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Multiobjective double bundle method for
DC optimization

Outi Montonen and Kaisa Joki

Abstract We discuss about the multiobjective double bundle method for
nonsmooth multiobjective optimization where objective and constraint func-
tions are presented as a difference of two convex (DC) functions. By utilizing
a special technique called the improvement function, we are able to handle
several objectives and constraints simultaneously. The method improves ev-
ery objective at each iteration and the improvement function preserves DC
property of the objectives and constraints. Once the improvement function is
formed, we can approximate it by using a special cutting plane model captur-
ing the convex and concave behaviour of a DC function. We solve the problem
with a modified version of the single-objective double bundle method using
the cutting plane model as a objective. The multiobjective double bundle
method is proved to be finitely convergent to a weakly Pareto stationary so-
lution under mild assumptions. Moreover, the applicability of the method is
considered.

1 Introduction to multiobjective DC optimization

The vast range of practical optimization problems involve several goals. Usu-
ally, these goals are conflicting and compromises have to be made. Thus, it is
sensible to study multiobjective optimization [8, 28]. The real-life application
areas for multiobjective optimization are for example chemical engineering
[36], cancer treatment planning [6], and humanitarian aid [12]. Compared to
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single-objective optimization, in multiobjective optimization various objec-
tives need to be handled simultaneously. One fundamental idea to solve a
multiobjective problem is the scalarization [8, 28], where several objectives
are transformed into one objective, and then some efficient single-objective
method can be applied. A typical feature of scalarization is that we have to
take a stand on the relative importance of objectives.

As many of the practical applications have nonsmooth nature as well, we
focus here on nonsmooth multiobjective optimization. Instead of the scalar-
ization, we want to treat the objectives as they are, and in particular, to
investigate descent methods. We classify a method to be of a descent one if
at each iteration it improves every objective, and in that sense, every objec-
tive is considered to be equally important. Some examples of descent methods
can be found in the literature for convex (see e.g. [3, 4, 21, 31, 33]) and for
nonconvex (see e.g. [26, 29, 35, 41]) problems.

Here we limit our study to DC functions (i.e. functions which can be
represented as a difference of convex functions, so-called DC components)
forming a wide subclass of nonconvex functions. In addition to the wideness,
the class of DC functions has another unquestionable advantage compared
to general nonconvex functions. Due to the convex DC components, we are
able to utilize the convex analysis. Unfortunately, it may be hard to define
DC components for a function even if the function is known to be a DC
function. Moreover, due to the fact that a DC decomposition is not unique,
the found DC decompostion may not be the most suitable one. However, there
exist many practical applications where the objectives are in the explicit DC
form, like in clustering [2], spherical separability problems [11], production-
transportation planning [15], wireless sensor network planning [1], and data
visualization [5]. It is worth noticing that these applications usually either
model the problem directly as a single-objective problem or scalarize a bi-
objective problem, even if they have multiobjective nature. Additionally, in
[18] a probabilistic lot sizing model is solved as a multiobjective DC problem.

In this chapter, we are aiming to solve a DC problem of the form

)I(Iél;(l fl(x)a'“afk(x)v (1)
where X = {x € R"|g(x) < 0,1l € L} and £ = {1,...,m}. The objectives
fi=pi— ¢ : R" = R for all i € Z, such that the set Z = {1,...,k} denotes
the indices of the objectives, and the constraints g; = r; — s; : R® — R for
all [ € £ are assumed to be at least partially conflicting and DC functions.
Thus, the DC components p;, g;, 7, s; for all ¢ € Z,1 € L are convex.

The theory of DC functions has been widely studied in the past few decades
(see e.g. [13, 14, 40]). Additionally, various methods have been developed for
single-objective DC problems like DCA [23, 24, 32], proximal point based
methods [38], special cutting plane based bundle methods [10, 19, 20], and
branch-and-bound and outer approximation algorithms [16]. However, a little
research devoted to multiobjective DC optimization focuses mainly on opti-
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mality conditions like in [9, 34, 39]. Moreover, the exact and inexact proximal
point methods in [17, 18] have lately introduced.

Our contribution to the field of multiobjective DC optimization is the
multiobjective double bundle method for DC optimization (MDBDC) origi-
nally presented in [30]. MDBDC generalizes the single-objective double bun-
dle method (DBDC) [20] to the multiobjective optimization by utilizing the
improvement function presented in [21, 26, 41]. MDBDC has some distinctive
features. First, MDBDC can handle several DC objectives together with in-
equality DC constraints. Second, under mild assumptions MDBDC converges
finitely to a weakly Pareto stationary solution. Last, MDBDC is a descent
type method. In addition, MDBDC has proved to be usable also in practice,
and when compared to a general nonconvex solver, MDBDC can obtain bet-
ter solutions (i.e. every objective has a better value) by taking into account
the DC structure of the problem [30].

We say some words about the comparison between MDBDC and the ex-
act proximal point algorithm developed in [17]. Both of these methods base
their ability to handle multiple objectives to the fact that the optimum of
some single-objective problem is known to be a weak Pareto optimum, and
they both utilize convex single-objective subproblems. However, in MDBDC
the subgradients for both DC components needs to be evaluated while in the
proximal point algorithm only the subgradient of the second DC component
needs to be known. The first clear difference between the methods is that
MDBDC can handle DC constraints while the proximal point algorithm is
designed only for convex constraints. In addition, MDBDC is a descent type
method improving every objective at each iteration. In the proximal point
algorithm, the descent direction is provided only for a function ), A; fi(x)
such that 7, ;A = 1 and \; > 0 for all i € Z. Thus, every objective is
not necessarily improved. Finally, MDBDC produces weakly Pareto station-
ary solutions while the proximal point algorithm yields only Pareto critical
solutions. This theoretical difference is discussed with details in Section 2.

The rest of this chapter is organized as follows. First, in Section 2, we con-
sider the optimality in multiobjective optimization and exemplify the differ-
ence between Pareto critical and weakly Pareto stationary solutions. Section
3 compresses all you need to know about MDBDC into a sketch of the method
and proves its finite convergence. In Section 4, the numerical behaviour of
MDBDC is discussed and argued in favour of to utilize a method specially
designed for DC functions instead of a general nonconvex method. Finally,
some concluding remarks are given in Section 5.
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2 Critical versus stationary solution in multiobjective
DC optimization

We begin by saying some words about optimality in multiobjective optimiza-
tion. A solution x* € X is a global Pareto optimum for the problem (1) if
there does not exist another solution x € X such that f;(x) < f;(x*) for all
i €T and fj(x) < f;j(x*) for at least one j € Z. This means that we cannot
improve any objective without deteriorating some other objective simultane-
ously. If we have a solution such that there does not exist any other solution
yielding better values for every objective, we call the solution a global weak
Pareto optimum. In other words, a solution x* € X is a global weak Pareto
optimum for the problem (1) if there does not exist another solution x € X
such that f;(x) < fi(x*) for all i € Z. Moreover, a solution x* is a local (weak)
Pareto optimum for the problem (1) if there exists ¢ > 0 such that x* is a
global (weak) Pareto optimum on X N B(x*;¢). To conclude, every Pareto
optimum is also a weak Pareto optimum and instead of only one optimum
we usually have several (weak) Pareto optima.

We start with defining weak Pareto stationary and critical solutions and
after that the difference between these two concepts is exemplified. To sim-
plify notations, we denote by

F(x)=Jofix) and G(x) = ] dau(x),

i€l lEL(x)

where 0f;(x) and 0g;(x) are subdifferentials of f; and g; at x € R™, respec-
tively and L(x) = {l € L|gi(x) = 0}. Next, we give a necessary condition
for a solution to be a local weak Pareto optimum of the problem (1) when
objectives and constraints are general nonconvex functions. Recall that for a
set S C R™ we denote by Kg(x) and S< a contingent cone at x € R" and a
polar cone, respectively.

Theorem 1. [25] If x* € X is a local weak Pareto optimum for the problem
(1) with LLC objective and constraint functions, and the constraint qualifica-
tion G=(x*) C Kx(x*) holds, then

0 € conv F(x*) + clcone G(x*). (2)
Proof. See Theorem 15 in [25]

We say that the point x* satisfying the condition (2) is weakly Pareto station-
ary. In general, nonconvex multiobjective methods find a solution x* € X
being weakly Pareto stationary.

A suitable necessary condition for the problem (1) can be derived also by
assuming that the objectives and constraints are DC functions. The condition
like this is given in Theorem 3.1 in [34]. For our purposes to illustrate the
properties of different conditions, it is enough to consider the unconstrained
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case of this condition given in [17]: If X’ € R™ is a local weak Pareto optimum
for the problem (1), where X = R™ and the objectives are DC functions, then

conv{dq;(x')|i € Z} C conv{dp;(x')|i € Z}.

However, this condition is hard to verify in practice, and thus in [17], the
condition

0 € conv {9p;(x') — dq;(x") |i € T} (3)

is validated and the solution x’ satisfying this condition is called Pareto
critical. Clearly, weakly Pareto stationary solution x* is also Pareto critical,
since

0 € conv {0f;(x*)|i € I} C conv{dp;(x*) — 0q;(x*)|i € T}.
To argue why the inverse does not necessarily hold, we give an example.

Ezample 1. Consider the unconstrained bi-objective case of the problem (1)
and let the DC components be py () = max{—z, 2z}, ¢;(x) = max{—2x,x},
po(z) = max{x?,x}, and ¢2(7) = max{0.522, —x}, where x € R. We con-
sider the point 2’ = 0 and to verify its Pareto criticality we investigate the
intersection

AOp1 () + (1 — XN)Opa(z') N Adq1(x") + (1 — N)Dga(x).

At the point 2/, neither of the objectives is differentiable, and the intersection
is of the form A[—1,2] 4+ (1 —X)[0, 1] N A[—2,1]+ (1 — A)[—1, 0]. For instance,
with A = 1 this intersection equals [—1,1] being a nonempty set. Thus, the
condition (3) is valid and 2’ is Pareto critical. However, 2’ is not weakly Pareto
stationary, since 0 ¢ conv {df1(z'), df2(x’)} = {1}. The similar observation
can be made in the single-objective case as well, as was exemplified in [20].

A natural approach towards solving the multiobjective DC problem would
be to verify that the condition (3) is satisfied. However, in order to reduce
the number of possible non-optimal solutions in our set of feasible solutions,
we want to ensure that the solution produced is weakly Pareto stationary. To
obtain a stationary solution is not a trivial task even in the single-objective
case and to obtain weak Pareto stationarity in the multiobjective case, we
introduce the improvement function H : R™ x R™ — R [21, 41] defined by

H(x,y) = max{fi(x) = fi(y), qu(x) [ € Z,l € L}. (4)

One reason for the utility of the improvement function in the case of multiob-
jective DC optimization raises from the fact that it is a DC function. Indeed,
since the objectives f; for all ¢ € Z and the constraints g; for all [ € L are
assumed to be DC functions, then H(-y) is a DC function as a maximum
of DC functions [14]. Moreover, the improvement function has three useful
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elementary properties stated in the following theorem legitimating the use of
it.

Theorem 2. [41, 26] The improvement function H(-,y) (4) has the follow-
1ng properties:

(i) If Hx,y) < H(y,y), x € R", y € X then fi(x) < fi(y) foralli el
and g (x) < 0 for alll € L.
(i) If the solution x* € X is a global weak Pareto optimum of the problem
(1), then
x* = argminxern H (x,x").

(i) If 0 € OH(x*,x*), then the solution x* € X of the problem (1) is
weakly Pareto stationary.

Proof. See the proof of Theorem 2 in [30].

Based on the above theorem, we obtain a weakly Pareto stationary solution
x* for the problem (1) if we find a Clarke stationary solution for H(-,x*)
(i.e. 0 € 9H(x*,x*)). Therefore, we are able to utilize some single-objective
DC method to find a Clarke stationary solution. However, many of these
methods produce only critical solutions. Since we are able to use the DC
structure of the improvement function as an advantage, we will apply the
escape procedure presented in [20] being able to test whether an approximate
Clarke stationary condition is valid. Additionally, if this condition is not
satisfied, the procedure generates a new search direction.

3 Multiobjective double bundle method for DC
optimization

The multiobjective double bundle method for DC optimization (MDBDC)
collects ideas from three different bundle type methods and combines them
into one package such that a method for multiobjective DC optimization with
inequality DC constraints is created. These three methods are the multiobjec-
tive proximal bundle method (MPB) [26, 29], the proximal bundle method
for DC optimization (PBDC) [19], and the double bundle method for DC
optimization (DBDC) [20].

The idea how to apply the improvement function with a single-objective
bundle-based method is absorbed from MPB being a bundle-based method to
solve nonconvex constrained multiobjective problems. In MPB, the technique
utilizing improvement function [21, 26, 41] was combined with the single-
objective proximal bundle method [22]. Besides the ability to handle several
objectives simultaneously, the improvement function gives a way to handle
constraints as well. Additionally, the descent property of MDBDC is the
direct consequence of the properties of the improvement function.
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While MPB gives ideas to treat multiple objectives, PBDC gives core
ingredients for the algorithm of MDBDC related to the single-objective part.
The cutting plane model used in MDBDC for the improvement function
bases on the one used in PBDC. The peculiarity of this model is that it
captures both the convex and concave behaviour of a DC function by utilizing
explicitly the DC decomposition.

DBDC is an unconstrained single-objective sibling of MDBDC. In order
to avoid Pareto critical solutions in MDBDC, we take an advantage of the
escape procedure being part of DBDC. DBDC is developed from PBDC by
adding the escape procedure giving an ability to avoid critical solutions. If
we end up to a critical point, the procedure either gives a new descent search
direction or ensures that the approximate Clarke stationary condition is valid.

MDBDC is designed to solve the problem (1) with DC objectives and con-
straints. The method improves all the objectives simultaneously meaning that
MDBDC is a method of descent type. The idea of MDBDC in its simplicity
is to apply the improvement function such that instead of a constrained mul-
tiobjective problem we can solve an unconstrained single-objective one. This
new problem is then solved by using a special cutting plane model and the
modified version of DBDC. As a result of this process, we end up to a weakly
Pareto stationary solution. Here, we describe the general idea of MDBDC
and the more detailed description can be found in [30].

3.1 Improvement function and cutting plane model

Since the cutting plane model used in MDBDC utilizes the DC decomposition
of the objective, we discuss first about the DC decomposition of the improve-
ment function. As it was previously mentioned, the improvement function
formed by DC functions is a DC function, and thus, the DC decomposition
exists. This decomposition can be obtained as in [14]. For example, we can
rewrite the objectives f; = p; —q; for all i € 7 and the constraints g; =, — 5;
foralll € L as

Fix) = pi(x) + Y qi(x) + D se(x) = Y qi(x) = D se(x)

JET tel JET teL
J#i

gi(x) = ri(x) + ) _se(x) + D ai(x) =Y q;(x) = Y se(x).
téff JET JET tel

In order to simplify the presentation, we denote
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Ai(xy) = pi(x) + > q;(x) + Y si(x) — fily) and

JjET teL
J#i

Bi(x) =ri(x) + Y _ s:(x) + > q;(x).
tsﬁ JET

Now the DC decomposition of the improvement function is of the form

H(x,y) = Hi(x,y) — Ha(x),

where
Hi(x,y) = max{A4;(x,y),Bi(x)|i € Z,l € L} and (5)
Hy(x) = > q;(x) + > se(x).
JET tec

Both DC components H; and Hs are convex with respect to x and the vector
y is treated as a constant.

As the name of MDBDC suggests, we collect information from the previous
iterations into bundles. In the following, the index h denotes the h-th iteration
and xy, is the current iteration point. We assume that at each auxiliary point
the function value and one arbitrary subgradient of p;,¢;,7; and s; can be
evaluated. From these, we can compose values for functions A;(-,xy), By,
Hq(-,xp), and Hs and their subgradients a;, by, hi, and hg, respectively.

In MDBDC, we collect information into two separate bundles B} and B%
for H1(-,y) and Hs, respectively. The bundles consist of triplets formed by
an auxiliary point y ;, a corresponding function value, and a subgradient. Here
the index j is an element of the index set J* or J depending on whether
the bundle is for H(-,x;) or Hs. In practice, the bundle B} is formed by
having separate bundles for each A;(-,xp), ¢ € Z and By, | € L and taking
the union of them.

In order to find a search direction, we approximate the improvement func-
tion by utilizing the special cutting plane model which is based on the one
proposed in [19]. Therefore, we linearize the convex DC components sepa-
rately by utilizing the classical cutting plane model [22, 27, 37]. This way,
we can capture both the convex and concave behaviour of the improvement
function. To form an approximation for H;(-,x;) and Ha, we linearize all
the components A;(-,x;) and B; of Hi(-,xp) and Hy. We begin by giving
the linearization for A;(-,xp) :

A?(X) = max {Ai(xh,xh) + an(x —Xp) — af‘j},
JjeT] ’ ’

where a; ; € 0A4; (yj, xp,) for j € JP'. The linearization errors evaluated at xj,
for all j € JJ* are
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af}j = Ai(xn,xn) — Ai(y;,xn) — aZj(X;L —y;) forallieZ

Note that due to the convexity, all the linearization errors are nonnegative.
Similarly, we can linearize functiops B, for all | € £ and Hy and denote

these approximations by BJ*(x) and HZ (x), respectively. Thus, we obtain the

cutting plane model for Hy( -, xp) of the form
HP'(x) = max{A"(x), Bl(x)|i e Z,l € L}. (6)

Finally, by utilizing the above approximations, we obtain the following piece-
wise linear, nonconvex DC cutting plane model of H( -, xp):

H"(x) = B} (x) — B (x).

From the definition of the cutting plane model, it follows that H Mxp+d) <
Hi(xp +d,xp,) and HY (xp, +d) < Ho(xp, +d) [30].

3.2 Direction finding

By bearing in mind Theorem 2, we are motivated to find a solution x* € X
such that 0 € 0H (x*,x*). Therefore, we define a search direction as a solution
of the problem
i H d . 7
min - H(xp +d, %) (7)
By utilizing the model of H(-,x}p), we can estimate the problem (7) with a
nonsmooth nonconvex DC problem

. - 1
Inin PM(d) = H (xp +d) = Hy (x5 + d) + o [|d]?, (8)
where ¢ > 0 is a proximity parameter. The solution of this problem is denoted
by dl.

We use the solution approach described in [23, 24, 32] to find a global
solution of the problem (8). This approach can be applied, since the second
DC component of P is H}(x;+d) and it is polyhedral convex. The objective
of the problem (8) can now be rewritten as

. - 1
P'(d) = iy {PId) = H'(xp +d) — Ha(x;) — hy ;d + odl; + E||01||2}.
ASTED)

This enables us to change the order of the minimization in the problem (8).
Thus, we end up to solve | 74| convex subproblems

: - 1
;Q}Rg{Pjh(d) = H}'(x, +d) — Ha(x) — hy ;d + a3y + §||d||2}, 9)
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where j € J3. The solution of the 1nd1v1dual subproblem j € J. % is denoted
by df(j), and the global solution d? of the problem (8) is d/ d’ (%),
where the index j* = argmin {P]h (d?(])) |j € JI}. In practice, the amount
of computation can be controlled, since the size of the bundle B can be freely
chosen such that | 7| > 1.

If ||d"|| < &, where 6 > 0 is a fixed stopping tolerance, we either gen-
erate a new descent direction or Clarke stationarity is achieved. In or-
der to test Clarke stationarity, we need some information about the sub-
differential OH (xp,xp). Unfortunately, by calculating arbitrary subgradi-
ents hy € JOH(xp,xp) and hy € OHs(xp), we cannot guarantee that
h; — hy € 9H(xp,xp). Thus, we are justified to use the escape proce-
dure (see Algorithm 1 in [20]) having the ability to select hy € 9H;(x,x),
h} € 0H,(x) for the objective function H = H; — Hy at any x € R™ such
that hy — h3 € 9H (x,x) is ensured [20].

At the j-th iteration of the escape procedure, we approximate the Gold-
stein e-subdifferential 0 H (xj,x5) with a set U; consisting of subgradients
calculated as the difference of subgradients of the DC components. Thus, the
new search direction can be found by calculating d;+1 = —u;/||Q;||, where
1, is a solution of the problem

1
min —||ul|?.
ueuU; 2

If this direction is not descent or Clarke stationarity is not achieved, then
the approximation of 9% H (xj,,x;,) is improved with a new subgradient. To
conclude, in order to exit from the escape procedure, we either find a new
descent search direction or ||[@;|| < ¢ meaning that the approximate Clarke
stationary condition is satisfied and the algorithm of MDBDC is terminated.

3.3 Algorithm

In this section, we give a general idea of the method with the simplified
version of the MDBDC algorithm. More detailed description of the MDBDC
algorithm is given in [30].

We make some remarks about the algorithm. First, in Step 4 we execute
the escape procedure given in Algorithm 1 in [20]. Note that in this case, the
procedure is executed for the current iteration point x; with the improvement
function H(-,xy) as its objective. Second, we utilize the proximity param-
eter t € [tmin, tmax] in Algorithm 1, which can be either decreased in Step 6
and 7 or updated in Step 9 by utilizing the updating procedure inspired by
the weighting update method in [22]. During the latter update, the proxim-
ity parameter may either increase or decrease. The update of the proximity
parameter yields an improvement for the model in the both cases.
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Algorithm 1: Multiobjective double bundle method for DC optimiza-
tion (MDBDC)
Data: The stopping tolerance ¢ € (0, 1), the enlargement parameter 6 > 0, the

decrease parameters r,c € (0,1), the increase parameter R > 1, and the descent
parameter m € (0,1).

Step 0.  (Initialization) Select xo € X and calculate hi(xo) € 0H1(x0,x0) and
h2(x0) € OHa(x0). Initialize B and BY, t = 0, ha max =0, and h = 0.
Step 1. (Criticality) If ||hi(xp) — ha(xp)|| < J, then d¢ =0 and go to Step 4.
Step 2. (Prozimity parameter) If ||ha(xp)|| > ||h2,max]||, then ha max = ha(xp).
Set 0
"
tmin = 10
20 G|+ Tz ) 1o
and tmax = Rtmin- If t € [tmin, tmax], then select ¢ € [tmin, tmax]-
Step 3. (Search direction) Calculate the search direction d; as a solution of (8).
Step 4.  (Escape procedure) If ||d¢|| < 0, then execute Algorithm 1 presented in
[20] for the point x5 to obtain xT. Set x,+1 = xT and go to Step 8.
Step 5. (Descent test) Set y = xp, + dq. If

H(y,xpn) — H(xp,xp) < m(f{h (y) — H(xh,xh)),

then set x,4+1 =y and go to Step 8.

Step 6.  (Parameter update) If f;(y) > fi(x0) for any i € Z and ||d¢|| > 6, then set
t =t — c(t — tmin). Go to Step 3.

Step 7. (Bundle update) Decrease t if necessary, and update B} and BY. If a new
subgradient ho € OH2(y) satisfies ||ha| > ||h2 max||, then set ha max = h2 and
update tmin using (10). Go to Step 3.

Step 8. (Clarke stationarity) If X541 = Xp, then Clarke stationarity is achieved
and STOP with x* = x;, as the final solution.

Step 9.  (Model update) Update t and the bundles Biﬂrl C B} and Bé”rl c Bl
selected. Calculate hi(xp41) € OH1(Xp+1,Xn+1) and ha(xp41) € OH2(Xp41).
Set h = h + 1 and go to Step 1.

As was mention, we give here a more general outline of the algorithm
working well in theory. In practice, we can improve the numerical behaviour of
MDBDC significantly. For example, in the initialization phase of Algortihm 1,
the scaling procedure [30] may be executed. The positive affect of scaling
has its roots in the DC decomposition of the improvement function. If the
objective functions have different magnitudes, one of the DC components may
dominate the others and hide their effects. Even if the scaling is executed, it
does not affect the optimality of the solution, since the modified objectives
have the same optima than the unmodified original objectives. Other possible
numerical improvements are, for instance, to execute the escape procedure
when the decrease in the model is nearly non-existing or to utilize more
sophisticated update procedure for the proximity parameter in Step 7.

Lastly, some words about the bundles. Obviously, in practice the size of
the bundles must be limited. The size of the bundle B} has to be selected
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such that information regarding both A;(-,x;,) and By foralli € Zand [ € L
is included. Thus, |J{*| > k + m. For the bundle B, the size of the bundle
|7 > 1, since the bundle element associated to the current iteration point
must be included. As was mention previously, via restriction of | 74| the
number of subproblems solved can be controlled.

3.4 Convergence analysis

The following convergence analysis is divided as follows: In Theorem 3, we
state that MDBDC stops after a finite number of iterations at the point which
satisfies the approximate Clarke stationary condition. In order to prove that,
we need Lemma 1 to guarantee that the loop between Steps from 3 to 7
is finite and Theorem 4.11 in [20] to give the finite maximum number of
iterations needed in the execution of the escape procedure in Step 4. Finally,
Theorem 4 considers weak Pareto stationarity of the solution.

Throughout the convergence analysis, we assume that the following as-
sumptions are valid:

Assumption 0.1 The subdifferentials 0H,(x,y) and O0Hs(x) are polytopes
for each x € R™.

Assumption 0.2 The level set Fo = {x € X | fi(x) < fi(x0), for alli €T}
1s compact.

We begin our convergence analysis by investigating the loop between Steps
from 3 to 7. If this loop is infinite, it would lead to a contradiction as is seen
in the proof of Lemma 1.

Lemma 1. [30] Let Assumption 0.2 be valid. For any ¢ € (0,1), Algorithm 1
cannot pass infinitely through the sequence of Steps from 3 to 7.

Proof. The proof is similar to the one given in Theorem 5.8 in [20].

Now we show the finite convergence of Algorithm 1 to a solution satisfying
the approximate Clarke stationary condition for the improvement function.

Theorem 3. [30] Let Assumptions 0.1 and 0.2 be valid. For any § € (0,1)
and ¢ > 0, the execution of Algorithm 1 stops after a finite number of itera-
tions at the point x* satisfying the approximate Clarke stationary condition
€%]| < 0, where £ € 0 H(x*,x*).

Proof. The execution of Algorithm 1 stops only if the Clarke stationary point
x* is found in Step 8 meaning that the approximate Clarke stationary condi-
tion is satisfied in the escape procedure. Assume, that Algorithm 1 is executed
infinitely, and thus, the stopping condition in Step 8 is never satisfied.

Similarly to the proof of Theorem 5.9 in [20], we can deduce that after
each iteration we have H (xp11,x5) — H(xp,x5) < —0 < 0, where
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o= min{mzsé7 Z—T;} >0

and m,r € (0,1), R > 1 and 6 > 0 are the parameters of the Algorithm 1.
Additionally, £ > 0 and 7 € (0, 1) are the parameters of the escape procedure
in Algorithm 1 in [20]. Due to the definition of H(-,xy) in (4), H(xx,%xp) =0
yielding that H (xp11,%5) < —o. Especially,

fi(xnt1) — fi(xn) < —o <0 for all i € Z,
and after the h-th iteration,
fi(xn) — fi(xo) < —ho for all i € Z.
By passing to the limit A — oo, we obtain
hlLIr;o fi(xpn) — fi(x0) < —oco forall i €Z

yielding a contradiction, since based on Assumption 0.2 and the fact that DC
functions are LLC, every f;, ¢ € Z must be bounded from below. O

Finally, we are interested in to argue that a Clarke stationary solution for
the improvement function yields a weakly Pareto stationary solution for the
original multiobjective problem. In order to prove this, the properties of the
improvement function described in Theorem 2 are applied.

Theorem 4. [30] Let f; and g; be DC functions for alli € T andl € L. Sup-
pose that Assumptions 0.1 and 0.2 are valid. Then, MDBDC' stops after a
finite number of iterations with the solution x* € X being a weakly Pareto
stationary point for the problem (1).

Proof. Consider minimization of an improvement function (4). By Theorem 3,
after a finite number of iterations MDBDC finds a solution x* € R™ such that
0 € OH (x*,x*). According to Theorem 2 (iii), the solution x* € X is weakly
Pareto stationary for the problem (1). O

4 Numerical behaviour of MDBDC

We discuss about the numerical behaviour of MDBDC by utilizing the com-
putational experiments provided in [30], where the performances of MDBDC
and MPB are compared. MPB has been selected as a reference method due
to its somehow similar structure, but unlike MDBDC, it is designed for a
general nonconvex problem. The 53 test problems are formed such that they
all have either two or three objectives and the objectives are collected from
academic single-objective DC problems. Some of the problems also include
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either a DC or concave constraint. The dimension of the problems varies
from 2 to 500 such that 37 of them are small (2 < n < 100) and 16 are
large (250 < n < 500). Since MDBDC and MPB both failed at one large test
problem, we exclude this case from the discussion.

The numerical performance is illustrated in Figures 1 and 2 where the
performance profiles [7] for small and large test problems are given, respec-
tively. In the performance profiles, subgradient evaluations and CPU times
are compared. In the small test problems, MDBDC wins MPB in terms of
subgradient evaluations but in terms of CPU times MPB performs slightly
better than MDBDC. Nevertheless, in the larger test problems, MDBDC
beats MPB both in subgradient evaluations and CPU times. Therefore, we
can conclude that, in the computational point of view, MDBDC is a good
alternative for MPB in the case of DC problems.

p(7)

MDBDC —— MDBDC —— ]
MPB = - - MPB = = -

0
0 100 200 300 400 500 600 0 2000 4000 6000 8000 10000 12000 14000 16000

. .

(a) Subgradient evaluations (b) CPU

Fig. 1 Small test problems (2 < n < 100)

0.8 [ sl aeee e !
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1

p(r)

0.4 0.4 fr
b

0-2 e MDBDC —— 0:2 MDBDC ——
MPB = = - MPB = = -
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. .

(a) Subgradient evaluations (b) CPU

Fig. 2 Large test problems (250 < n < 500)

Not only to compare the execution of the algorithms, another main goal
in the numerical experiments in [30] was to emphasize the difference in the
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solutions obtained. To compare solutions, we say that a solution is better than
the other if it has better function values for every objective. In practice, it is
possible that one method finds a better solution than the other even if they
both find theoretically equally good solutions, namely weak Pareto stationary
points. This is due to the fact that both local and global optima satisfy the
condition (2) and the feasible set in the objective space is nonconvex. An
interesting observation is that by taking into account the DC structure of the
problem, MDBDC finds a better solution than MPB around 30% of the tests
performed in [30], even though both methods find theoretically equally good
solutions. Moreover, in half of the cases where MPB uses less computational
efforts, MDBDC finds a better solution. This shows that the model used in
MPB is more easily attracted to local optima.

5 Conclusions

We have discussed about the multiobjective double bundle method for DC
optimization (MDBDC) being a method for multiobjective DC problems with
inequality DC constraints. The method is descent and under mild assump-
tions it is proved to be finitely convergent to a weakly Pareto stationary
solution. MDBDC has shown to behave well numerically and it is observed
to be profitable to use a method taking into account a DC structure instead
of a general nonconvex method.

MDBDC can be used in several ways. First, it can be used to solve only
one weakly Pareto stationary solution, or execute it with different starting
points to obtain an approximation of the set of local weak Pareto optima.
Due to the descent property, the starting point is projected to the set of local
weak Pareto optima in the decision space such that the solution obtained lies
in the negative orthant from the starting point. Another possibility is to use
MDBDC as a component of some interactive method as MPB was used in
[29]. In addition, MDBDC is suitable to solve single-objective DC problems
with DC constraints.
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