in quantifiable 
sample morphology. A further 22% 
(5) data points featuring ill-defined 
particle morphology could not be 
employed in building the model, 
but served to verify the model pre-
dictions. In one case, we observed 
OTA samples that featured two dis-
tinct particle morphologies in com-
parable yields (Figure 3d). Such a 
case indicates a saddle-point in the 
chemical design space, a two-phase 
region where both morphologies 
are in coexistence, and should be 
approached with caution. Here, we 

(1)
y =

d2

d1

+
d3

d1

;

d1 = 1.0 → y = d2 + d3.

(2)y =







0, d1 ≫ d2, d3; 1D

1, d3 ≪ d1, d2; 2D

2, d1
∼= d2

∼= d3; 3D.

a b

c d

1 µm 1 µm

1 µm 5 µm

Figure 3.  Scanning electron microscope images of precipitated oxidized tannic acid 
particles: (a) no precipitate; (b) ill-defined morphologies; (c) regular morphology, suitable for 
characterization; (d) dual morphology.
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characterized the two morphologies and computed their arith-
metic average label y: such treatment reflected the dichotomy 
in the design space and was supplying this information in the 
model.

Experimental uncertainties are common in any practical 
work, and must be carefully considered. In our study, there 
were uncertainties associated with both OTA sample fabri-
cation and characterization. While we made every effort to 
fix all aspects of OTA particle synthesis apart from pH and 
pKa, unaccounted differences in ambient conditions such as 
relative humidity could influence the evaporation rate during 
the experiments, affecting particle yields and morphologies. 
Changes in impurity content could also affect the observed 
morphologies. OTA particle dimensions were measured based 
on visual assignment of particle boundaries: these may intro-
duce minor uncertainties into the mapping from design space 
to experimental outcome that are difficult to quantify. Irregu-
lar particle sizes in our experiments allowed us to perform a 
statistical analysis of particle dimensions (and thus morpholo-
gies). The standard deviations per particle dimension were 
combined to compute the overall uncertainty ∆ on the mor-
phology label y. Since this quantity reflects the knowability of 
data, it was adopted to represent all sources of experimental 
error and served as data noise in the GPR surrogate model (see 
Supplementary Material for full details). For the precipitate 
yield, a conservative estimate of 5% variation was assumed.

Morphology landscapes in the design space
Based on GPR, we computed the initial surrogate model for 
OTA particle morphology in the 2D pH-pKa design space 
shown in Figure 4a. The continuous morphology landscape 
features areas of interest associated with low y signal (1D) and 
high y signal (3D) structures. It also indicates that there are 
regions of design space where no data have been collected and 
where the model may be less reliable.

The minimum of the surrogate 
model in Figure 4a suggests that 
high-pH combined with high-pKa 
produced OTA particles with the 
most strongly pronounced 1D 
character (  d1 ≫ d2, d3  ). Con-
versely, low pH solutions most 
likely produced 3D particles. 
To verify these predictions, we 
sampled further data points at 
the edges of the design space at 
pH < 7.8 and pH > 11, and also at 
low pKa values, where data had 
been sparse. The GPR model that 
was re-trained with 7 additional 
experimental points is presented 
in Figure 4b.

The refined surrogate model for 
OTA particle morphology retains 
many of the features of the pre-
vious GPR fit in Figure 3a. The 

predicted high-pH and high-pKa conditions for 1D particles 
remain unchanged. However, the region specific to 3D struc-
tures (high y values) is now enhanced, shifting to lower pKa 
values. The refined landscape suggests that only low-pH and 
low-pKa processing conditions give rise to 3D particles. The 
relatively low value of the morphology signal y throughout the 
design space indicates that many experimental outcomes are 
1D-like. Particles that are 2D-like may form only in the region 
of chemical space that neighbors the 3D structural conditions.

Model validation and predictive power
To extract predictions from the surrogate model, we coarse-
grained the landscape into several categories assuming linear 
progression from 1D to 3D. As illustrated in Figure 5, this 
allows us to define regions of design space where experiments 
would reliably produce 1D, 2D, and 3D OTA particles. We 
observe that 1D and 3D regions of design space are clear and 
well separated. The model predicts that solution pH and pKa 
are directly correlated: 1D particles are obtained when their 
values are both high, and 3D when they are both low. In con-
trast, the 2D particle region spans a limited non-convex area 
in design space that conforms to the 3D particle region. This 
implies that 2D particles are difficult to synthesize. The great-
est portion of design space was associated with 1D-type struc-
tures. The resulting model prediction is that when pH and pKa 
are inversely correlated, 1D-like or 1D-2D mixed morphology 
particles are expected to occur. 

In the next step, we validate our model predictions by 
cross-referencing SEM images of OTA particles with the par-
ticle morphology landscape. Figure 6 portrays the landscape 
overlaid with SEM image data from the area of design space 
where the OTA particle synthesis was carried out. Images out-
lined in red represent cases of non-quantifiable particle dimen-
sions (ill-defined morphology), which were not included in the 
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Figure 4.  Gaussian process regression surrogate models for morphology label y in pH-pKa 
design space fitted with (a) 10 and (b) 17 experimental data points. Chart color reflects the 
value of the morphology label y, with yellow color denoting 3D and dark blue reflecting 1D 
particle outcome. Magenta circles indicate the loci of the actual experimental data. The red 
star indicates the processing conditions that produced oxidized tannic acid particles with the 
most pronounced 1D character (minimum y value in the surrogate model).
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model construction. The case of dual particle morphologies is 
indicated in green.

It is immediately clear that the predictions regarding 1D 
and 3D particle formation were correct. 1D landscape regions 
are associated with very long needle-like particles (up to 
0.1 mm), where the design condition d1 ≫ d2, d3 is best sat-
isfied. 1D-like regions exhibit a different 1D morphology 
where the particles are short and matchstick-like. In some 
cases, the short 1D particles agglomerate into a larger mass 
where the morphology is not easily identified. These data were 
not included into the surrogate model, and yet they correlate 
well with the mixed morphology 1–2D and 2–3D regions of 
the landscape. The same is true of the dual morphology data 
points, which correctly occur in the mixed 1D–2D section of 
the landscape.

SEM images reveal few examples of 3D particles obtained 
in these experiments, about 25% of the total. Even fewer are 
the 2D particle cases, which present mostly as domino-like 
platelet structures. As predicted by the surrogate model, 1D 
particles dominate the design space: short matchstick-like 
structures are the most common experimental outcome. At 
intermediate pH and pKa values, there is a risk of particle 
aggregation: matchsticks combining into disordered bundles 
and coral-like growth are observed.

OTA particle yield and functional properties
Having demonstrated that GPR surrogate models for OTA 
particle morphology have good predictive power, we turn our 
attention to other experimental information. With each data 
point, we recorded the yield of the dried OTA colloidal con-
tent. The measurement of particle dimensions further allowed 
us to analyze and engineer other functional properties such 
as particle size, volume or surface area. The leading particle 
length in experiments varied in the range 0.4–130 µm, sug-
gesting that experimental conditions can be used to tailor the 
particle size to diverse applications. We focused on the ratio 
of particle surface area to its volume: surface-based chemical 
processes underpin many technological applications, so maxi-
mizing surface area per volume (A/V) complements particle 
morphology control as an important design objective.

The GPR surrogate model for OTA particle yield is pre-
sented in Figure 7a. The irregular features in this landscape 
suggest that particle yield is strongly correlated with the base 
employed in the solution, rather than the pKa value. For exam-
ple, applying LiOH (pKa 13.8) to OTA leads to relatively high 
yields, about 60%, but NaOH (pKa 14.8) causes the yield to 
drop below 10 percent. This observation suggests that parti-
cle yield may be better correlated with a different property 
of the base, such as its size. Solution pH does play a role in 

the particle yield, with largest yields 
observed in the pH range of 8–11.

The OTA particle A/V landscape, 
illustrated in Figure 7b, presents a 
central region where the A/V ratio is 
very high. These mid-range pH and 
pKa conditions are associated with 
2D particles, where experimental 
data are scarce. OTA particles syn-
thesized in these conditions tend 
to produce 2D-like lamellar forms 
that agglomerate into 3D structures 
(see Figure 6 for SEM images). It 
was difficult to measure the shape 
of these particles, so they were not 
included in the surrogate model. 
Nevertheless, such samples clearly 
had the highest A/V ratio, and this 
was correctly predicted by the A/V 
surrogate model despite the paucity 
of data.

pKa

1D mix mix2D 3D
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Figure 5.  Oxidized tannic acid particle morphology prediction by 
particle dimensionality, indicating mixed 1D–2D/2D–3D regions.
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Figure 6.  Surrogate model of oxidized tannic acid morphology validated against experi-
mental scanning electron microscope images. Images with red borders indicate experiments 
with ill-defined morphology while those in green indicate mixed morphologies.
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Extracting several surrogate models from the same experi-
mental data (at no additional cost) allows us to cross-reference 
different properties and infer the conditions that would satisfy 
several design objectives at once. For example, a high yield 
of 3D particles can be obtained with  NH4OH in low pH = 7 
conditions. Highest yield of 1D OTA particles can be achieved 
with KOH at pH = 10–11, which also produces largest particles 
with most surface area exposed. 1D particles with high A/V 
ratio could be produced at very high pKa, but at relatively 
low yields. In further work, different label variables can be 
arithmetically combined into composite labels and landscapes.

Discussion and outlook
The purpose of this work was to evaluate the predictive power 
of GPR on a small experimental data set; therefore, we delib-
erately constrained the dimensionality of the problem, which 
also produced interpretable surrogate models. OTA particle 
morphology is certainly affected by other experimental param-
eters. Nevertheless, the good predictive power of surrogate 
models in the relatively simple 2D design space demonstrated 
that pH and  pKa alone are sufficient to control particle mor-
phology, in agreement with the earlier PCA result. Unfortu-
nately, PCA was unable to provide insights into the morphol-
ogy variation that could be achieved with surrogate models.

The morphology landscape portrays a very clear trend, 
but we are unable to interpret it using scientific intuition. 
The bottom-up OTA particle synthesis is a result of complex 
self-assembly where OTA particles coordinate into secondary 
supramolecular structures, which form tertiary nanofilaments 
and these assemble into quaternary mesoscopic crystals. It is 
very difficult to develop any inkling about the outcome of such 
an intricate procedure, nor about how processing conditions 
might affect it. Instead, the data-driven landscape can guide 
further research into the chemical processes behind such out-
comes and advance fundamental understanding.

Surrogate models are of general value in materials design 
because they span all design space, are chemically intuitive 
and interpretable. It is difficult to establish the criteria for 

quantitative accuracy of surrogate models. Our work shows 
that qualitative accuracy already translates to good predic-
tive power, marked by the good visual agreement between the 
morphology landscapes and the SEM images. OTA samples 
with ill-defined morphology (not included in the GPR) were 
particularly important in validating the model predictions. The 
correspondence of these mixed morphology samples with the 
appropriate regions on the map demonstrates that good quality 
ML predictions can be achieved in areas where no experiments 
were previously performed or included in the model.

The sensitivity of OTA particles to their processing con-
ditions made them an ideal test case for this study, but they 
remain a challenging material to work with. The composition as 
well as the molecular structure of tannins are dependent on the 
source they were extracted from.43,44 In other words, the plant 
species and their physiological state dictate the polydispersity 
and molecular weight, giving rise to inevitable heterogeneity, 
which complicates the processing and characterization of the 
materials. The relatively high experimental uncertainties trans-
lated into data noise that amounted to 10% of the entire GPR 
model corrugation. Such noise did not impair the predictive 
power of the models in this study, but in other work experimen-
tal errors could lead to distorted models and less optimal fits.

The convergence of GP models is an important concern 
in experimental work where data set sizes are small. Typi-
cally, an iterative convergence procedure is followed. Here, 
the addition of further seven data points intended to verify 
model predictions had a small effect on the qualitative fea-
tures of the model, so we stopped short of additional experi-
ments. We note that good quality fits can be obtained with 
small data sets in the case of simple landscapes (few extrema) 
and very limited problem dimensionality (2D), thus avoiding 
the curse of dimensionality.45 The need for additional data can 
be also evaluated from the values of the GPR posterior vari-
ance, which tends to decrease with more data included in the 
model. We considered the OTA morphology model variance 
after 10 and 17 experimental points (see Figure S3). In this 
work, the relatively large experimental uncertainties trans-

lated into large values of GP vari-
ance, which remained unchanged 
with the addition of more data. This 
finding indicates that in GPR appli-
cations to experimental data, where 
large noise maintains high vari-
ance, GP posterior variance might 
not be a useful measure of model 
confidence. However, the variance 
could be used to guide additional 
experiments.

In further work, our GPR-based 
approach could be extended to 
active learning material design 
workflows. In BO,32,33 GPR vari-
ance is exploited by acquisition 
functions to select the sampling 
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location that would most enhance the data set. Acquisition 
functions balance data exploration (searching less-visited 
areas of phase space) with data exploitation (searching near 
optimum points in phase space) to attain search objectives 
with relatively few data points. Search objectives can be learn-
ing the entire landscape or minimizing and maximizing mate-
rials properties across the search space.

By demonstrating that GPR performs well with experimen-
tal data related to OTA morphology design, this study opens 
the route toward BO with experimental data in engineering 
colloids. Integrating BO into experimental work is challeng-
ing,46–48 but there are many benefits.49,50 With acquisition 
functions guiding the selection of experiments, good predic-
tive power of machine learning could be achieved with fewer 
experimental data points, facilitating the study of complex 
N-dimensional design spaces with more design variables. 
Moreover, BO allows to drive experimental data collection 
towards materials with preferred functional properties (mor-
phological, mechanical or chemical) within the search space. 
The ML-guided search can thus replace trial-and-error experi-
mental approach in materials design.

Conclusions
Supramolecular OTA constructs present a prospect of novel 
applications for this versatile and bioactive material. Control-
ling particle morphology will help us purpose the OTA particu-
lates toward certain functions and application areas. This study 
combined materials engineering with GPR supervised machine 
learning to correlate the processing conditions of OTA col-
loidal solution with the morphology of the resulting dry OTA 
particles. The Bayesian surrogate model landscapes revealed 
the variation of particle morphology in the design space, illus-
trating the fabrication conditions needed to achieve different 
particle shapes. The main finding from the OTA morphology 
landscape is that severe processing conditions (high pH and 
pKa) give rise to extended 1D particles with high surface area 
per volume ratios. Reducing the severity of the solution pro-
duces smaller, compact 3D shapes.

Despite the relatively small data set size and large experi-
mental uncertainty, the data-driven morphology landscape was 
in good agreement with OTA sample images. It exhibited con-
siderable predictive power on samples that were not originally 
included in the model, marking the potential for predictive 
materials design. From the same set of experiments, we built 
surrogate models for OTA particle shape, yield, and surface-to-
volume ratio, and cross-referenced them to demonstrate how 
multiple design objectives could be satisfied at once.

Mapping processing conditions directly to experimental 
properties of materials constitutes a practical approach to ML-
led materials engineering, free of human bias. Such procedures 
could not only supplant experimental trial-and-error approaches, 
but also guide further research into the mechanisms of crystal-
lization and self-assembly in complex materials, opening innova-
tive engineering routes toward new phases of matter.
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