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Abstract: The objective of the present study was to investigate 
the possible relationship between nonlinear parameters 
extracted from surface EMG (sEMG) signals and muscle force 
and fatigue. Our hypothesis was that changes in motor unit 
recruitment during muscle contraction and fatigue, affect sEMG 
distribution and the intractions in muscle. Thus, five features 
based on geometric aspects of time series trajectory and higher 
order statistics were extracted from sEMG signal, recorded 
from biceps brachii muscle of a healthy female volunteer during 
rest, sustained (fatiguing) 50% MVC, 100% MVC and recovery. 
Results obtained from correlation dimension (CD) and linearity 
test (sl) analyses showed that the values of these parameters are 
higher during rest and recovery states, indicating higher 
chaotic behaviour, while they decreased during MVCs. 
However, when fatigue occurred, these parameters increased 
slightly, again. On the other hand, test of non-Gaussianity 
based on negentropy showed the reverse pattern of CD and sl. 
Skweness and kurtosis values, which are the quantitative 
descriptors of probability densities, were positive and negative, 
respectively during rest and recovery, while this pattern 
reversed for MVCs.      
 
Keywords: Biceps brachii muscle, correlation dimension, 
higher order statistics, surface electromyographic signal, 
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1. Introduction 
Biomedical signals carry information about the 

physiological activities of human or animal organisms 
and their processing aims at extracting significant 
information to facilitate understanding different 
pathologies [1]. Surface electromyographic (sEMG) 
signals, which represent a train of motor unit action 
potentials (MUAPs) plus noise, can provide useful 
information about muscular function and underlying 
mechanisms of sustained fatiguing contractions [2,3,4]. 
The MAUPs vary in amplitude, duration and frequency of 
occurance, which are related to the amount of force the 
muscle may produce and thus the level of contraction 
[2,3]. However, extracting information about motor unit 
(MU) recruitment strategies during muscle contraction 

from the analysis of sEMG data is a challenging task [5]. 
Different parameters in time, frequency and higher order 
statistics domains were extracted from sEMG signals to 
examine the influence of the increase in voluntary 
contraction [3]. The most frequently used parameters 
were the mean frequency (MNF), the median frequency 
(MDF), the number of zero crossings per second (zc/s), 
the power spectrum and bispectrum shape and the 
Gaussianity and linearity test of the normalized 
bispectrum, which led to many discrepancies between 
findings. These contradictory results may originate from 
the fact that different researchers have recruited limited 
and different number of participants. In addition, various 
recording protocols and recording durations have chosen 
that may affect the results, for example, fatigue may 
occur in large recording times [3]. Kaplanis te al. [3], 
reported that the time domain parameters (zc/s) and turns 
per second, increased significantly with force level, while 
the power spectrum MDF parameter, decreased 
dramatically in isometric voluntary contraction. 
Although, test of Gaussianity and linearity using 
bicoherence analysis did not show significant changes, 
the sEMG signals revealed a more Gaussian distribution 
with increase in force level up to 70% of maximum 
voluntary contraction (MVC). In contrast, the results of 
[4,6] showed that signals became less Gaussian and more 
linear with increasing in walking speed/force. However, 
the study group of Nazarpour [7], measured the non-
Gaussianity of sEMG signals using negentropy feature 
during elbow flexion at four different levels of 
contraction. Their results demonstrated that the 
distribution of sEMG signals was non-Gaussian during 
light contractions (below 30% of MVC) and it tended 
toward a Gaussian process at higher force levels due to 
central limit theorem. Kaplanis et al. in [8] achieved even 
more conflicting results. They reported that the EMG 
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signal was highly non-Gaussian at low and high levels of 
force which tended to Gaussian distribution at the mid 
level of MVC (i.e. 50%).  

In this study, we revisit this problem using nonlinear 
analysis methods, applied to sEMG signals at various 
muscle contraction/force stages (100% of MVC, rest, 
fatiguing 50% of MVC, recovery) for right biceps brachii 
muscle. These nonlinear features, which are either based 
on phase space geometry, namely correlation dimension, 
or higher order statistics in time and bifrequency domains 
such as skewness, kurtosis, negentropy and test for 
linearity, exploited to enhance the diagnostic character of 
sEMG signals and to quantify the degree of non-
Gaussianity and nonlinearity of signals at each stage.   

2. Materials and Methods 

2.1 Subjects 
One healthy female volunteer (age 20 years, mass 61 

Kg, Body Mass Index 23.82 Kg/m2) with right hand 
dominant, participated in this study. The subject had not 
specifically trained her hand and shoulder muscles. The 
measurments were carried out in the Physiology 
Laboratory, Department of Biomedical Engineering, 
Islamic Azad University, Mashhad, Iran. 
2.2 Recording Setup 

Surface EMG activity was measured from right biceps 
brachii muscle using PowerLab/ML8651 system. In 
addition, recording was done bipolarly using Ag/AgCl 
circular self-adhesive disposable pre-gelled surface 
electrodes2

For sEMG recording, the subject was asked to seat 
quietly on a comfortable armchair, while instructed to 
assume a standardized position with her hip and back 
against the back of the chair, her feet flat on the floor, her 
right arm fixed on the chair and the left one on her lap. 
After the adaptation period of one minute, she was asked 
to perform maximum voluntary contraction (MVC) for 
three times, using a hand dynamometer/MLT003/D

 of 15mm diameter. According to Surface 
Electromyography for the Non-Invasive Assessment of 
Muscles (SENIAM) [9], the electrodes were placed on 
the line between the medial acromion and the fossa cubit 
at 1/3 from the fossa cubit, with 20mm spacing. 
Moreover, the reference electrode was placed on the left 
wrist (Fig. 1). To keep the interelectrode resistance low, 
the electrode sites were cleaned with 70% isopropyl 
alcohol. The leads were fixed by medical tape to reduce 
motion artifacts.  
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connected to the PowerLab system with two minutes rest 
intervals between trials. In order to perform 50% of 
MVC, firstly, the maximum recorded MVC was chosen, 
then 50% of MVC was calculated using LabChart 7.3 
software, which was installed on the computer, lastly, this 
value fed back to the subject visually on a monitor 

positioned in front of her. Visual feedback enabled the 
subject to maintain the requested percentage of MVC as 
constant as possible till exhaustion. However, after 
exhaustion, recording was continued for another one 
minute period to assess the recovery process. The surface 
EMG signals were recorded online. A computer was 
connected to the recording system via USB cable for the 
storage and display of signal. The raw signals were 
filtered through hardware lowpass and highpass filters 
with cut-off frequencies at 500Hz and 10Hz, respectively. 
A notch filter with center frequency at 50Hz was also 
used to reduce power line noise. The signals were made 
discrete using 16-bit analogue-to-digital (A/D) converter. 
Moreover, according to the mentioned frequency band, 
the sampling frequency was chosen at 2KHz. 
Furthermore, the sampling frequency and the recording 
process (start/stop and duration of adaptation and 
recovery stages and the percentage of MVC) were 
controlled through LabChart 7.3 software4

 

.  
 

Fig. 1: Bipolar surface electromyographic electrode placement over the 
biceps brachii muscle. 

 
2.3 Correlation Dimension  

 Correlation dimension (CD) is a method aimed at 
quantifying chaotic behaviour. This quantifier 
emphasizes the geometric aspects of the trajectories in 
state space, i.e. focuses on how a series of points is 
distributed in state space [10]. In addition, it has some 
computational advantages compared to box-counting 
procedure, since it uses the trajectory points directly and 
does not require a separate partitioning of the state space 
[10]. The widely used algorithm for the calculation of CD 
is the Grassberger-Procaccia. This algorithm, first, 
constructs a function, named C(R), which reveals the 
probability that two arbitrary points on the orbit are closer 
together than R. The correlation sum is calculated as 
follows: 
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Where Xx and Xy are points of the trajectories in the 
phase space, N is the number of data points in the phase 
space, R is the radial distance around each reference point 
and Θ is the Heaviside function. Finally, the CD can be 
calculated using “Equation (2)”: 
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The CD value will be larger for high or chaotic signal 
variations, while it will be small for low or rhythmic 
signal variations [11]. 
2.4 Higher Order Statistical Analysis 

Physiological signals are nonlinear and chaotic in 
nature and uncertainty and imprecision are the inherent 
characteristics of them. Higher order statistical based 
nonlinear dynamical techniques, which are also based on 
the chaos theory, have the ability to detect nonlinearity, 
deviations from Gaussianity and the phase relationships 
between harmonic components [12].  

For a stationary, discrete, zero mean random process 
x(n), the higher order spectra (HOS) or polyspectra are 
defined based on moments or cumulants of order greater 
than two. The bispectrum is a particular form of HOS, 
which is defined as the two-dimensional Fourier 
transform of the third order cumulant [13,14]: 
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The cx
3(τ1,τ2) variable reveals the third order cumulant, 

which is defined as “Equation (4)”:  
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Where E[.] denotes the expectation operation. By 
setting n+ τ1=m, n+ τ2=k and substituting “Equation (4)” 
in “Equation (3)” and splitting the exponent, it can be 
shown that [12]: 
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As is evident, we can obviously state that the 
bispectrum measures the correlation among three 
frequencies, ω1, ω2, (ω1+ω2) and estimates the phase 
coupling [15]. The frequency f (ω/2π) may be normalized 
by sampling frequency to be between 0 and 1. In contrast 
with the power spectrum which is real valued, non 
negative and a function of one frequency variable, the 
bispectrum is a function of two frequencies and complex 
valued, as a result, it has both magnitude and phase.  
2.4.1 Time Domain Features 

a. Skewness and Kurtosis 
A non-parametric density estimation method, named 

kernel density estimation (KDE) was used to approximate 
the distribution of surface EMG signals. In the method 
proposed by Parzen [16], the estimation of the unknown 
density is calculated as follows: 
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Where K(.) is the kernel function, N is the total 
number of examples, {x(1, …, x(n} are the samples drawn 
from sEMG distribution, h is the smoothing parameter or 
bandwidth and D is the number of dimensions. Choosing 
appropriate kernel function is crucial in density 
estimation. Usually, a smooth kernel function which is 
radially symmetric and unimodal such as Gaussian kernel 
with fixed width σ0 is used: 
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This kernel function satisfies the (asymptotic) 
unbiasedness and consistency of the estimator [7,16].   

Skewness and kurtosis, which are the third and forth 
order cumulants at zero lag, respectively, are the well 
known parameters to describe the probability density 
functions (PDFs) of a random variable such as sEMG 
signal, quantitatively [12]. This study exploits these 
parameters to evaluate the shape variations of sEMG 
amplitude distribution for different contraction levels and 
during muscle fatigue. 

The asymmetry of the distribution can be described by 
using the skewness statistic, which is defined as 
“Equation 8”: 
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Where E[.] denotes the expectation operation, x is a 
random variable (EMG signal), μ is the mean value of the 
signal and σ is its standard deviation. A positive 
skewness represents right tail, while the negative one 
shows the left tail in the distribution. Moreover, a normal 
distribution has a zero skewness due to its symmetry [5]. 

On the other hand, the kurtosis of the distribution is 
defined as follows: 
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Kurtosis statistic corresponds to the degree of 
peakedness of a PDF. Positive kurtosis indicates a peaked 
distribution, while a negative one shows the flattened 
distribution. Like skewness, a normal distribution has a 
zero kurtosis [5].  

b. Negentropy 
Negentropy, J, is based on the information- theoric 

quantity of differential entropy. Negentropy is zero for a 
Gaussian process, while it is always non-negative for 
other distributions. So, it can be used to measure non- 
Gaussianity of signals. The classical and simple method 
for approximating negentropy is based on higher order 
moments. For a zero mean and unit variance random 
variable x, J is defined as follows: 
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2.4.2 Frequency Domain Features 
a. Linearity Test (sl) 

To quantify the non-Gaussianity and nonlinearity of a 
process, the normalized bispectrum or bicoherence is 
estimated as “Equation 11”: 
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Where P(.) is the power spectrum. The linearity test, 
involves deciding whether or not the estimated 
bicoherence is constant in the bifrequency domain, 
employing a measure of the absolute difference (dR) 
between a theoretical inter-quartile range, R', which 
corresponds to a chi-squared distributed random variable 
with two degrees of freedom and a non-centrality 
parameter, λ, and the estimated inter-quartile range, R, 
derived from the estimated squared bicoherence. In this 
study, the nonlinearity hypothesis was adopted when dR/ 
R'>2 [3].  

3. Results 
In order to perform analyses, the raw EMG signals 

were made zero mean. In addition, to provide uniformity, 
the signals were normalized with respect to their standard 
deviation. Moreover, the blocks of five seconds duration 
of data were chosen for each trial (rest, 50 MVC, 100% 
MVC, recovery) and five features were extracted from 
them to evaluate muscle contraction at various stages, 
which are also valuable to determine muscle fatigue. 

TABLE I, summarises the values of the parameters 
calculated at each stage. 

  
TABLE I: The Values of the Parameters Analyzed During 4 Trials.  

Features 
Trial 

CD sl J Skewness Kurtosis 

Rest 1.61 0.81 0.004 0.11 -0.32 

50
%

 
M

V
C

 Start 
Mid 
End 

1.49 0.36 0.027 -0.16 0.90 
1.46 0.30 0.026 -0.03 0.84 
1.50 1.38 0.019 -0.18 0.73 

100% MVC 1.48 0.35 0.016 -0.19 0.62 
Recovery 1.52 0.87 0.003 0.05 -0.11 

 
3.1 Phase Plane and Correlation Dimension 

Fig. 2 (a-f) demonstrates the phase plane diagrams of 
sEMG signals, which corresponds to 4 trials. As can be 
clearly seen, the trajectory points of sEMG signal are 
more distributed in the phase plane during rest, indicating 
the higher chaotic behaviour. On the other hand, they 
concentrate along the dashed line xn=xn+1 at MVCs, 
which represents the more deterministic behaviour. In 
addition, the diagrams show that the increase of force 
level from 50% to 100% of MVC, does not cause a 
significant change in trajectories. However, the trajectory 
points become more distributed in recovery state.  

Fig. 3 shows the CD values versus different trials. As 
can be clearly seen, CD has its maximum values for the 

 
Fig. 2: Phase plane diagrams of sEMG signals recorded during rest (a), start point of 50% MVC (b), mid point of 50% MVC (c), end point of 50% 
MVC (d), 100% of MVC (e) and recovery (f).  
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Fig. 3: Variations of CD during rest, fatiguing 50% MVC, 100% MVC 
and recovery periods. 

 
rest and recovery trails, which indicates the higher 
chaotic behavior of them. In contrast, the chaotic 
characteristics decrease with voluntary contraction. 
Furthermore, the results of CD analysis show that at the 
beginning of the 50% of MVC, CD is 1.49, which 
decreases to 1.46 at middle of the trial. While, during 
exhaustion, i.e. end of 50% MVC, it increases again to 
1.5. These results are consistent with the phase plane 
plots, which are demonstrated in Fig. 2.  
3.2 Higher Order Statistical Analysis  

Fig. 4 illustrates the estimated densities of sEMG 
signals recorded at each trial (rest, start point of 50% 
MVC, mid point of 50% MVC, end point of 50% MVC, 
recovery). Moreover, a Gaussian probability density is 
also depicted to facilitate the comparisons. As can be 
clearly noticed, sEMG signal distribution is closer to 
Gaussian one at rest and during recovery, while deviates 
from Gaussianity during 50% and 100% MVC. However, 
the distribution tends to Gaussian during fatigue, i.e. end 
of 50% MVC. 

 

 
Fig. 4: Coloured lines indicate the PDFs of sEMG signals during rest, 
fatiguing 50% MVC, 100% MVC and recovery periods, while the black 
one shows the Gaussian density.   

 
TABLE I, represents the values of the quantitative 

descriptors of PDFs, named skewness and kurtosis for 
each experiment. Examining the data, we can obviously 
state that the distribution has a positive skewness and 

negative kurtosis during rest and recovery trials, 
indicating an important right tail and a more flattened 
distribution, respectively. Conversely, the signals show 
negative skewness and positive kurtosis during MVCs, 
representing more peaked densities. Furthermore, the 
values of the kurtosis have a decreasing trend during 
fatiguing 50% MVC, which shows that the density tends 
to more flattened one, during muscle fatigue.  

Fig. 5 represents the results of negentropy, which is a 
classical method of measuring non-Gaussianity. As is 
evident, the negentropy has its minimum value during 
rest and recovery periods, meaning that the signal is more 
Gaussian. However, it increases dramatically during two 
MVC trials (50% and 100%). Considering the results 
reported in TABLE I, we can state that the Gaussianity 
increases with force level, maybe due to the recruitment 
of extra motor units. This means that the sEMG is highly 
non-Gaussian during the start point of 50% MVC. 
Moreover, the increase (decrease) of Gaussianity 
(negentropy) during this trial determines that there is a 
decrease in muscle contraction, indicating muscle fatigue. 
In another words, when fatigue occurs, the negentropy 
falls.  

 

 
Fig. 5: Variations of negentropy during rest, fatiguing 50% MVC, 100% 
MVC and recovery periods. 

  
In order to perform linearity test, the bicoherence was 

estimated using Higher Order Spectral Analysis (HOSA) 
toolbox [17]. For the estimation, the blocks of 256 
samples corresponding to 128ms data with respect to the 
mentioned sampling frequency with 25% overlap were 
used. Hamming window was exploited as the analysis 
window. The linearity test, involves deciding whether or 
not the estimated bicoherence is constant in the 
bifrequency domain. Fig. 6 illustrates the linearity test 
results for the experiments. As is evident, sl, follows the 
reverse pattern of the Gaussianity test using negentropy, 
where the signal becomes more linear at MVCs and less 
linear during rest and recovery states (TABLE I). 
Furthermore, it can be noticed that the nonlinearity 
increases during fatigue (end of 50% MVC), which is 
consistent with the results of CD analysis.  

4. Discussion 
The   present    study   investigated  nonlinear  analysis 
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Fig. 6: Variations of sl during rest, fatiguing 50% MVC, 100% MVC 
and recovery periods. 

 
methods to evaluate muscle force and fatigue. The use of 
nonlinear dynamical techniques was motivated by the 
reason that the physiological signals are nonlinear and 
chaotic in nature. Neglecting these properties and using 
inappropriate methods for analyzing such as linear and 
power spectral methods, may lead to false or misleading 
results. Thus, higher order statistical methods in time and 
frequency domains were used to investigate possible 
relations between variations of sEMG probability density 
and isometric contraction levels and muscle fatigue.  

The results achieved using Gaussianity test based on 
negentropy, showed that Gaussianity decreased during 
voluntary contractions (50% and 100% of MVC) 
compared to rest and recovery trials. However, it 
increased during fatigue, indicating the decrease in 
muscle contraction and change in motor unit recruitment. 
Our results were in agreement with Hussain et al. [6] 
achievements, whose study was on sEMG signals 
recorded from right rectus femoris muscle during 8-trial 
walk. The measure of the linearity showed an exact 
reverse pattern with that of Gaussianity, which supported 
the outcome of [4], [6] and [8]. In contrast, Nazarpour 
study group [7] reported that sEMG signal indicated non-
Gaussian PDF during light contractions (below 30% of 
MVC) and it tended to a Gaussian process at higher force 
levels due to central limit theorem. This contradiction 
may be due to the positioning of the electrodes, which 
was investigated by Kaplanis et al. [8]. They found that 
higher order statistical based analysis methods are 
position dependant, or may be due to clinical variations 
(anatomical, instrumentation), which is studied by [5]. In 
addition, the variations in the experimental conditions 
and recording time, specially fatigue phenomenon can 
have decisive role [3].  

Moreover, like [7] we also used negentropy concept to 
measure the non-Gaussianity of sEMG signals. Because 
the Gaussianity test based on bicoherence index can only 
be used to reject the Gaussianity null hypothesis. It means 
that if the bispectrum index is zero, the full Gaussianity 
of the process may not be inferred, since fourth or even 
higher order cumulants and polyspectra would not be 
necessarily zero.  

Besides higher order statistical analysis, correlation 
dimension was also examined as a quantifier of chaotic 
behaviour. The results of this feature were consistent with 
linearity test outcomes. This again, verifies the suitability 
of HOS based techniques to analyze biosignals.  
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