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Beyond the brain-Peripheral 
kisspeptin signaling is essential 
for promoting endometrial gland 
development and function
Silvia León1, Daniela Fernandois1, Alexandra Sull2,3, Judith Sull2,3, Michele Calder2,3,4, 
Kanako Hayashi5, Moshmi Bhattacharya3,6,7, Stephen Power4, George A. Vilos4, 
Angelos G. Vilos4, Manuel Tena-Sempere1,8,9 & Andy V. Babwah2,3,4,6

Uterine growth and endometrial gland formation (adenogenesis) and function, are essential for fertility 
and are controlled by estrogens and other regulators, whose nature and physiological relevance are 
yet to be elucidated. Kisspeptin, which signals via Kiss1r, is essential for fertility, primarily through its 
central control of the hypothalamic-pituitary-ovarian axis, but also likely through peripheral actions. 
Using genetically modified mice, we addressed the contributions of central and peripheral kisspeptin 
signaling in regulating uterine growth and adenogenesis. Global ablation of Kiss1 or Kiss1r dramatically 
suppressed uterine growth and almost fully prevented adenogenesis. However, while uterine growth 
was fully rescued by E2 treatment of Kiss1−/− mice and by genetic restoration of kisspeptin signaling 
in GnRH neurons in Kiss1r−/− mice, functional adenogenesis was only marginally restored. Thus, while 
uterine growth is largely dependent on ovarian E2-output via central kisspeptin signaling, peripheral 
kisspeptin signaling is indispensable for endometrial adenogenesis and function, essential aspects of 
reproductive competence.

Kisspeptins (KPs) are a group of peptides derived from KISS1, the primary product of the KISS1 gene1–5. KPs 
signal via Gα q/11/β -arrestin-coupled KISS1 receptor (KISS1R)2,6–8 and the central KP/KISS1R signaling system is a 
potent trigger of hypothalamic gonadotropin-releasing hormone (GnRH) secretion and thereby a major positive 
regulator of the hypothalamic-pituitary-gonadal axis9,10. In addition, based on the expression of this signaling 
system at peripheral sites in healthy cells and tissues, kisspeptin signaling has also been proposed as a direct reg-
ulator of ovarian and testicular function, placentation, insulin secretion and kidney development1,11–19. Studies 
from the Babwah laboratory have also demonstrated that a functional kisspeptin signaling system is expressed 
in the mouse uterus on the luminal and glandular epithelia on the day of embryo implantation20,21 and provided 
compelling evidence through the use of the Kiss1−/− and Kiss1r−/− mice that extra-hypothalamic kisspeptin sig-
naling potentiates embryo implantation20. Similarly, a recent study from the Tena-Sempere laboratory confirmed 
that while the re-expression of Kiss1r in GnRH neurons of Kiss1r−/− mice is sufficient to reactivate the neuroen-
docrine axis and trigger full fertility, some gonadal functions were not completely restored in this rescued model22 
suggesting the absence of peripheral kisspeptin signaling intrinsically perturbs gonadal physiology.

Mice with congenital ablation of the genes encoding kisspeptins (Kiss1−/−) or their receptor (Kiss1r−/−) exhibit 
hypogonadotropic hypogonadism and female mice display follicular development which stalls at the pre-antral 
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and early antral stage; this results in infertility10,23,24. The observation that follicular development can advance to 
the antral stage likely reflects that FSH secretion is not completely abolished in these knockout (KO) mice23,24. 
While the follicles from these null mice maintain the capacity to produce and secrete 17β -estradiol (E2), Kiss1−/− 
and Kiss1r−/− mice do not exhibit the pre-ovulatory E2 surge10,24, and consequently follicles do not undergo final 
maturation and ovulation. In addition, despite near normal circulating levels of E2 in adult KO mice10,24, the KO 
uterus is significantly smaller than the WT uterus10,20,24–26, suggesting that other factors which stimulate uterine 
growth must be absent in mice congenitally devoid of kisspeptin signaling and/or that the uterus lacks ESR1 
(estrogen receptor 1) expression in this model and hence is unresponsive to E2. However, an analysis of the preg-
nant uterus of Kiss1r−/− mice indicated there was normal Esr1 and ESR1 expression20. During the course of our 
investigations of the Kiss1−/− and Kiss1r−/− mice, we also noted that the KO uterus is almost completely devoid 
of endometrial glands20; an observation that is reminiscent of findings from a previous report by d’Anglemont de 
Tassigny et al.24, using an independently generated Kiss1−/− mouse line (Kiss1tm1Coll).

Endometrial glands are found in all mammalian uteri where they produce and transport substances, such as 
leukemia inhibitory factor, that are required for the establishment of uterine receptivity and embryo implantation 
and survival27–29. In support of this, genetic inactivation of genes, such as Foxa2, Wnt4 and Wnt7a that positively 
regulate endometrial gland formation (adenogenesis) result in subfertility and infertility30–33. In humans, endo-
metrial adenogenesis begins in the fetus, continues postnatally, and is completed during puberty. In contrast, in 
sheep, pigs and rodents, adenogenesis typically begins during the early postnatal period and involves differenti-
ation and budding of glandular epithelia from the luminal epithelium29,31. In mice, this begins around postnatal 
day (PND) 5–6 and is followed by extensive cell proliferation within the nascent glands (evident by PND7) lead-
ing to their elongation and invasion of the surrounding stroma29. The adult uterine histoarchitecture is established 
between PND14–21 with adenogenesis persisting over the lifespan34.

Initial adenogenesis and uterine growth in the neonate occur independently of ovarian and adrenal hormones 
in many species, including rodents35,36 and livestock37–39 as well as independently of ESR1 in pre-weaning mice40. 
On the other hand, elevation of ovarian hormones at the onset of puberty alters the mechanisms regulating 
adenogenesis and uterine growth, shifting them into an ovarian- and ESR1-dependent phase that begins around 
PND29 and lasts throughout adult life34,40.

In this scenario, it is intriguing that despite the fact that circulating E2 levels are reported to be near WT levels 
in the adult Kiss1−/− and Kiss1r−/− mice, these KO models exhibit markedly reduced uterine growth and adeno-
genesis. These observations would suggest that, in addition to E2, other peripheral factors (ovarian-derived or 
otherwise) driven by central and/or peripheral kisspeptin signaling and which are missing in these above kisspep-
tin null models, would physiologically contribute to uterine growth and endometrial adenogenesis. In this work, 
we aimed at elucidating this phenomenon using suitable genetically modified mouse models.

Results
Ablation of Kiss1 or Kiss1r results in loss of adenogenesis and reduction in uterine growth in the 
adult female mouse. The analysis of FOXA2 expression, a marker of endometrial glands, revealed that in 
transverse uterine sections from the Kiss1−/− and Kiss1r−/− (global KO) adult mice (8–12 weeks old, non-preg-
nant, 129S1/SvImJ genetic background), gland formation was reduced by about 93% vs. WT littermate controls 
(Fig. 1A–D,G). As an indication of uterine growth, the average area of transverse uterine sections was determined. 
In the Kiss1−/− and Kiss1r−/− mice, this index was found to be reduced by about 70% relative to that of respective 
WT littermates (Fig. 1A–D,H). The uterine phenotypes observed in Kiss1−/− and Kiss1r−/− 129S1/SvImJ mice 
were fully recapitulated in age-matched Kiss1r−/− mice and WT littermates of the C57BL/6J genetic background 
(Fig. 1E–H), where gland formation in the Kiss1r−/− mice was reduced by about 98% and the uterine area by 
about 78% compared to WT littermates (Fig. 1E,F,H). Our analyses also revealed that the endometrium of the 
C57BL/6J Kiss1r WT mouse contained about 5-fold more glands and the uterine area was about 3.3 times larger 
than age-matched 129S1/SvImJ WT Kiss1 and Kiss1r mice (Fig. 1). Despite these strain differences, our conver-
gent findings of the impact of lack of kisspeptin signaling on adenogenesis in these two mouse strains unambigu-
ously demonstrate that kisspeptin signaling regulates uterine growth and development.

E2 therapy partially rescues adenogenesis but fully rescues uterine growth in the pregnant 
adult Kiss1−/− mouse. Next, we sought to determine whether these striking uterine phenotypes in the 
Kiss1−/− and Kiss1r−/− mice might be due solely to insufficient E2 drive (the end-point of the central failure of the 
hypothalamic- pituitary-ovarian axis). Of note, although circulating E2 concentrations have been reported to be 
nearly similar between adult Kiss1−/− and Kiss1r−/− mice and their WT littermates10,24, the adult KO phenotypes 
are consistent with diminished ovarian function and E2 levels34. Furthermore, our recent results showed that 
chronic E2 therapy post-weaning coupled to gonadotropin treatment, rescued follicular development and trig-
gered ovulation of fertilization-competent oocytes20. We therefore determined what effect E2 supplementation 
would have on the growth and development of the KO uterus. Since we were also interested in determining the 
impact of such treatment on early pregnancy, we examined uteri from E2-treated mice on D4 of pregnancy, the 
day on which embryo implantation occurs; a process dependent on glandular secretions11,27,29,41. Considering the 
commonalities in the phenotypes of the Kiss1−/− and Kiss1r−/− mice, these studies were conducted only in the 
Kiss1−/− mouse.

E2 administration for 5 weeks starting before puberty induced a significant increase in adenogenesis and 
uterine growth in both the adult KO and WT uterus (9–10 weeks old), as compared to closely age-matched (8–12 
weeks old) adult untreated and non-pregnant KO and WT mice (Fig. 2A,B,K,L vs. Fig. 1A,B,G,H). Admittedly, 
part of this response would reflect the pregnant state that the mice were in and the other part the E2 treatment. 
However, despite 5 weeks of E2 administration and 4 days of pregnancy, the KO uterus still exhibited significantly 
diminished adenogenesis (Fig. 2A,B,K). Interestingly, however, while adenogenesis was only rescued by about 
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24%, uterine growth was fully restored compared to WT littermates (Fig. 2A,B,L). These results suggest that while 
central failure of the hypothalamic-pituitary-ovarian axis could be responsible for diminished uterine growth, it 
cannot solely account for severely reduced gland development, thereby implicating a role for peripheral kisspep-
tin signaling.

Figure 1. Ablation of Kiss1 or Kiss1r results in loss of adenogenesis and reduction in uterine growth 
in the adult female mouse. Transverse uterine sections from adult (8–12 weeks old) non-pregnant 129S1/
SvImJ Kiss1−/− and WT littermate (A,B); 129S1/SvImJ Kiss1r−/− and WT littermate (C,D) and C57BL/6J 
Kiss1r−/− and WT littermate (E,F) were analyzed for FOXA2-positive endometrial glands and uterine size. 
Examples of FOXA2-positive glands are shown with arrowheads. Glands were quantified and uterine growth 
was determined by measuring the average area (μ 2) of a transverse uterine section (excluding the uterine lumen) 
per uterine horn; data are displayed graphically (G,H). M: mesometrial; AM: anti-mesometrial. The number of 
independent investigations is reported in the figure and the data are shown as mean ±  SEM.
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E2-rescued glands in the Kiss1−/− endometrium exhibit diminished FOXA2 expression,  
hyperplasia of the glandular epithelium (GE) and a lack of secretion. Initial analyses of the 
Kiss1−/− endometrium revealed that the majority of glands displayed a consistent decrease in FOXA2 expression 
(Fig. 2A,B). Additionally, in a smaller number of glands (about 20%), FOXA2 was detected only in a subset of 
cells comprising the GE (Fig. 2C–F) or not detected at all (Fig. 2C–F). In about 10% of the E2-rescued glands, the 
GE was comprised of a highly disorganized cellular layer that had undergone hyperplasia at one or more points 
(Fig. 2G,H); this was in striking contrast to the WT GE which was always comprised of a well-organized single 
layer of cells (Fig. 2I,J). While Stewart et al.34 reported that E2 administration to the neonate triggered a hyper-
plastic glandular phenotype in adult mice, it does not appear that the post-weaning-administration of E2 is the 

Figure 2. E2 therapy partially rescues adenogenesis but fully rescues uterine growth in the pregnant adult 
Kiss1−/− mouse. Transverse uterine sections from E2- and gonadotropin-treated, adult (9–10 weeks old) 
pregnant 129S1/SvImJ Kiss1−/− (A,C,D,G,H) and WT littermates (B,E,F,I,J) were analyzed for FOXA2-positive 
endometrial glands and uterine size. Glands were quantified and uterine growth was determined by measuring 
the average area (μ 2) of a transverse uterine section (excluding the uterine lumen) per uterine horn; data are 
displayed graphically (K,L). M: mesometrial; AM: anti-mesometrial. Arrowheads in (E,F,I,J) show examples of 
glands with luminal secretions. The number of independent investigations is reported in the figure and the data 
are shown as mean ±  SEM.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:29073 | DOI: 10.1038/srep29073

underlying cause of this hyperplasia since WT littermates were also E2-treated but did not display this phenotype 
(Fig. 2I,J). We also determined that Ctnnb1 (β -catenin) expression was similar between the KO and WT litter-
mates (data not shown) ruling out a deregulation of β -catenin in this phenotype42. Finally, it was observed that 
in all E2-rescued glands, the glandular lumen was completely devoid of any glandular secretions, while within a 
large number of WT glands secretions could be readily detected within the lumen (Fig. 2C–J; see arrowheads).

E2-rescued glands in the Kiss1−/− endometrium appear non-functional. Given the finding that 
E2-rescued glands in Kiss1−/− mice lack luminal secretions, we hypothesized that kisspeptin signaling positively 
regulates gland function (that is, the expression, secretion and transport of important regulators of implantation 
and decidualization) and that E2-rescued glands would be deficient in factors that regulate gland function. To 
test this idea, we first examined the expression of SPP1 (secreted phosphoprotein 1 also known as osteopontin). 
SPP1 is expressed in both the endometrial stroma and glands on D4 of pregnancy in the mouse and is suggested 
to positively regulate implantation43–45.

Immunohistochemical analysis of the uteri from E2-treated Kiss1−/− and WT littermates on D4 of pregnancy 
revealed that while SPP1 was expressed throughout the uterus in both KO and WT uteri, it was almost completely 
absent in the GE of all glands in the Kiss1−/− endometrium (Fig. 3A–D). While SPP1 is expressed throughout the 
uterus, spatial examination allowed us to confirm that SPP1 expression was diminished in the GE. To continue 
testing our hypothesis, in the absence of well-validated antibodies, we quantified the expression of genes reported 
to be highly expressed (relative to other uterine cells) in the GE46; these were Prss28 (protease, serine, 28)47, Prss29 
(protease, serine, 29)47, Spink3 (serine peptidase inhibitor, Kazal type 3)48 and Ttr (transthyretin)46. As a positive 
control, Foxa2 was also included in this analysis. Our results show that all genes including Foxa2 exhibited a 
significant reduction in expression in E2-treated Kiss1−/− mice (Fig. 3E) leading us to conclude that kisspeptin 
signaling directly regulates gland function.

Re-expression of Kiss1r in the hypothalamus of adult Kiss1r−/− mice restores uterine growth 
and gland function, however, adenogenesis and FOXA2 expression are only partially  
rescued. To further explore the findings that central and peripheral kisspeptin signaling regulate gland devel-
opment and function (Fig. 2), we conducted a complementary study where we compared gland number and uter-
ine growth between adult Kiss1r−/−Tg mice and Kiss1r−/− and WT littermates (C57BL/6J genetic background). 
The Kiss1r−/−Tg mice are Kiss1r−/− mice in which Kiss1r is specifically re-expressed in GnRH neurons leading to a 
full reactivation of the neuroendocrine axis resulting in complete follicular maturation and ovulation and fertility 
equivalent to that of WT mice22,26.

Adult Kiss1r−/−Tg mice contained significantly more glands than Kiss1r−/− mice (Fig. 4A–C and F). However, 
the number of glands was significantly less than that observed in WT mice (Kiss1r−/− littermates) (Fig. 4A,B,D–F). 
While FOXA2 was observed on almost every cell of the GE, signal intensity was visibly weaker than that in WT 
mice (Fig. 4A,B,D,E). Despite reduced adenogenesis and FOXA2 expression, the GE in the endometrium of the 
Kiss1r−/−Tg mice was comprised of a well-organized single layer of cells that was identical to the GE of WT mice 
(Fig. 4B,E). Additionally, the glandular lumen in the endometrium of the Kiss1r−/−Tg mice clearly displayed 
glandular secretions (Fig. 4B; see arrowheads). Regarding uterine growth, uteri from adult Kiss1r−/−Tg mice 
were significantly larger than Kiss1r−/− but not different from WT mice (Fig. 4A,C,D,F,G). These results further 
strengthen the idea that while uterine growth is largely under the control of central kisspeptin signaling, both 
central and peripheral kisspeptin signaling regulate adenogenesis.

Ovarian activin A output might be reduced in the Kiss1r−/−Tg mouse. Collectively, the studies 
conducted on the Kiss1−/− and Kiss1r−/−Tg mice clearly reveal that in addition to E2, other peripheral factors that 
regulate adenogenesis are missing in these mice. Studies from the Spencer laboratory49,50 provided correlative data 
pointing out that components of the ovarian activin-follistatin system might regulate neonatal ovine uterine size 
and adenogenesis. These authors have also indicated the possibility that inhibins might be important regulators 
of these processes50. Therefore, we quantified the mRNA expression of the genes encoding follistatin (Fst) and the 
α  subunit of inhibin (Inha) in the ovaries of Kiss1r−/−Tg, Kiss1r−/− (global KO) and WT mice. We also examined 
the genes encoding the other subunits of inhibin A and activin A (β A: Inhba) and inhibin B and activin B (β B: 
Inhbb); activin AB being comprised of β A and β B subunits.

Global loss of Kiss1r (KO) resulted in the significant up-regulation of ovarian Fst expression relative to WT lit-
termates (Fig. 5A), while the reactivation of the neuroendocrine axis (Kiss1r−/−Tg) reduced expression to WT lev-
els (Fig. 5A). As for Inha, there was a significant down-regulation in the KOs relative to WT littermates (Fig. 5B), 
while in Kiss1r−/−Tg mice expression was fully restored, reaching significantly greater levels than in the WT mice 
(Fig. 5B). The pattern of responses for Inhba and Inhbb were identical to each other (Fig. 5C,D) and similar to 
Inha (Fig. 5B), except that levels were not significantly different between WT and Kiss1r−/−Tg mice (Fig. 5C,D). 
Finally, we calculated the Inhba/Inha and Inhbb/Inha ratios as an indirect measure of activin (A, B and AB) output 
by the ovaries. The average Inhba/Inha ratio in the WT mouse was significantly greater than in the global KO, 
while Kiss1r−/−Tg mice displayed a partial rescue, although this parameter was markedly lower than in the WT 
and there was no significant difference vs. the ratio detected in the KO mouse (Fig. 5E). In contrast, Inhbb/Inha 
ratio was similar between the three genotypes (Fig. 5F). Therefore, the possibility exists that reduced levels of 
activin A might in part account for the reduced adenogenesis observed in the Kiss1r−/−Tg mouse (Fig. 4).

Reduced hypothalamic GnRH secretion in the adult Gnaqd/d;Gna11−/− mouse reduces  
adenogenesis and uterine growth but triggers FOXA2 expression throughout the uterus. The 
Gnaqd/d;Gna11−/− mouse (C57BL/6J genetic background) conditionally lacks Gα q/11-signaling in its GnRH neu-
rons and is significantly, though not completely, compromised in its ability to trigger kisspeptin-dependent GnRH 
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secretion from the hypothalamus7. However, unlike the Kiss1−/−, Kiss1r−/− and Kiss1r−/−Tg mouse, peripheral 
kisspeptin signaling is preserved. Analysis of the Gnaqd/d;Gna11−/− uterus, relative to that of Gnaqfl/fl;Gna11−/− 
littermate controls, revealed that gland number and uterine growth were significantly reduced; findings consistent 
with the idea that the central axis regulates adenogenesis and uterine growth (Fig. 6). However, although gland 
number and uterine growth were significantly reduced by about 58% and 51%, respectively, the Gnaqd/d;Gna11−/− 
uterus still exhibited greater adenogenesis and uterine growth than the untreated Kiss1−/− and Kiss1r−/− mouse 
lines, where adenogenesis was almost completely ablated and uterine growth reduced by about 81% (Fig. 1A–H). 
Although this smaller reduction might be partially due to the fact that these mice still exhibit central kisspeptin 
signaling, though greatly diminished7, it is highly probable that this milder phenotype is also caused by the fact 
that, in contrast to Kiss1 and Kiss1r null models, they retain peripheral kisspeptin signaling intact.

Finally, and unexpectedly, FOXA2 expression was visibly and consistently increased in the GE of all glands 
in the Gnaqd/d;Gna11−/− uterus as well as throughout the rest of the uterus, in particular the luminal epithelium 
(Fig. 6A,B). Elevated glandular and ectopic FOXA2 expression was never observed in the Kiss1−/−, Kiss1r−/− or 
Kiss1r−/−Tg mouse of similar age (Fig. 1). Since the major difference between the Gnaqd/d;Gna11−/− mouse and 

Figure 3. E2-rescued glands in the Kiss1−/− endometrium are deficient in the expression of molecules that 
may play important roles in gland function. Transverse uterine sections from E2- and gonadotropin-treated, 
adult (9–10 weeks old) pregnant 129S1/SvImJ Kiss1−/− (A,B) and WT littermates (C,D) were analyzed for SPP1 
expression by immunohistochemistry. Experiment was conducted 3 independent times on uteri collected from 
mice of each genotype; representative sections from two mice of each genotype are shown. Whole uteri from 
E2- and gonadotropin-treated, adult (9–10 weeks old) pregnant 129S1/SvImJ Kiss1−/− and closely age-matched 
WT littermate were analyzed for Prss28, Prss29, Spink3, Ttr and Foxa2 expression by quantitative real-time 
RT-PCR (E). Quantitative RT-PCR was conducted 3 independent times on uteri collected from mice of each 
genotype and the data are shown as mean ±  SEM.
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Figure 4. Re-expression of Kiss1r in the hypothalamus of adult Kiss1r−/− mice restores uterine growth and 
gland function, however, adenogenesis and FOXA2 expression are only partially rescued. Transverse uterine 
sections from adult non-pregnant and aged-matched (8–12 weeks old) C57BL/6J Kiss1r−/−Tg mice (A,B) and 
Kiss1r−/− (C) and WT littermates (D,E) were analyzed for FOXA2-positive endometrial glands and uterine size. 
Boxes in (A,D) are shown at higher magnification in (B,E). Glands were quantified and uterine growth was 
determined by measuring the average area (μ 2) of a transverse uterine section (excluding the uterine lumen) per 
uterine horn; data are displayed graphically (F,G). Arrowheads in (B,E) show examples of glands with luminal 
secretions. M: mesometrial; AM: anti-mesometrial. The number of independent investigations is reported in the 
figure and the data are shown as mean ±  SEM.
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the Kiss1−/−, Kiss1r−/− and Kiss1r−/−Tg mouse is that Kiss1 and Kiss1r continue to be expressed peripherally in the 
Gnaqd/d;Gna11−/− mouse, the data would strongly implicate peripheral kisspeptin signaling as the driving force 
behind the increased glandular and ectopic FOXA2 expression in the uterus of the adult Gnaqd/d;Gna11−/− mouse.

Adenogenesis and uterine growth are disrupted in the juvenile Kiss1−/− mouse. While our 
data revealed that kisspeptin signaling regulates adenogenesis and uterine growth, at both central and peripheral 
levels, the question that remained was whether kisspeptin signaling regulates adenogenesis and uterine growth 
in the juvenile mouse, a developmental period in which these processes are thought to occur in an adrenal- 
and ovarian-independent manner34,36,40. We therefore examined gland number and uterine growth in juvenile 
(PND21) Kiss1−/− mice and their WT littermates. Results clearly showed that in juvenile Kiss1−/− mice adeno-
genesis and uterine growth were significantly diminished (Fig. 7A,B,E,F), demonstrating that kisspeptin regulates 
these processes in the juvenile mouse; a phenomenon that, according to previous evidence, should occur inde-
pendently of the ovaries. Of note, while loss of Kiss1 significantly reduced gland formation and uterine growth 
in the juvenile mouse, relative to WT littermates, these parameters were only reduced by about 37 and 49%, 
respectively, therefore suggesting the roles for other signaling pathways in regulating these ovarian-independent 
processes in the juvenile mouse.

Figure 5. Ovarian activin A output might be reduced in the Kiss1r−/−Tg mouse. RNA isolated from the 
ovaries from adult non-pregnant and closely aged-matched (8–12 weeks old) C57BL/6J WT and Kiss1r−/− (KO) 
littermates and Kiss1r−/−Tg (Tg) mice and were analyzed by quantitative RT-PCR for the expression of the genes 
encoding follistatin (Fst) (A) and the α  subunit of inhibin (Inha) (B) and the other subunits of inhibin A and 
activin A (β A: Inhba) (C) and inhibin B and activin B (β B: Inhbb) (D). As a measure of activin (A,B and AB) 
output by the ovaries the Inhba/Inha (E) and Inhbb/Inha (F) ratios were calculated. Quantitative RT-PCR was 
conducted 3 independent times on ovaries (N =  4–6) collected from mice of each genotype.
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When FOXA2 expression was first inspected in the juvenile uteri from Kiss1−/− and WT littermates, it was 
clear that FOXA2 expression was more intense on the glands in both the juvenile KO and WT uteri compared 
to that seen in the adult Kiss1−/−, Kiss1r−/−, Kiss1r−/−Tg and Gnaqd/d;Gna11−/− mice and their respective WT 
controls (Fig. 7 vs. Figs 1,2,4 and 6). Importantly, in all studies FOXA2 was detected under identical conditions. 
Because the expression level was so intense in the juvenile period, we could not initially assess whether there was 
a difference in glandular expression between the KO and WT mice. The study was therefore repeated using the 
anti-FOXA2 antibody at a 10-fold dilution (0.18 μ g/ml IgG). Results show that, under these conditions, glandular 
FOXA2 levels did not appear strikingly different between Kiss1−/− and WT littermates (Fig. 7C,D).

Discussion
Our study reveals that global inactivation of Kiss1 or Kiss1r results in an almost complete loss (about 97%) of 
total endometrial gland formation and a significant reduction (about 81%) in uterine growth in the adult mouse. 
Therefore, the kisspeptin signaling system must be a major regulator of adenogenesis and uterine growth in the 
adult mouse. Since E2 treatment of the Kiss1−/− mouse and re-expression of Kiss1r in GnRH neurons in the 
Kiss1r−/− mouse restored uterine growth fully but adenogenesis only by about an average of 25%, our results 
document a striking dissociation in the kisspeptin-dependent pathways controlling these two related, but clearly 
distinct phenomena. Thus, while uterine growth in the adult is largely dependent on central kisspeptin signaling, 

Figure 6. Reduced hypothalamic GnRH secretion in the adult Gnaqd/d;Gna11−/− mouse reduces 
adenogenesis and uterine growth but triggers FOXA2 expression throughout the uterus. Transverse 
uterine sections from adult (8–12 weeks old) non-pregnant C57BL/6J Gnaqd/d;Gna11−/− and Gnaqfl/fl;Gna11−/− 
littermate controls were analyzed for FOXA2-positive endometrial glands and uterine size (A,B). Insets in 
(A,B) show parts of the endometrium at a higher magnification. Glands were quantified and uterine growth was 
determined by measuring the average area (μ 2) of a transverse uterine section (excluding the uterine lumen) 
per uterine horn; data are displayed graphically (C,D). M: mesometrial; AM: anti-mesometrial. The number of 
independent investigations is reported in the figure and the data are shown as mean ±  SEM.
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endometrial adenogenesis is predominantly regulated by peripheral kisspeptin signaling, which accounts for 
about an average of 75% of kisspeptin-dependent gland development (Fig. 8). These findings are further rein-
forced by the data from the Gnaqd/d;Gna11−/− strain, a conditional KO that exhibits diminished central kisspeptin 

Figure 7. Adenogenesis and uterine growth are disrupted in the juvenile Kiss1−/− mouse. Transverse uterine 
sections from juvenile (3 weeks old) 129S1/SvImJ Kiss1−/− (A,C) and WT littermates (B,D) were analyzed for 
FOXA2-positive endometrial glands and uterine size. Sections shown in (A,B) were analyzed using the anti-
FOXA2 antibody at a concentration of 1.8 μ g IgG/ml. while those in (C,D) were analyzed using anti-FOXA2 
antibody at a concentration of 0.18 μ g IgG/ml. Glands were quantified and uterine growth was determined by 
measuring the average area (μ 2) of a transverse uterine section (excluding the uterine lumen) per uterine horn; 
data are displayed graphically (E,F). M: mesometrial; AM: anti-mesometrial. The number of independent 
investigations is reported in the figure and the data are shown as mean ±  SEM.
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signaling but fully preserved peripheral kisspeptin actions, in which the reduction in adenogenesis and uterine 
growth was smaller than that seen in Kiss1 and Kiss1r null mice (Fig. 8).

Taken together, the studies conducted on the E2-treated Kiss1−/− and Kiss1r−/−Tg (rescued) mice revealed 
that in addition to E2, other centrally stimulated ovarian factors are needed for endometrial adenogenesis. These 
could include progesterone, follistatin, inhibins and activins. It is also possible that, at the dose set, the exoge-
nously administered E2 was insufficient for triggering maximal adenogenesis. Of note, follistatin, activins, and 
inhibins regulate growth and differentiation of many branched epithelia-mesenchymal organs51,52, and have been 
suggested to play a role in uterine growth and adenogenesis in ovine neonates49,50. Our analyses in the global 

Figure 8. Phenotypic summary of the Kiss1−/−, Kiss1r−/−, Kiss1r−/−Tg mice Gnaqd/d;Gna11−/− mice and 
cartoon illustrating the central and peripheral kisspeptin/KISS1R signaling pathways that potentiate 
endometrial gland development in the adult female mouse. It is important to note that while activin A might 
be one of the centrally-stimulated peripheral factors that induces kisspeptin-dependent adenogenesis, other 
factors might also exist. Additionally, although there is unambiguous evidence that kisspeptin-dependent 
adenogenesis is positively regulated by peripheral kisspeptin signaling, where this signaling is localized is 
currently unknown.
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Kiss1−/− and the Kiss1r−/−Tg mice strongly suggest that activin A, whose output, measured as Inhbb/Inhba ratio, 
is severely blunted in the global KO and significantly reduced in the rescued model, might co-operate with E2 in 
the control of kisspeptin-dependent uterine growth and development (Fig. 8). In addition, reduced activin B and 
inhibin, and/or increased follistatin production might contribute to the severe uterine phenotype of mice with 
global inactivation of kisspeptin signaling.

A number of genes are known to positively regulate adenogenesis in the mouse uterus. These include Wnt432, 
Wnt7a31,33, Wnt5a53, Ctnnb1 (β -catenin)42,54,55, Foxa230, Hoxa1156, Dicer157,58, Lgr459, Dlx5 and Dlx660. In each 
case, conditional inactivation of these genes in the uterus resulted in an almost complete loss of gland formation. 
While the majority of these studies only examined adenogenesis in the adult mouse or shortly after weaning 
(PND21) and reported on a severe reduction in gland number compared to control mice, adenogenesis was also 
examined in the neonatal and juvenile periods in mice lacking Dicer in Müllerian duct mesenchyme-derived 
tissues of the reproductive tract and in the juvenile period in mice lacking Lgr4 in epithelial cells59. In the case 
of the conditional Dicer KO, initial adenogenesis at PND4 and 8 was similar between the conditional KO and 
control mice but by PND14 and 21 glands were almost absent57,58. However, from about 5 weeks to 4 months 
of age the number increased gradually but at all times was consistently reduced compared to control mice. In 
the conditional Lgr KO, glands were also almost completely absent at PND21 and this remained unchanged at 9 
weeks of age59. Essentially, the same finding was made with the Kiss1 KO in the juvenile period (PND21), except 
that at PND21 a greater number of glands was detected in the Kiss1−/− endometrium. Taken together, it appears 
that Kiss1, Dicer and Lgr4 are important regulators of adenogenesis in the juvenile period, which is characterized 
as being ovarian- and ESR1-independent.

Our study revealed that in the adult E2-treated Kiss1−/− mouse and the Kiss1r−/−Tg mouse not only was gland 
number reduced but so was FOXA2 levels on the GE. This striking phenotype led us to conclude that kisspeptin 
signaling regulates adenogenesis in a FOXA2-dependent manner. Based on this, it was predicted that FOXA2 
expression would have also been reduced in the Gnaqd/d;Gna11−/− mouse, but surprisingly the opposite was 
seen. Perhaps, this reflects a peripherally-stimulated compensatory response to diminished central signaling in 
this mouse. Why then was there not a similar central response to absent peripheral signaling in adult E2-treated 
Kiss1−/− and Kiss1r−/−Tg mice? The answer to this interesting question is not known and might be linked to 
the observation that central signaling only accounts for about 25% of all adenogenesis while peripheral signal-
ing accounts for the rest. More importantly, this observation further reinforces that mechanistically, central and 
peripheral kisspeptin pathways regulate adenogenesis differently.

This putative relationship between kisspeptin signaling and FOXA2 was only uncovered through our ability to 
rescue adenogenesis in suitable models, such as the E2-treated Kiss1−/− and the Kiss1r−/−Tg mouse, before assess-
ing FOXA2 expression. FOXA2 belongs to a family of three forkhead transcription factors encoded by different 
genes and is implicated in the development of organs such as the liver, pancreas, lung, prostate and uterus61–64. In 
the uterus, FOXA2 is uniquely localized to the GE in the WT endometrium and is essential for adenogenesis in 
the mouse30,46. Recently, Filant et al.46 undertook a genome-wide investigation of in vivo FOXA2 binding target 
regions in the neonatal and adult uterus and found that in the neonatal uterus, FOXA2-bound genes in the GE 
were enriched for developmentally related processes including cell cycle, cell junction and focal adhesion while in 
the adult uterus there was an enrichment for functional processes including metabolic pathways, focal adhesion 
and WNT signaling. These important results further define how FOXA2 regulates endometrial gland develop-
ment and function.

In our initial characterization of the infertility observed in Kiss1−/− and Kiss1r−/− mice, we found that LIF was 
absent in all endometrial glands of E2-treated KO mice but if given exogenously could rescue the implantation 
defect20. This initially led us to conclude that LIF lies downstream of kisspeptin and that kisspeptin signaling is a 
positive regulator of glandular LIF expression and secretion. However, we now realize that diminished LIF expres-
sion is the indirect consequence of having non-functional glands and that it is less likely that kisspeptin signaling 
positively regulates its expression. This conclusion is based on the findings that (1) FOXA2 expression is dimin-
ished in glands from the Kiss1r−/−Tg mouse and sometimes even absent in the E2-rescued Kiss1−/− mouse; (2) 
normal glandular morphology is disrupted in the E2-rescued Kiss1−/− mouse; and (3) glands in the E2-rescued 
Kiss1−/− mouse exhibit diminished expression of FOXA230, LIF27, SPP143–45, Prss2847, Prss2947, Spink348 and Ttr46, 
molecules implicated in gland development and function46. We therefore suggest that kisspeptin signaling posi-
tively regulates both gland development and function and that in E2-treated Kiss1−/− mice, while development is 
partially rescued, function is not. Interestingly, both development and function appeared to have been partially 
rescued in the Kiss1r−/−Tg mouse, again highlighting that other centrally-stimulated peripheral factors were miss-
ing in the E2-treated Kiss1−/− mouse.

The data presented in this study reveal that kisspeptin-dependent adenogenesis is regulated by both central 
and peripheral pathways, but it is unknown whether both pathways contribute to the development of a single 
pool of glands or whether each contributes to a discrete pool. Additionally, while it is established that the central 
system resides in the hypothalamus, it remains unknown where the peripheral signaling system actually resides 
(Fig. 8). Based on a description of peripheral cells and tissues that express either kisspeptins and/or their recep-
tors, possible sites are the ovary and uterus, although the contribution of other non-reproductive sites of action 
of kisspeptins, such as the liver and pancreas, cannot be excluded1,13,16,18,20. Although yet to be fully proven, we 
suggest that the uterus remains a strong candidate given our previously published data showing that on D4 of 
pregnancy, the uterus expresses a functional kisspeptin signaling system, on both the luminal and glandular 
epithelia20,21.

All mammalian uteri contain endometrial glands that secrete substances that positively regulate embryo 
implantation and subsequently support the survival and development of the conceptus (embryo and associated 
placental membranes) during pregnancy28,29. Human uterine secretions are enriched in cytokines, chemok-
ines and growth factors and their levels appear to correlate positively with successful implantation and the 
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establishment of a chemical pregnancy65–67. Despite these important findings, our understanding of gland func-
tion in human pregnancies lags behind our understanding in laboratory and domestic animals. Therefore, studies 
such as those described here with the Kiss1−/−, Kiss1r−/−, Kiss1r−/−Tg the Gnaqd/d;Gna11−/− mouse will allow us 
to develop and test hypotheses designed to better understand gland function in human pregnancies. A better 
understanding could lead to higher implantation rates and successful pregnancy outcomes following assisted 
reproduction. Based on the current study, we conclude that while uterine growth in the adult is largely dependent 
on central kisspeptin signaling, endometrial adenogenesis is predominantly regulated by peripheral kisspeptin 
signaling, which accounts for about 75% of kisspeptin-dependent gland development (Fig. 8).

Methods
Mice. The Kiss1tm1Rla (Kiss1−/−) and Kiss1rtm1Rla (Kiss1r−/−) mice are global knockouts generated in the 129S1/
SvImJ genetic background, and are generous gifts to Dr. A. V. Babwah from Dr. S.B. Seminara (Massachusetts 
General Hospital, Boston, Massachusetts, USA)23. Since the homozygous Kiss1−/− and Kiss1r−/− mice are infertile, 
each genotype was generated by mating heterozygous males to heterozygous females. These matings produced 
a segregating population of homozygous, heterozygous and WT littermates. Genotypes were identified as previ-
ously described20.

The Kiss1r−/−Tg (also referred to as Gpr54−/−Tg) mouse is a GnRH neuronal-specific Kiss1r expressing (res-
cued) mouse line generated in the C57BL/6 background using BAC transgenesis, and is a generous gift to Dr. M. 
Tena-Sempere from the groups of Drs. G. Schuzt and M. Kirilov (German Cancer Research Center, Heidelberg, 
Germany) and A.E. Herbison (Centre of Neuroendocrinology, University of Otago, NZ)26. Kiss1r−/−Tg mice are 
fertile, and the line was maintained by crossing Kiss1r−/−Tg males to females.

Kiss1r−/− in the C57BL/6 background was also obtained from Drs. G. Schuzt, M. Kirilov and A. E. Herbison. 
The C57BL/6 Kiss1r−/− mouse was generated independently from the 129S1/SvImJ Kiss1rtm1Rla (Kiss1r−/−) mouse 
described above. Since homozygous C57BL/6 Kiss1r−/− mice are also infertile, they were generated by mating 
heterozygous males to heterozygous females. These matings produced a segregating population of homozygous, 
heterozygous and WT littermates. Genotypes were identified as previously described22.

The Gnaqd/d;Gna11−/− mouse, which was created in the Babwah laboratory7, is a global knockout for Gna11 
but conditionally lacks Gnaq in its GnRH neurons. Consequently, Kiss1r-coupled Gα q/11-signaling at the level of 
the GnRH neuron is abolished but Kiss1r continues to signal and mediate kisspeptin-dependent GnRH secretion, 
albeit weakly, via the β -arrestin-dependent pathway7. The mouse was generated in the C57BL/6J genetic back-
ground and is infertile. Therefore, the Gnaqd/d;Gna11−/− mouse and Gnaqfl/fl;Gna11−/− littermate controls were 
generated by crossing the Gnaqfl/fl;Gna11−/− line to a line bearing the GnRH-Cre transgene and the segregating 
genotypes were identified as previously described7.

Animal husbandry. Animal studies involving the Kiss1−/− and Kiss1r−/− mice and their WT littermates 
(129S1/SvImJ genetic background) and the Gnaqd/d;Gna11−/− mouse and its littermate controls were approved by 
the University of Western Ontario Animal Care Committee according to guidelines established by the Canadian 
Council on Animal Care. Animal studies involving the Kiss1r−/−Tg (Gpr54−/−Tg) mouse and controls (Kiss1r−/− 
and WT littermates on the C57BL/6 background) were approved by the Córdoba University Ethical Committee of 
animal experimentation and conducted in accordance with the European Union guidelines for use of experimen-
tal animals. In all cases, mice were maintained under a 12 h light/dark cycle and provided with standard rodent 
chow and water ad libitum.

Hormonal treatments. Three to four week-old female mice (Kiss1−/− and WT littermates) were adminis-
tered E2 (100 μ g/100 μ l sesame oil) subcutaneously every 3–4 days over a 5-week period, then administered 7.5 IU 
pregnant mare serum gonadotropin (PMSG; Folligon; Intervet) intraperitoneally (i.p.) followed 48 hours later by 
7.5 IU human chorionic gonadotropin (hCG; Chorulon; Intervet) i.p. Immediately after the hCG injection, mice 
were mated to WT males (D0 =  day of mating)20. On D4 of pregnancy, uteri were collected and glands were char-
acterized by analyzing FOXA2 and SPP1 immunoreactivity. The D4 uteri were used in quantifying the mRNA 
levels of Prss28, Prss29, Spink3, Ttr and Foxa2.

Quantitative real-time RT-PCR studies. Gene expression studies were conducted independently in the 
Babwah and Tena-Sempere Laboratories. Protocols employed by each laboratory are described below.

Babwah Laboratory ( for the analysis of uterine Foxa2, Prss28, Prss29, Spink3 and Ttr). Gene expression was 
determined on total RNA prepared from the entire uterine horns of experimental and control mice. Freshly 
harvested tissues were collected in RNAlater (Life Technologies Inc., Burlington, ON, Canada) and RNA was 
isolated using the Qiagen RNeasy mini kit according to manufacturer’s instructions (Qiagen, Missassauga, 
ON, Canada). One μ g of total RNA was reverse-transcribed using SuperScript II (Invitrogen, Burlington, 
ON, Canada). Reactions were performed according to the manufacturer’s protocol using random hexamer 
primers (Amersham, Piscataway, NJ). Quantitative real-time PCR was performed in duplicate for each sam-
ple and done a total of three independent times using IQ SYBR Green Master Mix (Bio-Rad Laboratories, 
Mississauga, ON, Canada). To determine PCR efficiency, a 10-fold serial dilution of cDNA was performed as 
described previously68. Gene expression was normalized to Actb expression and presented as relative expres-
sion using the Pfaffl method69. Expression of the following genes was quantified using the following primers 
(presented 5′-3′ ). Foxa2-F: AGCAGAGCCCCAACAAGA and Foxa2-R: AGAGAGAGTGGCGGATGGAG 
(RefSeq ID: NM_010446.3); Prss28-F: CATCCGACGAGCACAAAG and Prss28-R: CCCAGAGTCACCAAAA 
CAG (RefSeq ID: NM_053259.2); Prss29-F: GTCAAGCTGCCCTCTGAGTC and Prss29-R: TGGTTG 
CCTGCACATAACAT (RefSeq ID: NM_053260.3); Spink3-F: AACGCATAGAGCCTGTCCT and Spink3-R: 
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ACGAACCCACTTGCCAAA (RefSeq ID: NM_009258.5); Ttr-F: CAGAGTGGACCAACCG and Ttr-R: 
CCCAGGGCTTTTGAACATGC (RefSeq ID: NM_013697.5); Actb-F: TTCTACAATGAGCTGCGTGTG and 
Actb-R: GGGGTGTTGAAGGTCTCAAA (RefSeq ID: NM_007393.5).

Tena-Sempere Laboratory ( for the analysis of ovarian Fst, Inha, Inhba and Inhbb). Total RNA was extracted 
using TRIsure isolation reagent (Bioline Reagents Ltd., UK) and treated with DNase Q1 (Promega corporation, 
USA). One μ g of total RNA was subjected to reverse transcription using IScript cDNA Synthesis kit (Bio-Rad 
Laboratories Inc., USA). For real-time PCR, we used Go Taq qPCR Master mix (Promega Corporation, USA) 
in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories Inc., USA). Primer-specific ampli-
fication and quantification cycles were run at 95 °C for 25 s, 62 °C for 25 s and 72 °C for 30 s and a final extension 
of 72 °C for 20 s. To normalize the quantification of inhibins subunits and follistatin mRNA level, we measured 
the amount of ribosomal 18S mRNA in each protocol. The corresponding standard curve for each gene was 
obtained by serial dilution of a reference ovarian cDNA sample. Expression of the following genes was quan-
tified using the following primers (presented 5′-3′ ). Inha-F: CCTTTTGCTGTTGACCCTACG and Inha-R: 
AGGCATCTAGGAATAGAGCCTTC (RefSeq ID: NM_010564.4); Inhba-F: CTTCGTCTCTAATGAAGG 
CAACC and Inhba-R: CTCCACCACATTCCACCTGTC (RefSeq ID: NM_008381.3); Inhbb-F: GGA 
GAACGGGTATGTGGAGA and Inhbb-R: TGGTCCTGGTTCTGTTAGCC (RefSeq ID: NM_008380.1); 
Follistatin-F: AAAACCTACCGCAACGAATG and Follistatin-R: TTCAGAAGAGGA GGGCTCTG (RefSeq ID: 
NM_010565.3).

Immunohistochemistry. Uteri were collected and processed for paraffin immunohistochemistry, as 
described previously20. Sections were then incubated in rabbit anti-FOXA2 IgG (1.8 μ g/ml, catalogue # AB108422, 
ABCAM, Cambridge, MA, USA) or rabbit anti-SPP1 IgG (1:10,000 dilution, catalogue number AB10910, 
Millipore, Etobicoke, ON, Canada). In experiments represented by Fig. 7C,D, anti-FOXA2 IgG was used at a final 
concentration of 0.18 μ g/ml. Antigen-bound primary antibodies were detected with the ImmunoCruz rabbit ABC 
Staining System (catalogue number sc-2018, Santa Cruz Biotechnology, Inc. Dallas, TX, USA). The secondary 
detection systems were used according to the manufacturers’ guidelines without any adaptations. Experimental 
and control samples were processed in parallel and treated with the 3,3′ -diaminobenzidine substrate for an iden-
tical period of time. This allowed us to compare relative expression levels between experimental and control 
samples. Experimental conditions were carefully maintained between independent assays and analyses were con-
ducted 5–20 independent times. We found it was visually easier to assess expression levels of FOXA2 and SPP1 in 
the absence of a counterstain; thus, tissue sections were not counterstained. Coverslips were affixed to slides with 
Permount mounting medium (Fisher Scientific, Ottawa, ON, Canada).

Slides were scanned using an Aperio ScanScope XT in conjunction with the ImageScope software and the 
area of transverse uterine sections determined using the annotation tool. Total uterine area (including the uterine 
lumen) and uterine luminal area were calculated and expressed as μ 2. Uterine luminal area was then subtracted 
from the total area and the remaining area comprised of the myometrium and endometrium was used as an 
indication of uterine growth. The data in this study represent the average area (μ 2) of a transverse uterine section 
(excluding the uterine lumen) per uterine horn ±  SEM. FOXA2 immunostaining was conducted to determine 
gland number and morphology. The data in this study represent the average number of FOXA2-positive glands/
transverse section of uterine horn ±  SEM.

Statistics. The differences between groups were determined using unpaired Student’s t-test or one-way 
ANOVA followed by post hoc Student-Newman-Keuls test (GraphPad Prism Software, Inc, La Jolla, CA). All 
values are expressed as mean ±  SEM and a value of P <  0.05 was considered statistically significant.
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