
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tsec20

Journal of Cyber Security Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsec20

Internal interface diversification as a method
against malware

Sampsa Rauti , Samuel Laurén , Petteri Mäki , Joni Uitto , Samuli Laato &
Ville Leppänen

To cite this article: Sampsa Rauti , Samuel Laurén , Petteri Mäki , Joni Uitto , Samuli Laato & Ville
Leppänen (2020): Internal interface diversification as a method against malware, Journal of Cyber
Security Technology, DOI: 10.1080/23742917.2020.1813397

To link to this article: https://doi.org/10.1080/23742917.2020.1813397

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 31 Aug 2020.

Submit your article to this journal

Article views: 189

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tsec20
https://www.tandfonline.com/loi/tsec20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23742917.2020.1813397
https://doi.org/10.1080/23742917.2020.1813397
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2020.1813397
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2020.1813397
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2020.1813397&domain=pdf&date_stamp=2020-08-31
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2020.1813397&domain=pdf&date_stamp=2020-08-31

Internal interface diversification as a method against
malware
Sampsa Rauti, Samuel Laurén, Petteri Mäki, Joni Uitto, Samuli Laato
and Ville Leppänen

Department of Future Technologies, University of Turku, Turku, Finland

ABSTRACT
Internal interface diversification is a proactive software security
method that prevents malware from using the fundamental
services provided by an operating system by uniquely diversify
ing internal interfaces and propagating the information only to
trusted programs. There are three main internal interfaces in
operating systems that have been diversified in previous studies:
(1) system calls (2) library functions and (3) shell commands.
Based on previous studies and our own work, we implemented
diversification for all interfaces in order to test their suitability
and feasibility for real-world use. All three solutions enhanced
the multi-layer security of the testing environment with little to
no cost on system performance. However, maintaining such
diversification tools might be troublesome in large and complex
systems where new software is frequently added and software
versions are updated. Thus, the solutions would be ideal for IoT
devices and other smaller systems which rarely require updat
ing, as well as restricted and static systems and critical systems
with high-security requirements.

ARTICLE HISTORY
Received 17 April 2020
Accepted 14 August 2020

KEYWORDS
Proactive software security;
diversification; obfuscation

1. Introduction

According to AVTest, hundreds of thousands of new malicious programs are
being discovered each day [1]. Once a vulnerability is found, attackers usually
move in to exploit it faster than software vendors can create and distribute
patches. A key observation is that many of the vulnerabilities are related to
misuse of internal interfaces, e.g. all injection attacks try to exploit internal
interfaces of the target system. To counter this problem, novel proactive mea
sures are needed. Simultaneously industrial systems, homes and cars are all
being increasingly digitalized and connected to the Internet. With the increase
of IoT devices and critical infrastructure connected to cyberspace, and other
critical solutions such as online banking already in place, cybersecurity has
become of critical importance. As anti-virus software is struggling to keep up
with development of new exploits, software security vendors are providing

CONTACT Sampsa Rauti sjprau@utu.fi Department of Future Technologies, 20014 University of Turku,
Finland

JOURNAL OF CYBER SECURITY TECHNOLOGY
https://doi.org/10.1080/23742917.2020.1813397

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduc
tion in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2020.1813397&domain=pdf&date_stamp=2020-08-29

multi-layered security measures to combat these issues [2,3]. One such measure
which has recently received attention is internal interface diversification
(IID) [4,5].

The reasoning behind IID is that typically malware attacks and malicious
programs are familiar with the target system’s internal interfaces. For example,
a piece of malware knows what library function it should invoke or what kind of
shell commands it should issue in order to take advantage of the operating
system’s resources. Instead of thinking how to separately prevent all types of
exploits that enable execution of malicious code in the target system, IID
uniquely diversifies the interfaces that malware uses to reach its goals.
Knowledge of the new interface is then propagated to trusted programs and
scripts in the system so they conform to the new ”language” of the system. As
malware does not know the diversification secret (e.g. a unique key used to
diversify the interfaces), it cannot function as intended.

Several diversification schemes employing this general idea have been pub
lished in the literature [4]. In the Linux operating system, these schemes often
propose diversification of three important interfaces: (1) the system call inter
face [6]; (2) binary symbols and library functions [7]; and (3) command shell
language [8,9]. In this study, our aim is to investigate the feasibility of each
solution for system’s multi-layered security. To that end, we deploy solutions for
each of the three interfaces, and run tests to determine in what kinds of systems
and environments the solutions could be used.

The rest of the paper is structured as follows. Section 2 presents the general
idea of interface diversification and provides some background of the three
interfaces we are covering in this paper. This is followed by a description of the
empirical research methodology. Sections 4, 5 and 6 discuss the experiments in
the three main categories mentioned above. Section 7 then summarizes the
findings and discusses their implications. Finally, before conclusions, we discuss
other solutions in related work.

2. Multilayer interface diversification

Various software interfaces have been proposed for diversification in order to
enhance system security. Applied methods range from binary level solutions to
upper software levels such as source code or even higher levels of abstraction
[5]. Cohen advocated diversification as a method for operating system protec
tion already in 1993 [10]. He proposed utilizing several obfuscation techniques
to create unique software instances to make it harder for malicious programs to
function. However, his ideas did not catch wind until 2003 which was the
first year in which over 10 peer-reviewed papers on diversification were pub
lished [4]. Another pioneer of diversification as a security solutions, Forrest [11],
describes in 1997 diversified computer systems as a feasible countermeasure
against malware. Some later studies, i.e [2,12]., and books [13,14], outline an

2 S. RAUTI ET AL.

idea of system-wide multilayer diversification. While earlier work focuses pri
marily on operating system level diversification, this idea has also been pro
posed to be used in web environments [15].

A few surveys on diversification research have been written. Larsen et al. [5]
survey the state-of-the-art in automated software diversity as a mechanism to
improve security and privacy. They argue for automating the diversification
processes for ensuring practical use of such systems. Baudry et al. [16] con
ducted a literature review in 2015 that captures the big picture of software
diversification: along with security, diversification can also be used for fault
tolerance, reusability and testing. The survey referred to what we call diversifi
cation as randomization at different system levels. The most recent review con
ducted by Hosseinzadeh et al. [4] and published in 2018 reviews over 200
studies on diversification and obfuscation techniques to identify the goals of
such solutions as well as all potential interfaces which can be diversified. This is
also the most exhaustive work on the field. The majority of diversification
solutions were found to be designed to work on the operating system level
with some aimed at web interfaces. Surprisingly, only a few studies focused on
IoT devices specifically. Three main interfaces in operating system diversification
were: (1) the system call interface; (2) shared libraries and library functions; and
(3) shell scripts.

2.1. Internal and external interfaces

In this study, the term interface is broadly defined to mean any entry point
that enables malware or an adversary to access critical services of the operat
ing system. Let us remember that operating system guards the use of all
resources of the system. Therefore, an interface can refer to traditional inter
faces such as the system call interface or operating system APIs, but also to
higher level interfaces (based on lower level interfaces) such as memory or
command shell languages that can be exploited by malware e.g. through
buffer overflows.

In this study, we concentrate on internal interfaces that are not directly used
by users. For example, if the system call interface is altered and changes are
propagated to binaries in the system, user experience does not change. External
interfaces, such as graphical user interfaces, are not diversified. Malware usually
uses internal interfaces to reach its goals. Malware may execute in the context of
the operating system either as its own process, or as a piece of malicious code
injected to another process. In both scenarios, IID prevents the malware from
accessing internal interfaces in the system.

Although developers of services or applications need to know the internal
interfaces, the users do not need such knowledge. Malware creators should not
have knowledge of internal interface details. It is important to note that the
software developers can do software development against known standard

JOURNAL OF CYBER SECURITY TECHNOLOGY 3

internal interfaces – development should not be done against diversified inter
nal interfaces.

2.2. The general idea of internal interface diversification

IID modifies applications’ and libraries’ internal structure so that an adversary
or malware cannot predict their implementation details anymore. By diversi
fying the system’s internal interfaces, we decrease the number of assump
tions the adversary can make about the execution environment [17].
Importantly, this does not change the external interfaces exposed to the
user, thus ideally maintaining the level of usability. IID can also utilize obfus
cation methods such as renaming or altering the order of parameters in
function signatures.

When applying IID, there are always two parts in the system that need to be
diversified: first, the place where the interface is defined (e.g. system call
number list in the kernel or the command set in a command shell interpreter)
and second, the executable code that makes use of this definition (e.g. the code
using the system call number or script file containing shell commands) [7,17].
After diversifying the interface itself, changes must be propagated to all trusted
programs that are using it. Thus, IID retains the original functionality of the
programs and does not affect the user experience [18]. Ideally the only notice
able change is a slight increase in execution time, but often there is no perfor
mance penalty at all, as demonstrated by, for example, the case of changing the
system call numbers.

IID also has minimal impact on the work of a software developer working on
user applications, as IID is applied to the programs or scripts after they have
been written via an automatic tool. A developer needs to interfere with IID only
in rare cases, e.g. if the coverage achievable by automatic tools is incomplete [6].
In an ideal case the IID process is automated to the extent that a developer does
not need to even be aware of its existence. In principle, the same applies to
updating software versions.

2.3. Covered interfaces and attack scenarios

Our scheme consists of three layers of interface diversification: diversifying the
system calls, library functions leading to invocation of system calls and the
command-line interpreter. All three are essential interfaces in an operating
system, as shown in Figure 1. In order to use services of the operating system,
user applications invoke system calls either directly or through wrapper func
tions provided by operating system libraries. It is also possible to access many
critical system resources through opening a command shell. In what follows,
we will give a more detailed description on diversification of these three
layers.

4 S. RAUTI ET AL.

2.3.1. System calls
The lowest layer of diversification in our scheme consists of uniquely changing
the mapping of system call numbers [6]. The system call numbers in binaries
of libraries and applications that invoke system calls are then diversified
accordingly so that the trusted applications are compatible with the operating
system.

As the attack code needs to execute system calls in order to cause any real
harm in the system, diversifying system call numbers prevents it from doing this
directly. For example, the code injection attacks tricking the system into execut
ing code that contains direct system calls no longer work because the attacker
does not know the system call numbers [17]. Other attacks where the attacker
uses system call numbers directly will also fail.

2.3.2. Function names in binaries
It directly follows from the diversification of the system call interface that we
also have to prevent the adversary from reaching the critical resources
through those library functions that directly or indirectly lead to invocation
of system calls (transitive closure) [7]. In order to propagate the diversification
of library functions, we diversify the corresponding function names in binary
files. In other words, the symbol strings in binaries are diversified. This diversi
fication is performed both for libraries and applications invoking the library
functions.

As an example attack scenario, failing to invoke a system call directly, the
attacker might try to use the symbol table or PLT/GOT to find out a function’s
address based on its name. They would then invoke a function that makes
a specific system call. However, since the function names have been diversified,
this approach will not work.

Figure 1. Software layers in an operating system.

JOURNAL OF CYBER SECURITY TECHNOLOGY 5

2.3.3. The command-line interpreter
To circumvent the protection for library functions and system calls, malware or
an adversary could try to make use of interpreted languages like command shell
script languages [8]. Therefore, we also include shell scripts in our protection
scheme. Much like the library functions, the command shell provides access to
the resources provided by the operating system.

This fact has been exploited in previous attacks, for example, injection attacks
such as ShellShock [19]. In order to prevent the attackers from using the com
mand line, we diversify the language interface used by the command interpreter,
that is, change the set of tokens recognized by the command interpreter’s lexical
analyzer. To this end, the command interpreter is modified to support execution
of diversified scripts and all the shell scripts in the system are diversified [8,9].

2.4. Interfaces not covered

It is important to note again that diversifying these three interfaces does not
provide a totally comprehensive protection against malicious attacks. First of all,
there are attacks that can not be prevented with diversification. These mostly
have to do with faulty implementation details and logic bugs in the public
interfaces of the system.

Second, there are some other interfaces, most notable those present in web
environment, that can be used by the adversary to subvert the system. SQL and
JavaScript language interfaces are such examples. Diversification of these inter
faces has been discussed elsewhere [20,21].

Third, an attacker may find some way around the diversified interfaces, e.g.
using a new interface that anyone has not thought to diversify yet. For example,
blind hacking attacks, where the attacker simply guesses system call numbers and
function names and tries to invoke them, are also threats our approach might not
prevent. Still, the interfaces we propose for diversification here are used by a large
number of malware exploits and diversifying them is therefore worthwhile [22].

Finally, Instruction Set Randomization (ISR) on machine code level is not
included in our framework, because we believe a good protection can already
be achieved by diversifying system calls and library functions. Additionally, ISR
has many challenges like not being supported by current CPU architectures. We
also do not discuss Address Space Layout Randomization (ASLR) because many
papers have already been published on the topic [23,24] and the protection
scheme is already incorporated into most modern operating systems [12,20].
This protection can be used in combination with our scheme.

3. Materials and methods

Linux-based operating systems, Linux From Scratch (LFS), Gentoo Linux Minimal
Installation and Fedora Linux, were selected as environments for implementing

6 S. RAUTI ET AL.

the OS-level diversification techniques. The advantage of these systems is the
availability of source code for the majority of applications and libraries, which is
useful for understanding the underlying system and engineering diversification
solutions. Linux-based operating systems are also world-wide the most popular
in smartphones [25], supercomputers [26], IoT and embedded devices [26,27]
and web-servers [26].

With regard to the three OS techniques, we provide a description of each
solution with reference to the code of the implementation. The feasibility of
each solution is tested with the aim of assessing the costs and benefits of
adopting the solution for use. Accordingly, we test the impact of the solutions
on (1) System performance, by measuring execution times in the system with
and without the diversification in place; (2) System security, by empirically
testing popular attack scenarios against the diversified system; and (3)
Implementation and maintenance costs, by discussing deployment time, diffi
culty of implementation and updating of the diversification tools. The tests are
carried out individually for each diversification technique and reported coupled
with relevant discussion.

4. Experiments on system call diversification

In this section, we discuss and evaluate the first part of our diversification
scheme, changing the mapping of system call numbers. We first explain the
scheme and then cover some of the challenges that make automatic diversifica
tion of all the system calls difficult. We also present some experimental data on
problematic system call invocations that are difficult to diversify with an auto
matic tool in a practical system. Finally, we discuss practical methods to cover
the difficult cases.

4.1. Diversifying system calls in ELF binaries

In [28] we provided an implementation for a system call diversifier. Our diversi
fication tool uses a straightforward linear-sweep algorithm [29] to rewrite the
system calls in 64-bit ELF (Executable and Linkable Format used in Unix-based
systems) binary executables. This disassembly method decodes everything in
the ELF sections that are usually used to store machine code. Our diversification
method is used on binary files after compiling, before they are deployed for
execution.

Our diversifier tool finds system calls by linearly going through the program
code sections in an ELF binary. A system call invocation consists of two separate
phases: first, putting the system call number into a predefined register
and second, transferring the control to operating system’s system call handler.
Our tool first looks for SYSCALL instructions that are used to invoke system calls
in the x86-64 architecture. After finding a SYSCALL instruction, the tool starts

JOURNAL OF CYBER SECURITY TECHNOLOGY 7

looking for a system call number associated with this call. The instruction that
sets the system call number can be found by backtracking from the location of
SYSCALL instruction. The number of the system call to be invoked is first moved
into a register, so our tool searches for instructions changing values of the
registers used for this purpose (RAX, EAX, AX, AH, AL). The number of
a specific system call is then rewritten according to the chosen diversification
function (a transformation that maps the original system call numbers to the
diversified ones).

4.2. Challenges

Because we used a simple linear-sweep based disassembly algorithm and static
analysis of binaries, our approach has some limitations:

● Gaps between instructions. A system call invocation consists of two phases,
which means there are two possible cases to be dealt with. Either the two
instructions are consecutive or there are other instructions between them.
The first case is mostly trivial but the second case may introduce some
problems. For example, a jump instruction between the two phases is
problematic for our algorithm. This might be caused by a conditional
structure in the code.

● Indirectly moving values to registers. As we limit our analysis to simple mov
instructions, some complications arise. For example, the number of the
system call to be invoked can be moved to the final register indirectly using
other registers as temporary storage. Tracing this kind of data flow would
require a more advanced algorithm. Many compilers also circulate values
through memory before they are moved to a specific register, which is
a similar problem.

● Manipulating the system call number before use. The system call number
may also be manipulated after it is moved to a register, say, by increment
ing EAX register. A more advanced algorithm should also take these kinds
of changes into account.

● Alignment. The way data is arranged and accessed affects the success rate
of our tool. Because of the straightforward manner our tool disassembles
the file, excessive data or zero bytes between instructions lead to a failure.
Therefore, in the worst case, a system call can be erroneously found in
a binary file. However, in practice, compilers rarely produce this kind of
faulty executable code.

● Compiler optimization and settings. In our analysis, we noticed that using
different compilers or even just different versions of the same compiler
results in differences in binaries. These differences have an effect on the
results of our tool. Compiler settings, such as optimization, also have an
influence on the accuracy of our tool. According to our experiments,

8 S. RAUTI ET AL.

optimization is strongly related to the number of gaps in the binaries; with
no optimization at all there will be problematic gaps [6]. However, as we
will see next, this only causes problems in a few cases.

4.3. Experiments on the problematic cases

We have seen that there are several challenges in applying our approach in
practice. However, these problematic cases are often caused by the gaps
between the two instructions. It is therefore interesting to see how many system
call invocations actually have these gaps. To this end, we analyzed Linux Gentoo
distribution (a fairly minimal installation with only a few packages other than the
default/linux/amd64/13.0 profile). We found that of 807 system call invocations,
736 had no gaps. That is, 91.2 % of system calls had no gaps. The remaining 71
invocations had gaps, but these were very small almost in all cases. Figure 2
shows the lengths of the gaps system call invocations have in Linux Gentoo.

Because of the small proportion of problematic cases, it is to be expected that
our tool performs well. The tests carried out on Gentoo support this hypothesis.
Table 1 shows the identified (and correctly diversified) system calls and uni
dentified system calls for binaries that contain direct system calls in Gentoo. In
unidentified cases, the tool finds the SYSCALL instruction but cannot correctly
identify the system call number associated with it. Note that there can be

Figure 2. Gaps found in binaries of Gentoo distribution.

JOURNAL OF CYBER SECURITY TECHNOLOGY 9

several branches in a conditional statement that set the system call number, and
all of these are counted as separate system call invocations (while each SYSCALL
instruction was counted only once when finding gaps previously). We can see
from the table that our tool performs well with this distribution – 92% of system
calls were correctly identified. In our view, this is an acceptable level of accuracy,
as we will present methods to cover the remaining cases below.

Interestingly, only nine out of 569 binaries in Gentoo distribution had direct
system calls. However, these executables are very important to the system, and
are, for example, shared libraries that are invoked by almost all binaries. For
example, the ones with most unidentified cases are libc, the C standard library
and libpthread, the POSIX threading library. Still, as can be seen from Table 1,
our tool performs well with almost all binaries in the system.

We consider the result of correctly identifying 92% of system calls very good
in general. As the table shows, however, our tool did not perform well with the
problematic cases caused by the gaps between system call invocation instruc
tions. A more advanced algorithm with data-flow tracing can be developed. The
next subsection presents several other methods to address the majority of
remaining hard cases.

4.4. Diversifying the remaining system calls

In order to diversify the remaining hard cases that our algorithm did not identify
and diversify correctly, a combination of the following methods can be used:

● Including the diversification function in the binary. The diversification func
tion that performs the mapping between original and diversified system
call numbers can be embedded in the binary. However, there are some
challenges with this approach. Along with some relocation problems, the
diversification secret, that would now be a part of binary, could potentially
be leaked. If the malware were to find a way to get into the memory space
of a running process, it could attempt to perform an analysis on the
diversified system calls. This threat can be mitigated by applying some
additional obfuscation to the binary.

Table 1. System calls in binaries of Linux Gentoo.
Path Not identified Identified Total

/lib64/libpthread-2.17.so 23 144 167
/lib64/libc-2.17.so 19 411 430
/lib64/ld-2.17.so 5 32 37
/lib64/libanl-2.17.so 5 1 6
/lib64/librt-2.17.so 5 24 29
/sbin/sln 5 84 89
/sbin/ldconfig 5 102 107
/lib64/libcrypt-2.17.so 0 3 3
/lib64/libnss_db-2.17.so 0 1 1
Total 67 802 869

10 S. RAUTI ET AL.

● Hard-coding the diversification. In some of the code sections where system
call diversification is troublesome, diversification could be hard-coded in
the binary. That is, statically embed the diversified system call numbers
into the binary. This is usually not a very flexible option, but could be
done for some common parts of Linux operating system such as
C standard library.

● Rewriting source code. Many problems that occur when diversifying binaries
can be fixed on source code level. Writing the source code differently
would often solve the problem, and this is also easily possible in open-
source operating systems. Of course, this would mean lots of work if it were
to be done to several user applications. However, as we have seen, mainly
libraries used in many systems and many distributions use direct system
calls. Many of these could be rewritten on the source code level to make
the binary diversification process easier. This method is not complete, but,
for example, clearly making the systems call numbers visible in the source
code, so that the system call numbers are not determined as a result of an
obscure calculation and do not come as a user input, the diversifier can do
much better.

● Changing the compiler settings. We have seen that the order of instruc
tions in machine is occasionally changed due to optimizations performed
by compilers. For example, this happens when the system call numbers
are circulated through memory or extra registers before invoking the
system call. The binaries could be compiled using some specific compiler
with certain configuration that would make things easy for the diversifi
cation tool. We cannot expect the software vendors to do this for us, but
the approach fits for open source programs and libraries. Also, there
could be a dedicated service for compiling programs with the right
configuration.

● Making the correct choice of the application area. The methods discussed
above all have some challenges. Still, we believe that by using these
methods, it is possible to reach 100% diversification accuracy at least in
many restricted systems. For instance, many embedded systems and
Internet of Things devices are lightweight and easier to adapt to our
scheme.

5. Experiments on symbol diversification

The second part of our scheme includes diversifying the function names in all
binaries. This is achieved by changing the string symbols in ELF files. We first
give a detailed introduction to this process and then present some challenges
related to it. We also provide some experiments to gauge the usability of our
scheme and finally present some methods to alleviate the identified
challenges.

JOURNAL OF CYBER SECURITY TECHNOLOGY 11

5.1. Diversifying symbols in programs and libraries

Using shared libraries, programs can implement part of their functionality by
linking their code to functions, variables and other data provided by the library
when the program starts or during execution. Dynamically linked libraries and
programs (in ELF format) contain symbols for the functions and other data. The
resources these symbolic names refer to are either provided for other execu
tables or expected to be found from external binaries.

Our proof-of-concept implementation diversifies – that is, renames – the
symbols in shared libraries. Also, these changes are propagated to all trusted
ELF files which depend on the entities referenced by the diversified symbols.
Naturally, the mapping between the original symbol names and new diversified
symbols is kept secret. The adversary will have a hard time creating ELF binaries
that make use of known function names and are therefore compatible with the
system. A program will not function correctly unless the contents of the symbol
table of the ELF file correspond to the names in the file providing the needed
resources.

The proof-of-concept implementation of our symbol diversifier is made of
three separate tools. Each tool takes care of one step of the symbol diversifica
tion process. By dividing diversification into these steps we aim to make the tool
as flexible as possible in order to allow future changes and extensions. The three
steps of our diversifier tool along with their respective inputs and outputs are
shown in Figure 3. In what follows, we will describe these steps in more detail.

5.1.1. Symbol collector
The first step is collecting symbols. The symbol collector gathers symbols from
64-bit ELF files and gives a plain text list of them as a result. The process is
carried out by iterating over the.dynsym symbol table that references the .
dynstr string table that contains the symbol names. The tool also allows us to
filter symbols based on their properties, such as the type of the symbol or
whether the symbol is external.

5.1.2. Symbol diversifier
The symbol diversifier takes the symbol list produced by the symbol collector
and diversifies each symbol using a specific diversification method. For example,
our implementation uses salted SHA-256 hashing with Base32 encoding or

Figure 3. The symbol diversification process.

12 S. RAUTI ET AL.

alternatively simple prefixing. This step does not involve the ELF files; it only
needs the symbol lists. This step is therefore easy to replace or extend with any
diversification method.

5.1.3. Symbol rewriter
The symbol rewriter takes the original ELF file and the diversified symbol defini
tions and generates a modified version of the file using this information. Editing
ELF files involves updating several data structures in the object file, which makes
symbol rewriting the most complex step in our scheme.

Symbol rewriter takes the mapping between original and diversified symbols
and proceeds to rewrite the symbol definitions in the object file accordingly. To
do this, we need to update many things in the ELF file: the hash tables that are
created based on the symbol names, the string tables (.dynstr and .strtab) that
contain the actual symbol names, data structures that point to offsets within, or
other data regarding the string tables; .dynsym and .gnu.version sections, and
the ELF section and segment header tables.

An apparent challenge is that rewriting the string table in-place is not
possible in all cases; the diversified symbol names may require more space
than the original ones! In our implementation, we chose a simple approach of
moving the extended sections to the end of the ELF file. The gaps left in the
original section locations are padded with NUL bytes.

For this paper, we have improved our original diversification tool [28] to
better mitigate the known problems in the diversification process. The previous
implementation had issues tracking dynamically what loaded libraries are used
by the binary. An application can always try to dynamically load new depen
dencies at runtime, and these libraries are not easy to find while analyzing
binary files statically. The improved version of our tool finds symbols for the
dynamically loaded dependencies more accurately and diversifies these strings.
The following experiments have been conducted with this new improved
version of the symbol diversifier.

5.2. Experiments with the symbol diversification tool

Table 2 shows the applications we diversified using our symbol diversifier tool.
The columns indicate whether diversification worked, whether the program
started and whether there were any visible errors in its execution.

We can see that a majority of the diversified programs worked correctly in our
tests. Command-line tools like cat, echo, less and interpreters such as gawk and
Perl interpreter worked as expected. Most of the user applications with
a graphical user interfaces such as inkscape and gedit also appear to work
correctly.

Unlike in [7], gnumeric also works with our solution, which is evidence that
we managed to improve our earlier solution with regards to diversification

JOURNAL OF CYBER SECURITY TECHNOLOGY 13

accuracy. The older diversifier still had some problems with diversification due
to dynamic libraries, like icons not showing up correctly in diversified gnumeric.
With the improved version of our diversifier, even Firefox, consisting of
several million lines of code and containing several optimizations that make
automatic diversification harder, was diversified correctly by our tool and
appeared to function normally. Browsing web-pages such as Wikipedia and
YouTube works as expected.

Although the experiments were not exhaustive in terms of input combina
tions or code coverage, they do provide backing for successful symbol diversi
fication. More complete testing would of course be necessary for production
systems. While we think these results are positive, there were two programs
(gnome-terminal and cheese) that were not diversified correctly with our cur
rent diversifier implementation. This is due to library path dependencies that
our tool could not track and diversify correctly.

However, we will see next that these remaining issues can be identified and
methods to alleviate them can be developed.

5.3. Methods to diversify the remaining symbols

The problems with diversifying two applications seen above were caused by the
use of dynamically loaded libraries. Applications often dynamically load new
libraries during execution, and it is not totally straightforward to find these
dependencies when analyzing binary files statically. Plug-in mechanisms often

Table 2. Results of symbol diversification tests with various Linux applications.
Application Diversification works? Starts? Visible problems?

cat yes yes no
echo yes yes no
less yes yes no
gawk yes yes no
perl yes yes no
python2 yes yes no
ghex yes yes no
emacs yes yes no
dia yes yes no
inkscape yes yes no
filezilla yes yes no
pcmanfm yes yes no
gnumeric yes yes no
vim yes yes no
gedit yes yes no
gnome-calculator yes yes no
charmap yes yes no
gnome-terminal yes no –
lxterminal yes yes no
mplayer yes yes no
cheese yes no –
firefox yes yes no

14 S. RAUTI ET AL.

employ this kind of loading. In run-time linking, the symbol name sometimes
cannot be determined by statically analyzing the binary file.

There are two main approaches to solve this problem. First, we could make
modifications to the library in order to make it perform symbol diversification at
the time the run-time loading is done. The symbol diversification could be done
in the address space of the process (this has negative implications on security if
the malware also operates in the same address space), or by utilizing an external
diversification server. Second, we could statically search for function names
stored in the binary (e.g. the .rodata section of an ELF file, when the function
name is stored in the binary as a string). We would then alter these strings
according to our diversification scheme.

These methods would modestly increase the execution time (that otherwise
does not increase due to diversification), but they would also solve most of the
issues that occurred in our experiments. The problem with dynamic libraries is
mostly present in the user applications with many library dependencies and
graphical user interfaces.

6. Experiments on diversification of the command shell language

In this section, we discuss the third part of our scheme, diversifying command
shell languages. We first present our approach for shell language diversification.
Some challenges and implications of applying this idea are then discussed.
Finally, we show some methods that can be used to mitigate these challenges.

6.1. Diversifying shell languages

Diversification of shell languages can be achieved by changing the commands
in the language’s command set to ones the adversary does not know. The idea is
the same as in the symbol diversification scheme in the previous section: the
language interface is diversified so that the malware author can not make use of
his or her knowledge about the language. Malware that is not armed with this
knowledge will not be compatible with the rest of the system.

In the current approaches in literature, diversification of programming lan
guage interfaces is usually performed by appending a diversifying tag after each
token in the language [30–32]. Our scheme is similar but utilizes a stronger form
of diversification by using several unique tags. Another alternative would be to
modify the language so that the tokens are entirely changed into a form where
the original token is not visible at all. However, by using tags in diversification,
readability is preserved and implementation for many shell languages is
simplified.

In our diversification scheme, a secret key is used to create uniquely diversi
fied scripts. Each token in the script is transformed by combining it with the key
(any collision-free mapping can be used). Here, a token refers to a sequence of

JOURNAL OF CYBER SECURITY TECHNOLOGY 15

characters that the interpreter’s lexical analyzer considers as a token identifier.
The diversified scripts can only be run with a diversified interpreter that sup
ports executing them. The interpreter needs the diversification key to execute
the scripts. The scripts that are not correctly diversified cannot be executed. The
malware author does not possess the secret key and cannot diversify any
malicious code. Attempts to inject code or directly use the original script
commands are therefore prevented.

Our approach also allows diversification to depend on the token’s context.
This option provides further security. For example, we can make the diversified
version of a token depending on the other tokens present in the same script.
Diversified form of a token can also depend on the source code before the
token. This way, each token instance in the code will have a unique tag (two
echo commands at different positions in the code will have different tags
appended to them) which makes things even more difficult for the attacker as
he or she cannot expect the same token to be diversified in the same way in
different locations. In a way, this kind of diversification bears a close resem
blance to encryption, but unlike encrypted code, diversified code can still be
normally executed.

It is also worth noting that our approach uniquely diversifies only the tokens
appearing in a specific script. The adversary has no way of finding out the
diversified forms of any other tokens even in the case they have an access to
the source code.

6.2. Challenges and solutions

Deploying a diversifying shell language interpreter in a practical environment
entails more challenges than just replacing the original interpreter with
a modified one. In what follows, we identify these challenges and present
ways to mitigate them.

6.2.1. Several interpreted languages
One problem with diversifying shell scripts is that there are several interpreted
script languages in most systems (such as sh, Python and Perl). All of these
require a diversified interpreter. Each interpreter could of course be modified
separately while still reusing some common functions such as the tag generation.
A generalization of this approach would be to build a common library providing
general tools to implement diversification for several interpreters. Because of the
differences in interpreters’ implementations, this is quite challenging. Finally,
tools for building diversifying interpreters – interpreters that have the diversifica
tion functionality embedded from the beginning – could be implemented. This
would be hard but would also make adding new diversified languages easy.

16 S. RAUTI ET AL.

6.2.2. Secret key management
Because we use a unique key for each script, key management also becomes
a problem we have to solve. In Portokalidis and Keromytis’s solution for Perl [32],
the diversification secret is input via command-line. While this idea may work in
some restricted environments, we consider it an ad-hoc solution and it puts a lot
of responsibility on the interpreter and the user.

Portokalidis and Keromytis also propose storing keys to a local database. In
addition to a database, we also need a key management service. This results in
a centralized secret key management system which aids with realizing system-
wide re-diversification and diversification key granularity policies.

Key management is not a totally straightforward task. Implementation
complexity depends on the chosen granularity of diversification keys (for
example, one key for the whole system or file-specific keys). Finer granularity
leads to increased complexity. Particularly, two scripts with unique keys both
using the same library (which has its own key) cause a collision. The interpreter
now has to handle two keys and has to know which one to use with each
command.

6.2.3. General usability
Several interpreted languages are used from the command line. It is clear that
diversification causes a usability issue in this case. It is not possible for the users
to easily learn the diversified commands that they would need to make use the
new language.

This problem could be solved by allowing the modified interpreter to
execute non-diversified scripts from the command line. This solution, however,
would defeat the purpose of script diversification. A malicious piece of code
could exploit the command-line interface as an attack vector in order to
compromise the system. If an attacker manages to run a malicious script
fragment via the command-line interface, our diversification scheme is com
pletely circumvented.

If a command-line interface with an option to input non-diversified com
mands is needed, it should therefore be implemented in such a way that it
becomes very laborious for the malware to exploit this interface. For example,
the internal structure of the interface (but not the commands of the script
language) can be obfuscated to prevent malicious attacks.

Finally, it is noteworthy that many users do not need or are not aware of
command-line tools at all. Several restricted environments also exist in which
the command-line is used very rarely or is not needed at all.

6.2.4. Script invocations in source code
Finally, a big challenge with diversified scripts in the system are the script
invocations made by programs. In other words, programs sometimes generate
and execute script fragments at run-time. Source code of each program issuing

JOURNAL OF CYBER SECURITY TECHNOLOGY 17

script invocations needs to be modified to be compatible with the diversified
shell language. Another option of course is to not support such usage of script
engines. This issue is addressed next in our practical experiments.

6.3. A study on script invocations in source code

To see how much work script invocations in the source code would cause when
diversifying the scripts in a system and whether the modification of code could
be automated, we statically analyzed the source code of Linux from Scratch
distribution (version 7.8) and identified all the script invocations present in the
source code.

We divide the script invocations into three groups: inline scripts, command-
line scripts and nontrivial cases. Inline scripts are scripts held entirely in the
program’s source code as plain-text. This makes them relatively easy to diversify
automatically in most cases. A precompile process that takes care of diversifying
these parts can be created. As can be seen in Table 3, our experiments show that
majority (70.5%) of the script invocations are inline scripts and thus relatively
easy to diversify. Table 3 also shows the proportions of different system calls
(system, exec, popen) used to invoke the shell scripts.

The cases we have labeled as command-line scripts, the script that gets
executed is supplied via the command-line to the software. The command-
line may be external (program parameters) or internal (program offers
a command-line during execution). Whichever the case, the program usually
passes the script to an external interpreter. The interpreter needs to be provided
with a secret key it can use to execute the diversified code. For example, either
the user or the system can provide the key for the interpreter.

Finally, there are nontrivial cases in which the call-graphs and the flow of data
are so deep that it is difficult to know exactly what is executed. This may be
result of large program size, intricate wrapping of functionality or several other
reasons. In these nontrivial cases, an automatic diversifier would usually not be
able to diversify the scripts correctly and manual work would be required.

Because of these non-trivial cases, diversification of all scripts cannot be fully
automated. For example, undecidability, data flow analysis precision and com
piler limitations are ultimately reasons for this. Just like with system calls, setting
some limitations for the diversified scripts would increase precision of the
automatic diversifier by eliminating many hard cases. When the commands
are clearly visible in the code and not result of some runtime calculation or

Table 3. Shell script invocations in LFS 7.8.
TYPE SYSTEM EXEC POPEN TOTAL %

Inline scripts 99 11 38 148 70.5%
Command line scripts 17 14 5 36 17.1%
Nontrivial cases 6 9 11 26 12.4%

18 S. RAUTI ET AL.

user input, diversification is much easier. The scripts the diversification scheme
is applied to should therefore be restricted to those scripts that do not make use
of reflection, that is, modify their own structure and behavior at runtime.
Comprehensive testing of diversified scripts also alleviates the problem of non-
trivial cases.

6.4. Experiments with the diversified interpreter

The diversified Bash interpreter was tested with 30 diversified scripts, some of
which were written by us and some taken from our test environment. In our
tests, all the diversified scripts worked correctly and produced expected results.
In terms of performance, the diversified scripts were 6.1% slower than the
original scripts on average, which we do not consider a significant performance
overhead, as the overall impact on the system performance is likely to remain
minimal.

Naturally, the overhead also greatly depends on the diversification function
used. In this experiment, diversification was done using a hash of 6 characters
(and a 3-character separator). The six characters were the six first characters of
an SHA-1 digest based upon the semantic value of the diversified token.

7. Discussion

7.1. Towards practical multilayer interface diversification

In the previous sections, we discussed challenges present in the implementa
tions of diversification of three interfaces: (1) system call; (2) library functions;
and (3) shell scripts. Based on conducted tests and evaluation, we then pro
posed methods to alleviate the identified issues.

None of the three proposed diversification schemes imposed significant
performance penalties, meaning implementing these solutions did not hurt
usability by slowing the system down. For instance, a static rewrite of system
call numbers only had a slight impact on performance in the rare case where
manual intervention was required. Similarly, the library function symbol diversi
fication did not impact performance, unless done on dynamically loaded
libraries which caused a small increase in execution time. As demonstrated,
diversifying shell languages may incur a larger increase in execution time
compared to diversification of system calls or symbols. In the presented scheme,
this is mainly because we allow several different diversification keys (for differ
ent scripts) and the modified interpreter has to support them all. It takes time to
check the correctness of a specific diversified script. Also, the Bash interpreter is
quite complex and is not well suited for diversification. Moreover, the proof-of-
concept implementation could be further optimized. Still, we do not consider
the overhead significant, as executing scripts usually consume only a minor

JOURNAL OF CYBER SECURITY TECHNOLOGY 19

share of available processor capacity. In summary, interface diversification does
not have a significant negative impact on execution time. This finding aligns
with results from previous studies [33]. The observed modest performance
penalty ensures energy efficiency, which is important to consider especially
for embedded and IoT devices.

Transparency is another major factor in applicability and usability of diversi
fication solutions [5]. Diversifying interfaces is transparent in the sense that it
does not change the user experience. The diversified version of the program
works in the same way as the original program. In some cases, however,
diversification causes inconvenience to the users. An example is the case
when the command shell language has been diversified and a user wants to
use the command shell. This at least requires the user to learn the new diversi
fied commands, but in most cases it completely prevents writing scripts. From
this standpoint, the system call interface and library function symbol diversifica
tion solutions are more transparent. With regards to software development,
none of the three IID solutions should complicate the process. Software is
developed in a standard way via referencing APIs and languages, and
a uniquely diversified version is automatically generated for every execution
environment in the deployment phase.

Finally, IID is a practical approach because it is orthogonal to many other
security measures. For example, it can be used together with traditional security
measures such as encryption and intrusion detection. This way, IID can present
operating systems with additional security. This is especially useful for systems
with high-security requirements such as governmental applications, banking
servers, military applications and certain critical devices. Furthermore, sensitive
devices such as IoT machines inside a private residence could be equipped with
such protection. The reasoning is that as IoT devices might be quite rarely or
never updated, their security could be enhanced as a countermeasure to the
lack of security updates.

7.2. Limitations

Automation of diversification arose as a major challenge when implementing
the three solutions. While the IID process can in most cases be performed
automatically, there are some challenging cases that require attention from
the programmer. For example, Section 4 shows that automatic system call
diversification is not possible in, for example, cases where there are gaps
between instructions. However, at least in the lightweight operating systems
having less program code, the number of problematic cases is not large.
Moreover, for the essential parts of the system such as popular libraries, manual
fixes only need to be done once.

In a diversified operating system, updates are a challenge. Obviously, any
update would have to be compatible with the interfaces it depends on.

20 S. RAUTI ET AL.

Therefore, it has to be diversified accordingly. This can be done for instance by
having the diversification engine automatically operating in the diversified
system. Another option is to locate the diversification engine on a dedicated
server and making it more difficult to discover and compromise for adversaries.
Sharing updates through an app store, as suggested by previous studies [20], is
also a possibility. The main reason to use external servers for storing the
diversification engine or key is that there exists a risk that the key might some
how leak to adversaries if the system was compromised and inspected. Once an
attacker obtains the key, diversification becomes useless. It is thus essential to
store keys safely and use robust diversification schemes to ensure that they are
not discoverable.

Another method for securing the IID is to make it dynamic, that is, by re-
diversifying the interfaces in the system regularly. Different diversification cycles
can also be applied to different interfaces in the system; the components
considered critical to the system could be diversified more often than others.

One limitation that is particularly relevant in implementing IID is that some
applications might be already obfuscated for additional security, which makes it
more difficult to further diversify system call numbers and symbols in binaries.
However, if obfuscation is applied to the binary after diversification, then it
obviously does not cause any problems for IID. When considering using IID in
a system, software developers could be advised not to use obfuscation on
source code level to avoid the above-described issues.

Finally, it is worth considering that IID solutions are not perfect. For example,
they do not prevent return-oriented programming (ROP)-based attacks, where
the attacker makes use of carefully chosen machine instruction sequences that
are already present in machine’s memory. One example to protect from such
attacks would be the G-free technique developed by Onarlioglu et al. [34] that
transforms binaries so that they are protected against any possible form of ROP.
IID can very well be implemented in a system together with the G-free techni
que, and they could both play their part in enhancing the systems multilayered
security protection. Another way to counter ROP attacks would be to dynami
cally change diversification forming several possible execution paths for differ
ent diversified versions of an interface in the binary executables. This could
mitigate also attacks where an adversary blindly tries to guess system call
numbers. To prevent scenarios where the function names or system calls are
not used directly (e.g. exploiting knowledge of the order of the PLT/GOT
entries), the binary could be for obfuscated after diversification.

8. Related work and other solutions

Many authors have proposed renaming or randomizing symbols as a method of
software diversification. Diversification of system call entry points by function
renaming in order to defeat buffer overflow attacks was initially proposed by

JOURNAL OF CYBER SECURITY TECHNOLOGY 21

Chew and Song in 2002 [17]. Along with system call entry points, they diversify
the mapping of system calls in the kernel. They also propose diversifying the
stack placement, which makes it more difficult for the adversary to find out the
return address needed for executing injected code.

Jiang et al. [35] introduced a scheme called RandSys that combines
Instruction Set Randomization (ISR) and Address Space Layout Randomization
(ASLR) to build a robust protection against malware. RandSys utilizes a dynamic
load-time scheme that allows each process to have uniquely diversified system
calls at the cost of an increase in execution time. The scheme includes diversify
ing libraries (e.g. renaming functions uniquely for each executing process) and
diversifying the system calls. In a similar fashion, Liang et al. [36] discuss
diversifying the system calls in order to defeat malicious attacks. Our multilayer
diversification scheme introduced and implemented in this paper can be seen
as an extension to this previous work. In addition, we provided a technical
description, an implementation as well as empirical results of testing done on
the solution to solidify its feasibility as a malware countermeasure.

Diversification solutions have been created for the Windows operating sys
tem as well. For example, Abrath et al. [37] obfuscated the interfaces between
application binaries and dynamically linked libraries in Windows. They noted
that by statically linking the libraries into the program and obfuscating the
whole resulting binary makes reverse-engineering considerably harder and
shrinks the attack surface.

When it comes to diversifying script languages, Portokalidis et al. proposed
an approach closest to our work [32] with the Bash interpreter. They modified
the Perl interpreter so that it executes diversified scripts. Execution of malicious
Perl code will fail because it is not correctly diversified, which makes it incom
patible with the system. Rauti et al. continue this research by diversifying the
Bash shell language and strengthen the original scheme by uniquely diversify
ing individual script.

Boyd and Keromytisproposed a similar approach for the SQL language [38].
They adopted a proxy-based approach in which an intermediate proxy compo
nent transforms diversified queries into queries conforming to original SQL
language, passing them on to the database. Rauti et al. improved upon this
scheme by making the diversification application specific and more secure, and
presented a proof-of-concept implementation for SQL diversification in [21].

Generally, diversifying internal interfaces, or instruction sets [39,40], can be
considered an effective approach for preventing code injection attacks. When
applying diversification on source code or byte-code level, identifier renaming is
also regularly used to disrupt the decompiling process. The resulting code will
be filled with syntax or semantic errors and reverse-engineering efforts will be
thwarted [41].

22 S. RAUTI ET AL.

9. Conclusions

In this paper, we discussed diversification as a method that prevents malware
from using the important resources of the operating system. We gauged the
applicability IID by presenting experiments with three interface diversification
schemes that can be seen as one joint approach to protect the system: (1)
diversifying system calls; (2) library functions; and (3) shell commands. We
showed that diversification can be done automatically to a great extent. We
presented several challenges in interface diversification and proposed methods
to alleviate them. These methods can be used to build practical tools that boost
the multi-layer cybersecurity of systems.

As outlined in this paper, we see diversification as a comprehensive security
mechanism that encompasses all the important interfaces and software layers of
operating systems. Internal interface diversification methods show a lot of
promise in systems with relatively small amounts of code and infrequent
updates such as IoT devices. Furthermore, it can boost the multi-layered security
of systems with high-security requirements. We hope to see practical diversifi
cation solutions being applied to embedded systems with lightweight operat
ing systems (IoT, industrial Internet) in the near future.

Acknowledgments

The authors gratefully acknowledge the support of The Scientific Advisory Board for Defence
(MATINE).

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Sampsa Rauti is a University Teacher currently working at the University of Turku, Finland. His
research interests include proactive software security (for example interface diversification,
honeypots and fake service generation), software architectures and location-based games. He
has over 50 peer-reviewed publications.

Samuel Laurén is currently working as a Senior Developer at F-Secure Corporation. At the
University of Turku, he has developed several diversification tools. He has 15 peer-reviewed
publications on proactive software security.

Petteri Mäki is a project researcher at the University of Turku. He has been involved in
developing diversification tools, and has several publications on software diversification.

Joni Uitto is a Master of Science in Technology and currently works in software industry. He
has been involved in diversification tool development as a research assistant, and has several
publications on proactive software security, including diversification and honeypots.

JOURNAL OF CYBER SECURITY TECHNOLOGY 23

Samuli Laato is a project researcher and a PhD student at the University of Turku, Finland. His
research interests include educational technologies, human-computer interaction, location-
based games, learning, music and math education. His research has been published in, for
example, European Journal of Information Systems, Technological Forecasting & Social
Change and Telematics & Informatics.

Ville Leppänen received the Ph.D. degree in computer science from the University of Turku,
Turku, Finland, in 1996. He has been a Full Professor of software engineering and software
security with the University of Turku, since 2012. He currently serves as the Head of Software
Engineering and Leader of 5 research and development projects. He has over 230 interna
tional conference and journal publications. His current research interests include software
engineering and security, ranging from software engineering methodologies, practices, and
tools to security and quality issues, and to programming languages, parallelism, and archi
tectural design topics. His security related research has focused on Internet of Things and
cloud security, software-based diversification, vulnerability analyses, machine learning-based
profiling for host intrusion detection systems, introspection mechanisms, and fake service
generation.

References

[1] AVTest. Malware statistics. https://www.av-test.org/en/statistics/malware/.
[2] Alves-Foss J, Taylor C, Oman P. A multi-layered approach to security in high assurance

systems. In 37th Annual Hawaii International Conference on System Sciences, 2004.
Proceedings of the. Los Alamitos, CA: IEEE; 2004. p. 10.

[3] Hong JB, Kim DS. Towards scalable security analysis using multi-layered security
models. J Network Comput Appl. 2016;75:156–168.

[4] Hosseinzadeh S, Rauti S, Laurén S, et al. Diversification and obfuscation techniques for
software security: A systematic literature review. Inf Software Technol. 2018;104:72–93.

[5] Larsen P, Homescu A, Brunthaler S, et al. Sok: automated software diversity. Proceedings
of the 2014 IEEE Symposium on Security and Privacy, SP ’14, 276–291. Washington, DC,
USA: IEEE Computer Society; 2014.

[6] Rauti S, Lauren S, Hosseinzadeh S, et al. Diversification of system calls in Linux Binaries.
Proceedings of the 6th International Conference on Trustworthy Systems (InTrust
2014). IEEE; 2014. p. 255–271.

[7] Lauren S, Mäki P, Rauti S, et al. Symbol diversification of Linux Binaries. Proceedings of
World Congress on Internet Security (WorldCIS-2014). Infonomics Society; 2014. p.
75–80.

[8] Uitto J, Rauti S, Mäkelä J-M, et al. Preventing malicious attacks by diversifying linux shell
commands. Proceedings of the 14th Symposium on Programming Languages and
Software Tools (SPLST’15), CEUR Workshop Proceedings, 1525, CEUR; 2015, p. 206–220.

[9] Uitto J, Rauti S, Leppänen V. Practical implications and requirements of diversifying
interpreted languages. Proceedings of the 11th Annual Cyber and Information Security
Research Conference, Article No. 14. ACM; 2016.

[10] Cohen FB. Operating system protection through program evolution. Comput Secur.
1993 October;12(6):565–584.

[11] Forrest S, Somayaji A, Ackley D. Building diverse computer systems. In: Proceedings of
the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), HOTOS ’97. 1997. p. 67.

[12] Keromytis AD. Randomized instruction sets and runtime environments past research
and future directions. IEEE Secur Privacy. 2009;7(1):18–25.

24 S. RAUTI ET AL.

https://www.av-test.org/en/statistics/malware/

[13] Jajodia S, Ghosh AK, Swarup V, et al. Moving target defense, creating asymmetric
uncertainty for cyber threats, advances in information security 54. New York:
Springer; 2011.

[14] Jajodia S, Ghosh AK, Subrahmanian VS, et al. Moving target defense II, advances in
information security 100. New York: Springer; 2013.

[15] Allier S, Barais O, Baudry B, et al. Multitier diversification in web-based software
applications. IEEE Software. 2015;32(1):83–90.

[16] Baudry B, Monperrus M. The multiple facets of software diversity: recent developments
in year 2000 and beyond. ACM Comput Surv. 2015 September;48(1):16 1–16:26.

[17] Chew M, Song D. Mitigating buffer overflows by operating system randomization.
Technical report. Pittsburgh: Carnegie Mellon University; 2002.

[18] Collberg C, Thomborson C, Low. D. A taxonomy of obfuscating transformations.
Technical report 148. department of computer science. The University of Auckland;
1997.

[19] National Vulnerability Database. Vulnerability summary for CVE-2014-6271. https://
web.nvd.nist.gov/view/vuln/detail?vulnId= CVE-2014-6271.

[20] Larsen P, Brunthaler S, Franz M. Security through diversity: are we there yet? Secur Priv
IEEE. 2014 Mar;12(2):28–35.

[21] Rauti S, Teuhola J, Leppänen V. Diversifying SQL to prevent injection attacks. In: In
Proceedings of Trustcom/BigDataSE/ISPA. Helsinki: IEEE; 2015. p. 344–351.

[22] Rauti S, Lauren S, Uitto J, et al. A Survey on Internal Interfaces Used by Exploits and
Implications on Interface Diversification. Cham: Springer International Publishing;
2016. p. 152–168.

[23] Shacham H, Page M, Pfaff B, et al. On the effectiveness of address-space randomization.
In: Proceedings of the 11th ACM Conference on Computer and Communications
Security. NY, USA: CCS ’04; 2004. p. 298–307.

[24] Chongkyung K, Jinsuk J, Bookholt C, et al. Address space layout permutation (aslp):
towards fine-grained randomization of commodity software. Computer Security
Applications Conference, 2006. ACSAC ’06. 22nd Annual; Dec 2006, p. 339–348.

[25] Iadarola G, Martinelli F, Mercaldo F, et al. Formal methods for android banking malware
analysis and detection. 2019 Sixth International Conference on Internet of Things:
systems, Management and Security (IOTSMS). IEEE; 2019. p. 331–336.

[26] Corbet J, Kroah-Hartman G. 2017 linux kernel development report. Publ Linux Found.
2017.

[27] Cozzi E, Graziano M, Fratantonio Y, et al. Understanding linux malware. 2018 IEEE
Symposium on Security and Privacy (SP); IEEE 2018, p. 161–175.

[28] Rauti S, Laurén S, Hosseinzadeh S, et al. Diversification of system calls in Linux Binaries.
Submitted to The 6th International Conference on Trustworthy Systems (InTrust 2014);
2014.

[29] Schwarz B, Debray S, Andrews G. Disassembly of executable code revisited. In: In
Proceedings of Ninth Working Conference on Reverse Engineering. 2002. p. 45–54.

[30] Athanasopoulos E, Krithinakis A, Markatos EP. An architecture for enforcing javascript
randomization in web2.0 applications. In Proceedings of the 13th International
Conference on Information Security: ISC’10, 203–209. Berlin, Heidelberg: Springer-
Verlag; 2011.

[31] Boyd SW, Kc GS, Locasto ME, et al. On the General Applicability of Instruction-Set
Randomization. IEEE Trans Dependable Secure Comput. 2008;7:3.

[32] Portokalidis G, Keromytis AD. Global ISR: toward a comprehensive defense against
unauthorized code execution. In: Moving Target Defense, Creating Asymmetric

JOURNAL OF CYBER SECURITY TECHNOLOGY 25

https://web.nvd.nist.gov/view/vuln/detail?vulnId=%A0CVE-2014-6271
https://web.nvd.nist.gov/view/vuln/detail?vulnId=%A0CVE-2014-6271

Uncertainty for Cyber Threats, Advances in Information Security 54. New York, NY:
Springer; 2014. p. 469–480.

[33] Kc GS, Keromytis AD, Prevelakis V. Countering code-injection attacks with instruction-
set randomization. Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS ’03. New York, NY, USA; 2003. p. 272–280.

[34] Onarlioglu K, Bilge L, Lanzi A, et al. G-free: defeating return-oriented programming
through gadget-less binaries. In: Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10. New York, NY, USA: ACM; 2010. p. 49–58.

[35] Jiang X, Wang HJ, Xu D, et al. RandSys: thwarting code injection attacks with system
service interface randomization. In: IEEE International Symposium on Reliable Distributed
Systems, SRDS 2007. 2007. p. 209–218.

[36] Liang Z, Liang B, Li. L A system call randomization based method for countering code
injection attacks. International Conference on Networks Security, Wireless
Communications and Trusted Computing. NSWCTC; 2009. p. 584–587.

[37] Abrath B, Coppens B, Volckaert S, et al. Obfuscating windows dlls. Proceedings of the
1st International Workshop on Software Protection, SPRO ’15. Piscataway, NJ, USA: IEEE
Press; 2015, p. 24–30.

[38] Boyd SW, Keromytis AD. SQLrand: preventing SQL injection attacks. Appl Crypto
Network Secur. 2004;292–302. Lecture Notes in Computer Science 3089.

[39] Boyd SW, Kc GS, Locasto ME, et al. On the general applicability of instruction-set
randomization. Depend Sec Comput IEEE Trans. 2010 July;7(3):255–270.

[40] Barrantes EG, Ackley DH, Forrest S, et al. Randomized instruction set emulation. ACM
Trans Inf Syst Secur. 2005 February;8(1):3–40.

[41] Hunt J. Byte code protection. In: In Java for Practitioners, Practitioner Series. London:
Springer; 1999. p. 427–429.

26 S. RAUTI ET AL.

	Abstract
	1. Introduction
	2. Multilayer interface diversification
	2.1. Internal and external interfaces
	2.2. The general idea of internal interface diversification
	2.3. Covered interfaces and attack scenarios
	2.3.1. System calls
	2.3.2. Function names in binaries
	2.3.3. The command-line interpreter

	2.4. Interfaces not covered

	3. Materials and methods
	4. Experiments on system call diversification
	4.1. Diversifying system calls in ELF binaries
	4.2. Challenges
	4.3. Experiments on the problematic cases
	4.4. Diversifying the remaining system calls

	5. Experiments on symbol diversification
	5.1. Diversifying symbols in programs and libraries
	5.1.1. Symbol collector
	5.1.2. Symbol diversifier
	5.1.3. Symbol rewriter

	5.2. Experiments with the symbol diversification tool
	5.3. Methods to diversify the remaining symbols

	6. Experiments on diversification of the command shell language
	6.1. Diversifying shell languages
	6.2. Challenges and solutions
	6.2.1. Several interpreted languages
	6.2.2. Secret key management
	6.2.3. General usability
	6.2.4. Script invocations in source code

	6.3. A study on script invocations in source code
	6.4. Experiments with the diversified interpreter

	7. Discussion
	7.1. Towards practical multilayer interface diversification
	7.2. Limitations

	8. Related work and other solutions
	9. Conclusions
	Acknowledgments
	Disclosure statement
	Notes on contributors
	References

