
Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 5 
Tampere University of Technology. Department of Software Systems. Report 5 
 
 
 
 
 
 
 
 
 
Jari Peltonen (Ed.)   
 
SPLST’09 & NW-MODE’09 
Proceedings of 11th Symposium on Programming Languages and Software Tools 
and 7th Nordic Workshop on Model Driven Software Engineering  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos  
Tampere 2009 



A Validation of Martin’s Metric

Sami Hyrynsalmi and Ville Leppänen

Department of Information Technology, University of Turku, Finland

Abstract. Robert C. Martin presented a software metric for a set of
classes i.e. a package. The objective of the package level metric is to
identify poorly designed packages. The Martin’s metric actually consists
of eight metrics which measure a few different characteristics of packages.
The metric is widely known, but there is lack of theoretical and empirical
evaluation of the Martin’s metric. This paper evaluates the theoretical
background of the metric against an evaluation framework and presents
an experimental evaluation of five open-source software applications. The
theoretical validation reveals a weakness in Martin’s definition for cohe-
sion. We propose a modification which is valid according to the evaluation
framework.

1 Introduction

The most common objective of the software metrics is to identify weak parts
of software. With them, one can assign these parts for more careful testing and
inspection. Software metrics are tools for improving the quality of software.

Briand, Daly and Wüst [1] divide object-oriented product metrics in five lev-
els: the attribute, method, class, set of classes, and system levels. The definitions
of the first three are obvious, but the fourth is too vague to be usable. For ex-
ample arbitrary selected classes from the system fulfil the definition, but these
kinds of sets are rarely interesting.

Software architecture consists of components. One component, in object-
oriented programming, can be one class or even sets of classes. A component
is a better choice for an abstraction level than a set of classes. We will use
word package rather than component, because in software engineering the term
’component’ is overused and overdefined. In this paper the term ’package’ refers
to a set of classes which have a reason to locate in the same set. The used
hypothesis is that the designer has decided to put them together as the classes
together carry out a common service.

The focus of package metrics is not in locating faulty or risky source code. The
package metrics only know the classes which belong to the package or interact
with it, and dependencies between these classes. The package metrics can help to
identify poorly designed packages and subsystems by investigating how classes
are divided in the packages and how classes depend upon each other.

The next section will discuss about the Martin’s metric. Section 3 will present
the validation framework of Briand, Morasca and Basili [2] and evaluate the
Martin’s metrics in the framework. Section 4 presents an empirical study of five
open-source software. Finally, Sect. 5 will present our conclusion.



1.1 Metrics in Literature

Hundreds of software metrics are presented in literature for object-oriented (OO)
programming. One of the most notable OO-metric suites was presented by Chi-
damber and Kemerer [3, 4]. Their suite consists of six metrics which evaluate
class cohesion, coupling, inheritance and complexity. Also Lorenz and Kidd [5]
and Abreu and Carapuça [6] have presented similar metric suites at the class
level.

Briand et al. have evaluated cohesion [1] and coupling [7] metrics, and pre-
sented frameworks for them. The evaluated metrics were also empirically tested
[8, 9]. A few new and creative cohesion metrics were inspired by their work. For
example Mäkelä and Leppänen [10] have suggested a client-based cohesion met-
ric which analyses how clients use the class. From the clients’ point of view, a
class is cohesive if all clients use it in the same way.

On the contrary, only a few package level metrics are presented. Ducasse,
Lanza and Ponisio [11] described Butterflies, tools for visualizing a package. They
use some metrics in their diagram, but the measures are simple size and cou-
pling metrics. Ponisio [12] continued the work and presented Contextual Package
Cohesion (CPC), which is a cohesion metric based on clients view.

Zhou, Xu, Shi, Zhou and Chen [13] presented another client view based cohe-
sion metrics for packages. Hautus [14] as well as Melton and Tempero [15] defined
metrics for evaluating package’s cyclic dependencies. Although the easiest way
to handle cyclic dependencies is to model them as a directed graph, and then
search for cycles in the dependency graph [16]. Also Lakos [17] has presented a
metric for dependencies of a package.

2 Martin’s Metric

Robert C. Martin’s [18] metric is one of the most widely known software package
measures. The focus of the metric is in identifying packages which are hard to
maintain and reuse. Actually, Martin’s metric consists of eight measures which
evaluate various features of a package. These metrics and an additional cohesion
metric are presented in Table 1.

Two coupling measures in the metric suite are afferent and efferent coupling.
Afferent coupling Ca is the number of classes outside the package which depend
on the package. Efferent coupling Ce is the number of classes outside the package
on which the package depends upon.

The import coupling of a package (Ca) represents the responsibility of the
package. Every client of the package is a reason for not to change the package.
If one changes the package, in the worst case one has to refactor every client of
the package. On the contrary, the export coupling of the package (Ce) represents
the reasons for a change.

Martin derives from these coupling measures a metric for stability of the
package. The stability of the packages does not measure the frequency or pos-
sibilities of the change. The metric measures how hard, measured by workload,



Table 1. Software package metrics defined by Martin.

Symbol Name

Ca Afferent Coupling
Ce Efferent Coupling
I Instability
Na Number of Abstract Classes
Nc Number of Classes
A Abstractness
D Distance from the Main Sequence
D

′ Normalized Distance
H Relative Cohesion

it is to change the package. A responsible package is hard to change because a
modification of it may lead to refactoring of other packages.

Martin’s instability I, in contrast of stability, is:

I =
Ce

Ca + Ce

. (1)

The metric’s range is [0,1], where zero indicates a stable package. The value one
implies that the package is maximally instable.

Two size measures of the suite are Nc and Na. Nc is the number of classes
in the package. Equally, Na is the number of abstract classes or interfaces in the
package. The abstractness A of the package is:

A =
Na

Nc

. (2)

Naturally, the range of A is [0,1], where zero indicates that the package has no
abstract parts.

Martin [18] claims that every stable package should be abstract. Stable pack-
ages are hard to change because of their responsibilities, but they should also
be abstract so they can be extended. On the other hand, an instable package
should be concrete so their code can be easily changed. With these principles,
Martin defines the relationship between A and I. The IA-graph is presented in
Fig. 1.

In the ideal case, all packages lie in the points (0,1) or (1,0). Stable and ab-
stract packages should be at the upper left corner at (0,1). Instable and concrete
packages should be at the lower right corner at (1,0). In the real world there are
different degrees of abstraction and stability, so all packages will not reside on
these two points.

Martin argues that the coordinates (0,0) and (1,1) represent bad design. In
the Zone of Pain, which is the area near lower left corner at (0,0), packages are
rigid. They are difficult to extend because of their lack of abstractness and hard
to change because of their responsibilities. The area near the upper right corner



Fig. 1. The IA-graph.

at (1,1) is called Zone of Uselessness. Packages in this area are abstract but they
do not have clients. Clearly, these kinds of packages are useless.

The ideal position for packages is as far as possible from these zones. The
Main Sequence is a line that connects (1,0) to (0,1) and packages on it are in
the right proportions of abstractness and stability. The Martin’s metric for a
package is the distance from the main sequence:

D =
|A + I − 1|

√
2

(3)

D′ = |A + I − 1| . (4)

Where D is the distance from the main sequence and it ranges between [0, 1√
2
].

D′ is a normalized distance and its range is [0,1].
Martin [18] presented also a cohesion metric H which does not belong in

the original metric suite. The metric is considered in this paper because it was
defined by Martin, it is one of the few cohesion metrics purely presented for
the package level and there is no validation of the metric. The metric H is an
average of internal relationship per class of the package:

H =
ρ + 1

Nc

. (5)

Where ρ is the number of internal class-to-class relationships in the package.
There are a few insufficiencies in the definitions. Martin did not define what

are the criteria of coupling [1] or what are the internal relationships. In this
paper, we assume that he means an explicit relationship between two classes,
e.g. inheritance or use. Martin defines Ce as reasons for change, but did not
mention how stable services should be handled. For example, Java’s class library
is stable because it has thousands of clients. One open question in calculating
Ce is that should dependencies to stable services be ignored.



JDepend1 is commonly used metric software, which calculates Martin’s met-
rics. It defines afferent and efferent coupling with the number of the packages
instead of the number of the classes. JDepend’s version of the metrics is useful,
because the package dependencies are known earlier than the class dependencies,
so one can calculate the value of the instability on the analysis phase.

3 Theoretical Validation

One of the first attempts to provide criteria for complexity metrics is the research
made by Weyuker [19] in 1988. As Weyuker’s criteria have been proposed before
the era of object-oriented paradigm, it is difficult to apply them for object-
oriented classes or architectural level components. Besides, all metrics should not
be seen similarly as complexity metrics. In complexity measures, a fundamental
idea is that combining two or more elements as one produces a more complex
element than any of its subelements. E.g., for coupling metrics this does not
necessarily hold – the coupling “complexity” of the whole can be even less than
any of its elements.

Briand, Morasca and Basili [2] presented in 1996 a set of required properties
for different kind of metrics. More specifically, they proposed 3 requirements for
size metrics, 4 requirements for cohesion metrics, and 5 requirements for length,
complexity as well as coupling metrics. We consider that these requirements
provide a proper framework for theoretical validation of metrics. In the following,
we consider each of the metric measures of Martin’s metric package with respect
to the size, coupling and cohesions properties of Briand, Morasca and Basili
(none of Martin’s metrics fall into length and complexity categories).

As pointed out by Cherniavsky and Smith [20], it is possible create a software
metric which fulfils properties but is neither practical nor reasonable. However,
we argue that theoretical inspection can reveal possible flaws from the definition
of the metric. Both theoretical and empirical study should be used in metric
validation.

3.1 Size

Of the measures of Martin’s metric, the measures Na and Nc are clearly size
measures. The derived measure A = Na/Nc is a relative size measure.

Briand et al. [2] assume that a measurable system consists of a set of elements
E, and some relation R ⊆ E × E. In the context of Martin’s metrics package,
the set E consists of either packages or classes within a package, and R is some
usage/dependency relation. Briand et al. defined three properties for size metrics:

Size Property 1 (Non-negativity). The value of the package P = (EP , RP )
(as the system S) is non-negative:

SizeMetric(P ) ≥ 0 (6)

Trivially, Na, Nc and A fulfil the first size property.

1 http://clarkware.com/software/JDepend.html



Size Property 2 (Null value). The value of the metric is null for package P

when EP is empty:
EP = ∅ ⇒ SizeMetric(P ) = 0 (7)

When the package is empty or there is no abstract classes, Nc, Na and A are 0.
(It can be defined that if Nc = 0, then A = 0.) The size metrics fulfil the second
property.

Size Property 3 (Module Additivity). Let P ′ be the union of the packages P1

and P2. Assuming that there are no common classes in P1 and P2 then:

SizeMetric(P1) + SizeMetric(P2) = SizeMetric(P ′) (8)

The property trivially holds for Nc and Na. However, for relative size A, the
Module Additivity property does not hold. We do not consider this as a failure
for A, since A is derived from Na and Nc, and Briand et al. did not intented
their size propeties to be applied to relative sizes. It would rather seem that their
framework should be extended with property requirements for relative sizes.

3.2 Coupling

The measures Ca and Ce of Martin are clearly coupling measures. Now, the
system is S(P ) = (Ein ∪Eout, R), where Ein ∩Eout = ∅. Ein is the set of classes
belonging to a package P and Eout contains all the other packages. Relation R

is some subset of Ein × Eout. The derived measure I = Ce/(Ca + Ce) is a kind
of relative coupling measure, and we consider that it cannot be evaluated with
the next five property requirements defined by Briand et al (however, it fulfils
the first two properties).

Coupling Property 1 (Non-negativity). The value of the package P coupling
is non-negative:

CouplingMetric(P ) ≥ 0 (9)

Clearly, Ca and Ce fulfil the property, since those both measure |{e2 ∈ Eout|∃e1 ∈
Ein : (e1, e2) ∈ R}|, i.e. the number of certain kind of classes.

Coupling Property 2 (Null value). The value of the coupling of the package
P = (EP ∪ Eout, RP ) is null when EP is empty:

EP = ∅ ⇒ CouplingMetric(P ) = 0 (10)

Clearly, Ca and Ce can be in the role of CouplingMetric.

Coupling Property 3 (Monotonicity). Let P ′ = (Ein ∪ Eout, R
′) be identical

with package P = (Ein ∪ Eout, R) except that R ⊆ R′, then:

CouplingMetric(P ) ≤ CouplingMetric(P ′) (11)

Measures Ca and Ce fulfil this property, since R ⊆ R′ represents for Ca and
Ce, the increase of classes which are dependent on the package or on which the
package depends, respectively.



Coupling Property 4 (Merging of connected systems). Let P ′ be the union
of the package P1 = (E1

in ∪ E1
out, R1) and P2 = (E2

in ∪ E2
out, R2) such that P1

and P2 are connected in the sense of the relation, then:

CouplingMetric(P1) + CouplingMetric(P2) ≥ CouplingMetric(P ′) (12)

Because P ′ = (E
′

in ∪ E
′

out, R
′) is studied from the coupling viewpoint, E

′

in =

E1
in ∪E2

in and E
′

out = (E1
out ∪E2

out)−E
′

in. Since P1 and P2 are connected, then
for Ca and Ce either

∃(ei, eo) ∈ R1|eo ∈ E2
in (13)

or
∃(ei, eo) ∈ R2|eo ∈ E1

in. (14)

As the resulting relation R′ is union of R1 and R2 substracted by elements
defined by Equations 13 and 14, then clearly the property holds for Ca and Ce.

Coupling Property 5 (Merging of unconnected systems). Let P ′ be the
union of the packages P1 = (E1

in ∪E1
out, R1) and P2 = (E2

in∪E2
out, R2) such that

P1 and P2 are not connected in the sense of the relation, then:

CouplingMetric(P1) + CouplingMetric(P2) = CouplingMetric(P ′) (15)

Since there are no connections, then R′ = R1 ∪ R2 and R1 ∩ R2 = ∅. As Ca

and Ce measure the right-hand size of the image of relation, then clearly by
R1 ∩ R2 = ∅ the property holds for Ca and Ce.

3.3 Cohesion

Martin’s original metrics suite does not contain any cohesion measure, but later
Martin has proposed H = (ρ + 1)/Nc [18], which is a cohesion metric. The
measure ρ is not well-defined by Martin, but it is expected to be some kind of
size measure of the cohesion relation. In the following, we assume that ρ = |R|,
when the system for a package P = (E,R) as before. Briand et al. proposed four
requirements for cohesion metrics. Next, we evaluate H with respect to those.

Cohesion Property 1 (Non-negativity and Normalization). For a compo-
nent P , there is a fixed upper bound max such that

CohesionMetric(P ) ∈ [0,max] (16)

Unfortunately, the value 0 is not possible for H, since the numerator of H’s
formula is always at least 1 (as ρ ≥ 0). There is neither a fixed upper bound for
H.

If ρ will represent the amount of connected (by e.g. some usage relation) class

pairs (as is usual in cohesion metrics), its value would vary between [0, Nc(Nc−1)
2 ].

Then, the maximum value for H would depend on the amount of classes, Nc, and
there would be problems with the fixed upper bound criteria. Thus, we consider
that H fails to fulfil the Non-negativity and Normalization property.



Cohesion Property 2 (Null value and maximum value). For a component
P = (E,R) the cohesion value is zero when R is empty and it is max when R is
maximal:

R = ∅ ⇒ CohesionMetric(P ) = 0

R = maximum ⇒ CohesionMetric(P ) = max

Clearly, H does not fulfil the above conditions. When R = ∅ and Nc 6= 0, the
value of H is 1

Nc
. When R is maximal (e.g. R = E × E), the value of H again

depends on Nc having no fixed upper bound.

Cohesion Property 3 (Monotonicity). Let package P ′ = (E′, R′) be identical
with package P = (E,R) except that R ⊆ R′.

CohesionMetric(P ) ≤ CohesionMetric(P ′) (17)

As the ρ in the formula of H is a (monotone) size measure of R, clearly H fulfils
the Monotonicity condition.

Cohesion Property 4 (Cohesive Modules). Let P ′ = (E′, R′) be a combina-
tion of mutually unconnected components P1 = (E1, R1) and P2 = (E2, R2). It
must hold for P ′ that

max{CohesionMetric(P1), CohesionMetric(P2)} ≥ CohesionMetric(P ′)
(18)

Because the components are mutually unconnected, we have ρ′ = ρ1 + ρ2 and
N ′

c = Nc1 +Nc2. Then, H(P ′) = ρ1+ρ2+1
Nc1+Nc2

. Without loss of generality, we assume
that H(P1) ≥ H(P2). Then

H(P1) ≥ H(P ′)

ρ1 + 1

Nc1
≥

ρ1 + ρ2 + 1

Nc1 + Nc2

(Nc1 + Nc2)(ρ1 + 1)

Nc1
− (ρ1 + 1) ≥ ρ2

Nc2(ρ1 + 1)

Nc1
≥ ρ2

ρ1 + 1

Nc1
≥

ρ2

Nc2

ρ1 + 1

Nc1
+

1

Nc2
≥

ρ2 + 1

Nc2

H(P1) +
1

Nc2
≥ H(P2)

Since 1/Nc2 > 0, the metric H fulfils the condition.



3.4 Summary

We presented an analysis of the measures/metrics Na, Nc, Ca, Ce, and H of
Martin’s metrics package. All of them, except H, were observed to fulfil the
requirements of the evaluation framework of Briand, Morasca and Basili. The
instability measure I and relative abstractness A were argued to be relative
coupling and size measures. As the framework does not give requirements for
relative measures, their theoretical validity could not be evaluated. Also, the
measures D and D′, which are derived from I and A, could not be evaluated.

There are two problems in the definition of the H. First, the additional one
in the numerator of H prevents reaching the value 0. The other problem is that
ρ depends polynomially on Nc (the denominator), and thus there is no fixed
upper bound for H. The problem can be removed by replacing the denominator
with the maximal size of relation: Nc(Nc − 1)/2. However, then there would be
a problem with Nc = 1. Thus, we end up proposing a variant H ′ for H:

H ′ =

{

1
ρ

Nc(Nc−1)
2

=

{

1 when Nc = 1
2ρ

Nc(Nc−1) Nc > 1
. (19)

It is straightforward to check that H ′ fulfils all the cohesion conditions of
Briand et al. Finally, we observe that H ′ quite naturally resembles the cohesion
metric Co′ proposed by Briand, Daly and Wüst [1] for calculating the cohesion
of a single class:

Co′ = 2 ·
|E|

|V |(|V | − 1)
. (20)

Where V represents the elements of a class and E describes the (internal) con-
nections of the elements of V .

4 Experimental Validation

There are a few different ways for empirical study of software package metrics.
The most comprehensive approach is to calculate statistical differences between
the maintenance cost of the packages and the Martin’s metrics in many different
versions. However, no such data is available in open source and rarely on any
other software projects.

In this experimental validation, we measured five open source Java appli-
cations which have been developed over many years. Vuze, Tomcat, ArgoUML,
Xerces, and jEdit are highly reputable applications from different fields. The out-
come of our experimental study is that the applications believed to be well-made
perform well according to Martin’s metric suite, we argue that they provide a
validation for the Martin’s metric. Individual packages of application yield bad
values indicating that the whole scale is indeed available for badly designed ap-
plications. In some cases below, we also study the reason for bad values. We
admit that our validation is only partial, since we could not find a huge but
badly designed application.



In this study, dependencies are explicit usage and inheritance relations from
package to package. We will focus only to those parts of the software which have
been produced by the project itself i.e. third party’s packages are not included
in the study.

Vuze2 (v. 4.2.0.0), formerly Azureus, is a BitTorrent protocol client. Vuze’s
package com.aelitis and its subpackages IA-graph and D′ histogram are shown
in Fig. 2. As shown in the histogram, 10% of all packages are in the main sequence
and 75% are no further than 0.21 distance from the line. Clearly, Vuze conforms
to Martin’s design principles.

Fig. 2. Vuze’s IA-graph and histogram of D
′.

For example the package com.aelitis.azureus.core.util consists of 18
concrete and 2 abstract classes. The package is used by 47 clients and its nor-
malized distance is 0.72. The package offers basic services, like calculating hash
codes. Clearly, these kinds of classes should be implemented with interfaces if
there is any possibility of change.

In the package com.aelitis.azureus.login is only one concrete class and
it is used by one client. The D′ value of package is 0.9, because the class uses
services of 9 packages. All of these service packages are from Java’s class library.
They are not that kind of reason of change what Martin describes. If we skip
the class library packages, the D′ value will be zero.

Apache Tomcat3 (v. 6.0.18) is an HTTP web server and a servlet container.
In this study we evaluated Tomcat’s packages under the org.apache package.
IA-graph and histogram of the D′ are shown in Fig. 3. As shown in the histogram,
also Tomcat has a lot of the packages on the main line.

2 http://azureus.sourceforge.net/
3 http://tomcat.apache.org/



Fig. 3. Tomcat’s IA-graph and histogram of D
′.

The package org.apache.tomcat.util.res has the biggest D′ value (0.73)
of the system. There is only one class in the package and it has eight client
packages. The class StringManager provides localization services for the system.
If one follows Martin’s principles, there should be an abstract package with one
or more interfaces for localization services and the class StringManager should
implement these abstractions. On the contrary, if there is absolutely no chance
that the class will change, then the additional package for the interface would
just increase the complexity of the system.

It should be noted that all services, which org.apache.tomcat.util.res

uses, come from the Java’s class library. If we ignore these classes, the normalized
distance of package would be one. As shown, the stability of the server affects
Martin’s metric.

ArgoUML4 (v. 0.28) is a UML diagram drawing application. Figure 4 presents
ArgoUML’s package org.argouml and its subpackages. The histogram of the
ArgoUML differs a lot when compared to Vuze or Tomcat. On the other hand,
the mean and median of the packages’ D′ values are under 0.20. Also the third
quartile is 0.28 so most of the packages are still quite close to the main sequence.

The D′ value of the package org.argouml.i18n is 0.90. The package of-
fers localization service as org.apache.tomcat.util.res does in Tomcat. The
Translator is only class in the package and there are 495 client classes in 43
packages. It is possible to hide the services of the class behind an interface, as
in Tomcat.

The D′ value of the package org.argouml.application.helpers is 0.76.
It consists of three classes which offer miscellaneous services. Intuitively, the
package is not a cohesive set of services. The class ApplicationVersion provides
the version number of the application and the address to the online manual. The

4 http://argouml.tigris.org/



Fig. 4. ArgoUML’s IA-graph and histogram of D
′.

classes ResourceLoader and ResourceLoaderWrapper offer a list of system’s
resources. Over a hundred classes use the services of the package, and clearly
the package could be refactored in two parts or the classes could be moved to
other packages.

Apache Xerces2 J5 (v. 2.9.1) is a XML parser library for Java. In Fig. 5 are
shown the histogram of D′ and the IA-graph of Xerces’ package org.apache

and its subpackages. The package org.apache.xerces.impl.xs.util consists
of 14 concrete classes, which implement a few advanced data structures. In the
evaluated system, there are 36 classes which depend upon the package. Clearly,
these kinds of services could be defined with an interface.

Fig. 5. Xerces’ IA-graph and histogram of D
′.

5 http://xerces.apache.org/xerces2-j/



Fig. 6. jEdit’s IA-graph and histogram of D
′.

jEdit6 (v. 4.2) is a text-editor for programmers. Figure 6 shows the IA-graph
and the histogram of the package org.gtj.sp and its subpackages. The D′ value
of the package org.gtj.sp.jedit.msg is 0.72 and it consist of messages that the
system uses in the internal communication. The package is in a cycle with the
package org.gtj.sp.jedit.gui. The messages should be defiened by external
interfaces, because messages are volatile. E.g. new functionality of the software
or changes in the GUI may have effect to the org.gtj.sp.jedit.msg package.

The value of D′ of the package org.gtj.sp.util is 0.51. The package con-
sists of classes which are used by almost every other package in the system.
Also the package is possible to implement by defining external interfaces for the
services. Now, changes in a few classes might require refactoring of the whole
system.

For a summary, the histogram of D′ and IA-graph of the evaluated packages
are shown in Fig. 7. As can be seen from the histogram, the most of the packages
are quite near of the main sequence. In Table 2 are shown the statistical values
of D′ from measured systems. 75 % of the evaluated packages are no further
than 0.25 distance from the main sequence. We argue that evaluated packages
conform the Martin’s principles.

5 Conclusion

This paper pointed out that four of Martin’s eight metrics fulfil Briand’s et al.
properties. Three of the measures we argued to be derived relative measures of
the first four measures. For such relative measures, Briand’s et al. framework
does not seem to be applicable. The package’s cohesion metric H was found not
to fulfil cohesion metric properties, and thus we proposed a variation H ′ for it,
fulfilling the properties.

6 http://www.jedit.org/



Fig. 7. All 430 packages in the same IA-graph and their histogram of D
′.

Table 2. Statistical values of the evaluated packages.

mean median min Q1 Q3 max N

Vuze 0.15 0.10 0 0.05 0.21 0.90 208
Tomcat 0.18 0.14 0 0.01 0.27 0.73 90
ArgoUML 0.20 0.16 0 0.07 0.28 0.90 80
Xerces 0.22 0.15 0 0.05 0.32 0.75 36
jEdit 0.18 0.11 0 0.08 0.20 0.73 16
All 0.17 0.12 0 0.05 0.25 0.90 430

Besides our theoretical validation, we made an attempt to validate Martin’s
metric suite also experimentally by evaluating five large open-source applica-
tions. Our experimental results show that one can recognize poorly designed
packages. Since the outcome of our experimental study is that the application
believed to be well-made perform well according to Martin’s metric suite, we
argue that they provide a validation for the Martin’s metric. The validation is
only partial, since we could not find a huge but badly designed application.

References

1. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering 3(1) (1998) 65–117

2. Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering mea-
surement. IEEE Transactions on Software Engineering 22(1) (January 1996) 68–86

3. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented de-
sign. In: OOPSLA ’91: Conference proceedings on Object-oriented programming
systems, languages, and applications, New York, NY, USA, ACM (1991) 197–211

4. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6) (June 1994) 476–493



5. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics: A Practical Guide. The
Object-Oriented Series. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1994)

6. Abreu, F.B.e., Carapua, R.: Object-oriented software engineering: Measuring and
controlling the development process. In: Proceedings of the 4th International Con-
ference on Software Quality, McLean, VA, USA (October 1994) 1–8 Revised ver-
sion.

7. Briand, L.C., Daly, J.W., Wüst, J.K.: A unified framework for coupling mea-
surement in object-oriented systems. IEEE Transactions on Software Engineering
25(1) (January/February 1999) 91–121

8. Briand, L.C., Wüst, J., Daly, J., Porter, V.: A comprehensive empirical validation
of design measures for object-oriented systems. In: METRICS ’98: Proceedings
of the 5th International Symposium on Software Metrics, Washington, DC, USA,
IEEE Computer Society (November 1998) 246–257

9. Briand, L.C., Wüst, J., Lounis, H.: Replicated case studies for investigating quality
factors in object-oriented designs. Empirical Software Engineering 6(1) (2001) 11–
58

10. Mäkelä, S., Leppänen, V.: Client-based cohesion metrics for Java programs. Science
of Computer Programming 73(5-6) (March 2009) 355–378

11. Ducasse, S., Lanza, M., Ponisio, L.: Butterflies: A visual approach to characterize
packages. In: METRICS ’05: Proceedings of the 11th IEEE International Software
Metrics Symposium, Washington, DC, USA, IEEE Computer Society (2005) 7

12. Ponisio, M.L.: Exploiting Client Usage to Manage Program Modularity. PhD
thesis, University of Bern, Switzerland (June 2006)

13. Zhou, T., Xu, B., Shi, L., Zhou, Y., Chen, L.: Measuring package cohesion based
on context. In: WSCS ’08: Proceedings of the IEEE International Workshop on Se-
mantic Computing and Systems, Washington, DC, USA, IEEE Computer Society
(July 2008) 127–132

14. Hautus, E.: Improving Java software through package structure analysis. In:
The 6th IASTED International Conference Software Engineering and Applications,
ActaPress (November 2002)

15. Melton, H., Tempero, E.: The CRSS metric for package design quality. In: ACSC
’07: Proceedings of the thirtieth Australasian conference on Computer science,
Darlinghurst, Australia, Australian Computer Society, Inc. (January 2007) 201–
210

16. Lakshmi Narasimhan, V., Hendradjaya, B.: Some theoretical considerations for a
suite of metrics for the integration of software components. Information Sciences
177(3) (2007) 844–864

17. Lakos, J.: Large-scale C++ software design. Addison Wesley Professional Com-
puting Series. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1996)

18. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Alant Apt Series. Prentice Hall, Upper Saddle River, NJ, USA (2002)

19. Weyuker, E.J.: Evaluating software complexity measures. IEEE Transactions on
Software Engineering 14(9) (September 1988) 1357–1365

20. Cherniavsky, J.C., Smith, C.H.: On Weyuker’s axioms for software complexity
measures. IEEE Transactions on Software Engineering 17(6) (June 1991) 636–638


	A Validation of Martin’s Metric

