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Internal interface diversification as a method against 
malware
Sampsa Rauti, Samuel Laurén, Petteri Mäki, Joni Uitto, Samuli Laato 
and Ville Leppänen

Department of Future Technologies, University of Turku, Turku, Finland

ABSTRACT
Internal interface diversification is a proactive software security 
method that prevents malware from using the fundamental 
services provided by an operating system by uniquely diversify
ing internal interfaces and propagating the information only to 
trusted programs. There are three main internal interfaces in 
operating systems that have been diversified in previous studies: 
(1) system calls (2) library functions and (3) shell commands. 
Based on previous studies and our own work, we implemented 
diversification for all interfaces in order to test their suitability 
and feasibility for real-world use. All three solutions enhanced 
the multi-layer security of the testing environment with little to 
no cost on system performance. However, maintaining such 
diversification tools might be troublesome in large and complex 
systems where new software is frequently added and software 
versions are updated. Thus, the solutions would be ideal for IoT 
devices and other smaller systems which rarely require updat
ing, as well as restricted and static systems and critical systems 
with high-security requirements.
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1. Introduction

According to AVTest, hundreds of thousands of new malicious programs are 
being discovered each day [1]. Once a vulnerability is found, attackers usually 
move in to exploit it faster than software vendors can create and distribute 
patches. A key observation is that many of the vulnerabilities are related to 
misuse of internal interfaces, e.g. all injection attacks try to exploit internal 
interfaces of the target system. To counter this problem, novel proactive mea
sures are needed. Simultaneously industrial systems, homes and cars are all 
being increasingly digitalized and connected to the Internet. With the increase 
of IoT devices and critical infrastructure connected to cyberspace, and other 
critical solutions such as online banking already in place, cybersecurity has 
become of critical importance. As anti-virus software is struggling to keep up 
with development of new exploits, software security vendors are providing 
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multi-layered security measures to combat these issues [2,3]. One such measure 
which has recently received attention is internal interface diversification 
(IID) [4,5].

The reasoning behind IID is that typically malware attacks and malicious 
programs are familiar with the target system’s internal interfaces. For example, 
a piece of malware knows what library function it should invoke or what kind of 
shell commands it should issue in order to take advantage of the operating 
system’s resources. Instead of thinking how to separately prevent all types of 
exploits that enable execution of malicious code in the target system, IID 
uniquely diversifies the interfaces that malware uses to reach its goals. 
Knowledge of the new interface is then propagated to trusted programs and 
scripts in the system so they conform to the new ”language” of the system. As 
malware does not know the diversification secret (e.g. a unique key used to 
diversify the interfaces), it cannot function as intended.

Several diversification schemes employing this general idea have been pub
lished in the literature [4]. In the Linux operating system, these schemes often 
propose diversification of three important interfaces: (1) the system call inter
face [6]; (2) binary symbols and library functions [7]; and (3) command shell 
language [8,9]. In this study, our aim is to investigate the feasibility of each 
solution for system’s multi-layered security. To that end, we deploy solutions for 
each of the three interfaces, and run tests to determine in what kinds of systems 
and environments the solutions could be used.

The rest of the paper is structured as follows. Section 2 presents the general 
idea of interface diversification and provides some background of the three 
interfaces we are covering in this paper. This is followed by a description of the 
empirical research methodology. Sections 4, 5 and 6 discuss the experiments in 
the three main categories mentioned above. Section 7 then summarizes the 
findings and discusses their implications. Finally, before conclusions, we discuss 
other solutions in related work.

2. Multilayer interface diversification

Various software interfaces have been proposed for diversification in order to 
enhance system security. Applied methods range from binary level solutions to 
upper software levels such as source code or even higher levels of abstraction 
[5]. Cohen advocated diversification as a method for operating system protec
tion already in 1993 [10]. He proposed utilizing several obfuscation techniques 
to create unique software instances to make it harder for malicious programs to 
function. However, his ideas did not catch wind until 2003 which was the 
first year in which over 10 peer-reviewed papers on diversification were pub
lished [4]. Another pioneer of diversification as a security solutions, Forrest [11], 
describes in 1997 diversified computer systems as a feasible countermeasure 
against malware. Some later studies, i.e [2,12]., and books [13,14], outline an 
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idea of system-wide multilayer diversification. While earlier work focuses pri
marily on operating system level diversification, this idea has also been pro
posed to be used in web environments [15].

A few surveys on diversification research have been written. Larsen et al. [5] 
survey the state-of-the-art in automated software diversity as a mechanism to 
improve security and privacy. They argue for automating the diversification 
processes for ensuring practical use of such systems. Baudry et al. [16] con
ducted a literature review in 2015 that captures the big picture of software 
diversification: along with security, diversification can also be used for fault 
tolerance, reusability and testing. The survey referred to what we call diversifi
cation as randomization at different system levels. The most recent review con
ducted by Hosseinzadeh et al. [4] and published in 2018 reviews over 200 
studies on diversification and obfuscation techniques to identify the goals of 
such solutions as well as all potential interfaces which can be diversified. This is 
also the most exhaustive work on the field. The majority of diversification 
solutions were found to be designed to work on the operating system level 
with some aimed at web interfaces. Surprisingly, only a few studies focused on 
IoT devices specifically. Three main interfaces in operating system diversification 
were: (1) the system call interface; (2) shared libraries and library functions; and 
(3) shell scripts.

2.1. Internal and external interfaces

In this study, the term interface is broadly defined to mean any entry point 
that enables malware or an adversary to access critical services of the operat
ing system. Let us remember that operating system guards the use of all 
resources of the system. Therefore, an interface can refer to traditional inter
faces such as the system call interface or operating system APIs, but also to 
higher level interfaces (based on lower level interfaces) such as memory or 
command shell languages that can be exploited by malware e.g. through 
buffer overflows.

In this study, we concentrate on internal interfaces that are not directly used 
by users. For example, if the system call interface is altered and changes are 
propagated to binaries in the system, user experience does not change. External 
interfaces, such as graphical user interfaces, are not diversified. Malware usually 
uses internal interfaces to reach its goals. Malware may execute in the context of 
the operating system either as its own process, or as a piece of malicious code 
injected to another process. In both scenarios, IID prevents the malware from 
accessing internal interfaces in the system.

Although developers of services or applications need to know the internal 
interfaces, the users do not need such knowledge. Malware creators should not 
have knowledge of internal interface details. It is important to note that the 
software developers can do software development against known standard 
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internal interfaces – development should not be done against diversified inter
nal interfaces.

2.2. The general idea of internal interface diversification

IID modifies applications’ and libraries’ internal structure so that an adversary 
or malware cannot predict their implementation details anymore. By diversi
fying the system’s internal interfaces, we decrease the number of assump
tions the adversary can make about the execution environment [17]. 
Importantly, this does not change the external interfaces exposed to the 
user, thus ideally maintaining the level of usability. IID can also utilize obfus
cation methods such as renaming or altering the order of parameters in 
function signatures.

When applying IID, there are always two parts in the system that need to be 
diversified: first, the place where the interface is defined (e.g. system call 
number list in the kernel or the command set in a command shell interpreter) 
and second, the executable code that makes use of this definition (e.g. the code 
using the system call number or script file containing shell commands) [7,17]. 
After diversifying the interface itself, changes must be propagated to all trusted 
programs that are using it. Thus, IID retains the original functionality of the 
programs and does not affect the user experience [18]. Ideally the only notice
able change is a slight increase in execution time, but often there is no perfor
mance penalty at all, as demonstrated by, for example, the case of changing the 
system call numbers.

IID also has minimal impact on the work of a software developer working on 
user applications, as IID is applied to the programs or scripts after they have 
been written via an automatic tool. A developer needs to interfere with IID only 
in rare cases, e.g. if the coverage achievable by automatic tools is incomplete [6]. 
In an ideal case the IID process is automated to the extent that a developer does 
not need to even be aware of its existence. In principle, the same applies to 
updating software versions.

2.3. Covered interfaces and attack scenarios

Our scheme consists of three layers of interface diversification: diversifying the 
system calls, library functions leading to invocation of system calls and the 
command-line interpreter. All three are essential interfaces in an operating 
system, as shown in Figure 1. In order to use services of the operating system, 
user applications invoke system calls either directly or through wrapper func
tions provided by operating system libraries. It is also possible to access many 
critical system resources through opening a command shell. In what follows, 
we will give a more detailed description on diversification of these three 
layers.
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2.3.1. System calls
The lowest layer of diversification in our scheme consists of uniquely changing 
the mapping of system call numbers [6]. The system call numbers in binaries 
of libraries and applications that invoke system calls are then diversified 
accordingly so that the trusted applications are compatible with the operating 
system.

As the attack code needs to execute system calls in order to cause any real 
harm in the system, diversifying system call numbers prevents it from doing this 
directly. For example, the code injection attacks tricking the system into execut
ing code that contains direct system calls no longer work because the attacker 
does not know the system call numbers [17]. Other attacks where the attacker 
uses system call numbers directly will also fail.

2.3.2. Function names in binaries
It directly follows from the diversification of the system call interface that we 
also have to prevent the adversary from reaching the critical resources 
through those library functions that directly or indirectly lead to invocation 
of system calls (transitive closure) [7]. In order to propagate the diversification 
of library functions, we diversify the corresponding function names in binary 
files. In other words, the symbol strings in binaries are diversified. This diversi
fication is performed both for libraries and applications invoking the library 
functions.

As an example attack scenario, failing to invoke a system call directly, the 
attacker might try to use the symbol table or PLT/GOT to find out a function’s 
address based on its name. They would then invoke a function that makes 
a specific system call. However, since the function names have been diversified, 
this approach will not work.

Figure 1. Software layers in an operating system.
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2.3.3. The command-line interpreter
To circumvent the protection for library functions and system calls, malware or 
an adversary could try to make use of interpreted languages like command shell 
script languages [8]. Therefore, we also include shell scripts in our protection 
scheme. Much like the library functions, the command shell provides access to 
the resources provided by the operating system.

This fact has been exploited in previous attacks, for example, injection attacks 
such as ShellShock [19]. In order to prevent the attackers from using the com
mand line, we diversify the language interface used by the command interpreter, 
that is, change the set of tokens recognized by the command interpreter’s lexical 
analyzer. To this end, the command interpreter is modified to support execution 
of diversified scripts and all the shell scripts in the system are diversified [8,9].

2.4. Interfaces not covered

It is important to note again that diversifying these three interfaces does not 
provide a totally comprehensive protection against malicious attacks. First of all, 
there are attacks that can not be prevented with diversification. These mostly 
have to do with faulty implementation details and logic bugs in the public 
interfaces of the system.

Second, there are some other interfaces, most notable those present in web 
environment, that can be used by the adversary to subvert the system. SQL and 
JavaScript language interfaces are such examples. Diversification of these inter
faces has been discussed elsewhere [20,21].

Third, an attacker may find some way around the diversified interfaces, e.g. 
using a new interface that anyone has not thought to diversify yet. For example, 
blind hacking attacks, where the attacker simply guesses system call numbers and 
function names and tries to invoke them, are also threats our approach might not 
prevent. Still, the interfaces we propose for diversification here are used by a large 
number of malware exploits and diversifying them is therefore worthwhile [22].

Finally, Instruction Set Randomization (ISR) on machine code level is not 
included in our framework, because we believe a good protection can already 
be achieved by diversifying system calls and library functions. Additionally, ISR 
has many challenges like not being supported by current CPU architectures. We 
also do not discuss Address Space Layout Randomization (ASLR) because many 
papers have already been published on the topic [23,24] and the protection 
scheme is already incorporated into most modern operating systems [12,20]. 
This protection can be used in combination with our scheme.

3. Materials and methods

Linux-based operating systems, Linux From Scratch (LFS), Gentoo Linux Minimal 
Installation and Fedora Linux, were selected as environments for implementing 
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the OS-level diversification techniques. The advantage of these systems is the 
availability of source code for the majority of applications and libraries, which is 
useful for understanding the underlying system and engineering diversification 
solutions. Linux-based operating systems are also world-wide the most popular 
in smartphones [25], supercomputers [26], IoT and embedded devices [26,27] 
and web-servers [26].

With regard to the three OS techniques, we provide a description of each 
solution with reference to the code of the implementation. The feasibility of 
each solution is tested with the aim of assessing the costs and benefits of 
adopting the solution for use. Accordingly, we test the impact of the solutions 
on (1) System performance, by measuring execution times in the system with 
and without the diversification in place; (2) System security, by empirically 
testing popular attack scenarios against the diversified system; and (3) 
Implementation and maintenance costs, by discussing deployment time, diffi
culty of implementation and updating of the diversification tools. The tests are 
carried out individually for each diversification technique and reported coupled 
with relevant discussion.

4. Experiments on system call diversification

In this section, we discuss and evaluate the first part of our diversification 
scheme, changing the mapping of system call numbers. We first explain the 
scheme and then cover some of the challenges that make automatic diversifica
tion of all the system calls difficult. We also present some experimental data on 
problematic system call invocations that are difficult to diversify with an auto
matic tool in a practical system. Finally, we discuss practical methods to cover 
the difficult cases.

4.1. Diversifying system calls in ELF binaries

In [28] we provided an implementation for a system call diversifier. Our diversi
fication tool uses a straightforward linear-sweep algorithm [29] to rewrite the 
system calls in 64-bit ELF (Executable and Linkable Format used in Unix-based 
systems) binary executables. This disassembly method decodes everything in 
the ELF sections that are usually used to store machine code. Our diversification 
method is used on binary files after compiling, before they are deployed for 
execution.

Our diversifier tool finds system calls by linearly going through the program 
code sections in an ELF binary. A system call invocation consists of two separate 
phases: first, putting the system call number into a predefined register 
and second, transferring the control to operating system’s system call handler. 
Our tool first looks for SYSCALL instructions that are used to invoke system calls 
in the x86-64 architecture. After finding a SYSCALL instruction, the tool starts 
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looking for a system call number associated with this call. The instruction that 
sets the system call number can be found by backtracking from the location of 
SYSCALL instruction. The number of the system call to be invoked is first moved 
into a register, so our tool searches for instructions changing values of the 
registers used for this purpose (RAX, EAX, AX, AH, AL). The number of 
a specific system call is then rewritten according to the chosen diversification 
function (a transformation that maps the original system call numbers to the 
diversified ones).

4.2. Challenges

Because we used a simple linear-sweep based disassembly algorithm and static 
analysis of binaries, our approach has some limitations:

● Gaps between instructions. A system call invocation consists of two phases, 
which means there are two possible cases to be dealt with. Either the two 
instructions are consecutive or there are other instructions between them. 
The first case is mostly trivial but the second case may introduce some 
problems. For example, a jump instruction between the two phases is 
problematic for our algorithm. This might be caused by a conditional 
structure in the code.

● Indirectly moving values to registers. As we limit our analysis to simple mov 
instructions, some complications arise. For example, the number of the 
system call to be invoked can be moved to the final register indirectly using 
other registers as temporary storage. Tracing this kind of data flow would 
require a more advanced algorithm. Many compilers also circulate values 
through memory before they are moved to a specific register, which is 
a similar problem.

● Manipulating the system call number before use. The system call number 
may also be manipulated after it is moved to a register, say, by increment
ing EAX register. A more advanced algorithm should also take these kinds 
of changes into account.

● Alignment. The way data is arranged and accessed affects the success rate 
of our tool. Because of the straightforward manner our tool disassembles 
the file, excessive data or zero bytes between instructions lead to a failure. 
Therefore, in the worst case, a system call can be erroneously found in 
a binary file. However, in practice, compilers rarely produce this kind of 
faulty executable code.

● Compiler optimization and settings. In our analysis, we noticed that using 
different compilers or even just different versions of the same compiler 
results in differences in binaries. These differences have an effect on the 
results of our tool. Compiler settings, such as optimization, also have an 
influence on the accuracy of our tool. According to our experiments, 
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optimization is strongly related to the number of gaps in the binaries; with 
no optimization at all there will be problematic gaps [6]. However, as we 
will see next, this only causes problems in a few cases.

4.3. Experiments on the problematic cases

We have seen that there are several challenges in applying our approach in 
practice. However, these problematic cases are often caused by the gaps 
between the two instructions. It is therefore interesting to see how many system 
call invocations actually have these gaps. To this end, we analyzed Linux Gentoo 
distribution (a fairly minimal installation with only a few packages other than the 
default/linux/amd64/13.0 profile). We found that of 807 system call invocations, 
736 had no gaps. That is, 91.2 % of system calls had no gaps. The remaining 71 
invocations had gaps, but these were very small almost in all cases. Figure 2 
shows the lengths of the gaps system call invocations have in Linux Gentoo.

Because of the small proportion of problematic cases, it is to be expected that 
our tool performs well. The tests carried out on Gentoo support this hypothesis. 
Table 1 shows the identified (and correctly diversified) system calls and uni
dentified system calls for binaries that contain direct system calls in Gentoo. In 
unidentified cases, the tool finds the SYSCALL instruction but cannot correctly 
identify the system call number associated with it. Note that there can be 

Figure 2. Gaps found in binaries of Gentoo distribution.
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several branches in a conditional statement that set the system call number, and 
all of these are counted as separate system call invocations (while each SYSCALL 
instruction was counted only once when finding gaps previously). We can see 
from the table that our tool performs well with this distribution – 92% of system 
calls were correctly identified. In our view, this is an acceptable level of accuracy, 
as we will present methods to cover the remaining cases below.

Interestingly, only nine out of 569 binaries in Gentoo distribution had direct 
system calls. However, these executables are very important to the system, and 
are, for example, shared libraries that are invoked by almost all binaries. For 
example, the ones with most unidentified cases are libc, the C standard library 
and libpthread, the POSIX threading library. Still, as can be seen from Table 1, 
our tool performs well with almost all binaries in the system.

We consider the result of correctly identifying 92% of system calls very good 
in general. As the table shows, however, our tool did not perform well with the 
problematic cases caused by the gaps between system call invocation instruc
tions. A more advanced algorithm with data-flow tracing can be developed. The 
next subsection presents several other methods to address the majority of 
remaining hard cases.

4.4. Diversifying the remaining system calls

In order to diversify the remaining hard cases that our algorithm did not identify 
and diversify correctly, a combination of the following methods can be used:

● Including the diversification function in the binary. The diversification func
tion that performs the mapping between original and diversified system 
call numbers can be embedded in the binary. However, there are some 
challenges with this approach. Along with some relocation problems, the 
diversification secret, that would now be a part of binary, could potentially 
be leaked. If the malware were to find a way to get into the memory space 
of a running process, it could attempt to perform an analysis on the 
diversified system calls. This threat can be mitigated by applying some 
additional obfuscation to the binary.

Table 1. System calls in binaries of Linux Gentoo.
Path Not identified Identified Total

/lib64/libpthread-2.17.so 23 144 167
/lib64/libc-2.17.so 19 411 430
/lib64/ld-2.17.so 5 32 37
/lib64/libanl-2.17.so 5 1 6
/lib64/librt-2.17.so 5 24 29
/sbin/sln 5 84 89
/sbin/ldconfig 5 102 107
/lib64/libcrypt-2.17.so 0 3 3
/lib64/libnss_db-2.17.so 0 1 1
Total 67 802 869
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● Hard-coding the diversification. In some of the code sections where system 
call diversification is troublesome, diversification could be hard-coded in 
the binary. That is, statically embed the diversified system call numbers 
into the binary. This is usually not a very flexible option, but could be 
done for some common parts of Linux operating system such as 
C standard library.

● Rewriting source code. Many problems that occur when diversifying binaries 
can be fixed on source code level. Writing the source code differently 
would often solve the problem, and this is also easily possible in open- 
source operating systems. Of course, this would mean lots of work if it were 
to be done to several user applications. However, as we have seen, mainly 
libraries used in many systems and many distributions use direct system 
calls. Many of these could be rewritten on the source code level to make 
the binary diversification process easier. This method is not complete, but, 
for example, clearly making the systems call numbers visible in the source 
code, so that the system call numbers are not determined as a result of an 
obscure calculation and do not come as a user input, the diversifier can do 
much better.

● Changing the compiler settings. We have seen that the order of instruc
tions in machine is occasionally changed due to optimizations performed 
by compilers. For example, this happens when the system call numbers 
are circulated through memory or extra registers before invoking the 
system call. The binaries could be compiled using some specific compiler 
with certain configuration that would make things easy for the diversifi
cation tool. We cannot expect the software vendors to do this for us, but 
the approach fits for open source programs and libraries. Also, there 
could be a dedicated service for compiling programs with the right 
configuration.

● Making the correct choice of the application area. The methods discussed 
above all have some challenges. Still, we believe that by using these 
methods, it is possible to reach 100% diversification accuracy at least in 
many restricted systems. For instance, many embedded systems and 
Internet of Things devices are lightweight and easier to adapt to our 
scheme.

5. Experiments on symbol diversification

The second part of our scheme includes diversifying the function names in all 
binaries. This is achieved by changing the string symbols in ELF files. We first 
give a detailed introduction to this process and then present some challenges 
related to it. We also provide some experiments to gauge the usability of our 
scheme and finally present some methods to alleviate the identified 
challenges.
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5.1. Diversifying symbols in programs and libraries

Using shared libraries, programs can implement part of their functionality by 
linking their code to functions, variables and other data provided by the library 
when the program starts or during execution. Dynamically linked libraries and 
programs (in ELF format) contain symbols for the functions and other data. The 
resources these symbolic names refer to are either provided for other execu
tables or expected to be found from external binaries.

Our proof-of-concept implementation diversifies – that is, renames – the 
symbols in shared libraries. Also, these changes are propagated to all trusted 
ELF files which depend on the entities referenced by the diversified symbols. 
Naturally, the mapping between the original symbol names and new diversified 
symbols is kept secret. The adversary will have a hard time creating ELF binaries 
that make use of known function names and are therefore compatible with the 
system. A program will not function correctly unless the contents of the symbol 
table of the ELF file correspond to the names in the file providing the needed 
resources.

The proof-of-concept implementation of our symbol diversifier is made of 
three separate tools. Each tool takes care of one step of the symbol diversifica
tion process. By dividing diversification into these steps we aim to make the tool 
as flexible as possible in order to allow future changes and extensions. The three 
steps of our diversifier tool along with their respective inputs and outputs are 
shown in Figure 3. In what follows, we will describe these steps in more detail.

5.1.1. Symbol collector
The first step is collecting symbols. The symbol collector gathers symbols from 
64-bit ELF files and gives a plain text list of them as a result. The process is 
carried out by iterating over the.dynsym symbol table that references the . 
dynstr string table that contains the symbol names. The tool also allows us to 
filter symbols based on their properties, such as the type of the symbol or 
whether the symbol is external.

5.1.2. Symbol diversifier
The symbol diversifier takes the symbol list produced by the symbol collector 
and diversifies each symbol using a specific diversification method. For example, 
our implementation uses salted SHA-256 hashing with Base32 encoding or 

Figure 3. The symbol diversification process.
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alternatively simple prefixing. This step does not involve the ELF files; it only 
needs the symbol lists. This step is therefore easy to replace or extend with any 
diversification method.

5.1.3. Symbol rewriter
The symbol rewriter takes the original ELF file and the diversified symbol defini
tions and generates a modified version of the file using this information. Editing 
ELF files involves updating several data structures in the object file, which makes 
symbol rewriting the most complex step in our scheme.

Symbol rewriter takes the mapping between original and diversified symbols 
and proceeds to rewrite the symbol definitions in the object file accordingly. To 
do this, we need to update many things in the ELF file: the hash tables that are 
created based on the symbol names, the string tables (.dynstr and .strtab) that 
contain the actual symbol names, data structures that point to offsets within, or 
other data regarding the string tables; .dynsym and .gnu.version sections, and 
the ELF section and segment header tables.

An apparent challenge is that rewriting the string table in-place is not 
possible in all cases; the diversified symbol names may require more space 
than the original ones! In our implementation, we chose a simple approach of 
moving the extended sections to the end of the ELF file. The gaps left in the 
original section locations are padded with NUL bytes.

For this paper, we have improved our original diversification tool [28] to 
better mitigate the known problems in the diversification process. The previous 
implementation had issues tracking dynamically what loaded libraries are used 
by the binary. An application can always try to dynamically load new depen
dencies at runtime, and these libraries are not easy to find while analyzing 
binary files statically. The improved version of our tool finds symbols for the 
dynamically loaded dependencies more accurately and diversifies these strings. 
The following experiments have been conducted with this new improved 
version of the symbol diversifier.

5.2. Experiments with the symbol diversification tool

Table 2 shows the applications we diversified using our symbol diversifier tool. 
The columns indicate whether diversification worked, whether the program 
started and whether there were any visible errors in its execution.

We can see that a majority of the diversified programs worked correctly in our 
tests. Command-line tools like cat, echo, less and interpreters such as gawk and 
Perl interpreter worked as expected. Most of the user applications with 
a graphical user interfaces such as inkscape and gedit also appear to work 
correctly.

Unlike in [7], gnumeric also works with our solution, which is evidence that 
we managed to improve our earlier solution with regards to diversification 
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accuracy. The older diversifier still had some problems with diversification due 
to dynamic libraries, like icons not showing up correctly in diversified gnumeric. 
With the improved version of our diversifier, even Firefox, consisting of 
several million lines of code and containing several optimizations that make 
automatic diversification harder, was diversified correctly by our tool and 
appeared to function normally. Browsing web-pages such as Wikipedia and 
YouTube works as expected.

Although the experiments were not exhaustive in terms of input combina
tions or code coverage, they do provide backing for successful symbol diversi
fication. More complete testing would of course be necessary for production 
systems. While we think these results are positive, there were two programs 
(gnome-terminal and cheese) that were not diversified correctly with our cur
rent diversifier implementation. This is due to library path dependencies that 
our tool could not track and diversify correctly.

However, we will see next that these remaining issues can be identified and 
methods to alleviate them can be developed.

5.3. Methods to diversify the remaining symbols

The problems with diversifying two applications seen above were caused by the 
use of dynamically loaded libraries. Applications often dynamically load new 
libraries during execution, and it is not totally straightforward to find these 
dependencies when analyzing binary files statically. Plug-in mechanisms often 

Table 2. Results of symbol diversification tests with various Linux applications.
Application Diversification works? Starts? Visible problems?

cat yes yes no
echo yes yes no
less yes yes no
gawk yes yes no
perl yes yes no
python2 yes yes no
ghex yes yes no
emacs yes yes no
dia yes yes no
inkscape yes yes no
filezilla yes yes no
pcmanfm yes yes no
gnumeric yes yes no
vim yes yes no
gedit yes yes no
gnome-calculator yes yes no
charmap yes yes no
gnome-terminal yes no –
lxterminal yes yes no
mplayer yes yes no
cheese yes no –
firefox yes yes no
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employ this kind of loading. In run-time linking, the symbol name sometimes 
cannot be determined by statically analyzing the binary file.

There are two main approaches to solve this problem. First, we could make 
modifications to the library in order to make it perform symbol diversification at 
the time the run-time loading is done. The symbol diversification could be done 
in the address space of the process (this has negative implications on security if 
the malware also operates in the same address space), or by utilizing an external 
diversification server. Second, we could statically search for function names 
stored in the binary (e.g. the .rodata section of an ELF file, when the function 
name is stored in the binary as a string). We would then alter these strings 
according to our diversification scheme.

These methods would modestly increase the execution time (that otherwise 
does not increase due to diversification), but they would also solve most of the 
issues that occurred in our experiments. The problem with dynamic libraries is 
mostly present in the user applications with many library dependencies and 
graphical user interfaces.

6. Experiments on diversification of the command shell language

In this section, we discuss the third part of our scheme, diversifying command 
shell languages. We first present our approach for shell language diversification. 
Some challenges and implications of applying this idea are then discussed. 
Finally, we show some methods that can be used to mitigate these challenges.

6.1. Diversifying shell languages

Diversification of shell languages can be achieved by changing the commands 
in the language’s command set to ones the adversary does not know. The idea is 
the same as in the symbol diversification scheme in the previous section: the 
language interface is diversified so that the malware author can not make use of 
his or her knowledge about the language. Malware that is not armed with this 
knowledge will not be compatible with the rest of the system.

In the current approaches in literature, diversification of programming lan
guage interfaces is usually performed by appending a diversifying tag after each 
token in the language [30–32]. Our scheme is similar but utilizes a stronger form 
of diversification by using several unique tags. Another alternative would be to 
modify the language so that the tokens are entirely changed into a form where 
the original token is not visible at all. However, by using tags in diversification, 
readability is preserved and implementation for many shell languages is 
simplified.

In our diversification scheme, a secret key is used to create uniquely diversi
fied scripts. Each token in the script is transformed by combining it with the key 
(any collision-free mapping can be used). Here, a token refers to a sequence of 
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characters that the interpreter’s lexical analyzer considers as a token identifier. 
The diversified scripts can only be run with a diversified interpreter that sup
ports executing them. The interpreter needs the diversification key to execute 
the scripts. The scripts that are not correctly diversified cannot be executed. The 
malware author does not possess the secret key and cannot diversify any 
malicious code. Attempts to inject code or directly use the original script 
commands are therefore prevented.

Our approach also allows diversification to depend on the token’s context. 
This option provides further security. For example, we can make the diversified 
version of a token depending on the other tokens present in the same script. 
Diversified form of a token can also depend on the source code before the 
token. This way, each token instance in the code will have a unique tag (two 
echo commands at different positions in the code will have different tags 
appended to them) which makes things even more difficult for the attacker as 
he or she cannot expect the same token to be diversified in the same way in 
different locations. In a way, this kind of diversification bears a close resem
blance to encryption, but unlike encrypted code, diversified code can still be 
normally executed.

It is also worth noting that our approach uniquely diversifies only the tokens 
appearing in a specific script. The adversary has no way of finding out the 
diversified forms of any other tokens even in the case they have an access to 
the source code.

6.2. Challenges and solutions

Deploying a diversifying shell language interpreter in a practical environment 
entails more challenges than just replacing the original interpreter with 
a modified one. In what follows, we identify these challenges and present 
ways to mitigate them.

6.2.1. Several interpreted languages
One problem with diversifying shell scripts is that there are several interpreted 
script languages in most systems (such as sh, Python and Perl). All of these 
require a diversified interpreter. Each interpreter could of course be modified 
separately while still reusing some common functions such as the tag generation. 
A generalization of this approach would be to build a common library providing 
general tools to implement diversification for several interpreters. Because of the 
differences in interpreters’ implementations, this is quite challenging. Finally, 
tools for building diversifying interpreters – interpreters that have the diversifica
tion functionality embedded from the beginning – could be implemented. This 
would be hard but would also make adding new diversified languages easy.
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6.2.2. Secret key management
Because we use a unique key for each script, key management also becomes 
a problem we have to solve. In Portokalidis and Keromytis’s solution for Perl [32], 
the diversification secret is input via command-line. While this idea may work in 
some restricted environments, we consider it an ad-hoc solution and it puts a lot 
of responsibility on the interpreter and the user.

Portokalidis and Keromytis also propose storing keys to a local database. In 
addition to a database, we also need a key management service. This results in 
a centralized secret key management system which aids with realizing system- 
wide re-diversification and diversification key granularity policies.

Key management is not a totally straightforward task. Implementation 
complexity depends on the chosen granularity of diversification keys (for 
example, one key for the whole system or file-specific keys). Finer granularity 
leads to increased complexity. Particularly, two scripts with unique keys both 
using the same library (which has its own key) cause a collision. The interpreter 
now has to handle two keys and has to know which one to use with each 
command.

6.2.3. General usability
Several interpreted languages are used from the command line. It is clear that 
diversification causes a usability issue in this case. It is not possible for the users 
to easily learn the diversified commands that they would need to make use the 
new language.

This problem could be solved by allowing the modified interpreter to 
execute non-diversified scripts from the command line. This solution, however, 
would defeat the purpose of script diversification. A malicious piece of code 
could exploit the command-line interface as an attack vector in order to 
compromise the system. If an attacker manages to run a malicious script 
fragment via the command-line interface, our diversification scheme is com
pletely circumvented.

If a command-line interface with an option to input non-diversified com
mands is needed, it should therefore be implemented in such a way that it 
becomes very laborious for the malware to exploit this interface. For example, 
the internal structure of the interface (but not the commands of the script 
language) can be obfuscated to prevent malicious attacks.

Finally, it is noteworthy that many users do not need or are not aware of 
command-line tools at all. Several restricted environments also exist in which 
the command-line is used very rarely or is not needed at all.

6.2.4. Script invocations in source code
Finally, a big challenge with diversified scripts in the system are the script 
invocations made by programs. In other words, programs sometimes generate 
and execute script fragments at run-time. Source code of each program issuing 
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script invocations needs to be modified to be compatible with the diversified 
shell language. Another option of course is to not support such usage of script 
engines. This issue is addressed next in our practical experiments.

6.3. A study on script invocations in source code

To see how much work script invocations in the source code would cause when 
diversifying the scripts in a system and whether the modification of code could 
be automated, we statically analyzed the source code of Linux from Scratch 
distribution (version 7.8) and identified all the script invocations present in the 
source code.

We divide the script invocations into three groups: inline scripts, command- 
line scripts and nontrivial cases. Inline scripts are scripts held entirely in the 
program’s source code as plain-text. This makes them relatively easy to diversify 
automatically in most cases. A precompile process that takes care of diversifying 
these parts can be created. As can be seen in Table 3, our experiments show that 
majority (70.5%) of the script invocations are inline scripts and thus relatively 
easy to diversify. Table 3 also shows the proportions of different system calls 
(system, exec, popen) used to invoke the shell scripts.

The cases we have labeled as command-line scripts, the script that gets 
executed is supplied via the command-line to the software. The command- 
line may be external (program parameters) or internal (program offers 
a command-line during execution). Whichever the case, the program usually 
passes the script to an external interpreter. The interpreter needs to be provided 
with a secret key it can use to execute the diversified code. For example, either 
the user or the system can provide the key for the interpreter.

Finally, there are nontrivial cases in which the call-graphs and the flow of data 
are so deep that it is difficult to know exactly what is executed. This may be 
result of large program size, intricate wrapping of functionality or several other 
reasons. In these nontrivial cases, an automatic diversifier would usually not be 
able to diversify the scripts correctly and manual work would be required.

Because of these non-trivial cases, diversification of all scripts cannot be fully 
automated. For example, undecidability, data flow analysis precision and com
piler limitations are ultimately reasons for this. Just like with system calls, setting 
some limitations for the diversified scripts would increase precision of the 
automatic diversifier by eliminating many hard cases. When the commands 
are clearly visible in the code and not result of some runtime calculation or 

Table 3. Shell script invocations in LFS 7.8.
TYPE SYSTEM EXEC POPEN TOTAL %

Inline scripts 99 11 38 148 70.5%
Command line scripts 17 14 5 36 17.1%
Nontrivial cases 6 9 11 26 12.4%
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user input, diversification is much easier. The scripts the diversification scheme 
is applied to should therefore be restricted to those scripts that do not make use 
of reflection, that is, modify their own structure and behavior at runtime. 
Comprehensive testing of diversified scripts also alleviates the problem of non- 
trivial cases.

6.4. Experiments with the diversified interpreter

The diversified Bash interpreter was tested with 30 diversified scripts, some of 
which were written by us and some taken from our test environment. In our 
tests, all the diversified scripts worked correctly and produced expected results. 
In terms of performance, the diversified scripts were 6.1% slower than the 
original scripts on average, which we do not consider a significant performance 
overhead, as the overall impact on the system performance is likely to remain 
minimal.

Naturally, the overhead also greatly depends on the diversification function 
used. In this experiment, diversification was done using a hash of 6 characters 
(and a 3-character separator). The six characters were the six first characters of 
an SHA-1 digest based upon the semantic value of the diversified token.

7. Discussion

7.1. Towards practical multilayer interface diversification

In the previous sections, we discussed challenges present in the implementa
tions of diversification of three interfaces: (1) system call; (2) library functions; 
and (3) shell scripts. Based on conducted tests and evaluation, we then pro
posed methods to alleviate the identified issues.

None of the three proposed diversification schemes imposed significant 
performance penalties, meaning implementing these solutions did not hurt 
usability by slowing the system down. For instance, a static rewrite of system 
call numbers only had a slight impact on performance in the rare case where 
manual intervention was required. Similarly, the library function symbol diversi
fication did not impact performance, unless done on dynamically loaded 
libraries which caused a small increase in execution time. As demonstrated, 
diversifying shell languages may incur a larger increase in execution time 
compared to diversification of system calls or symbols. In the presented scheme, 
this is mainly because we allow several different diversification keys (for differ
ent scripts) and the modified interpreter has to support them all. It takes time to 
check the correctness of a specific diversified script. Also, the Bash interpreter is 
quite complex and is not well suited for diversification. Moreover, the proof-of- 
concept implementation could be further optimized. Still, we do not consider 
the overhead significant, as executing scripts usually consume only a minor 
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share of available processor capacity. In summary, interface diversification does 
not have a significant negative impact on execution time. This finding aligns 
with results from previous studies [33]. The observed modest performance 
penalty ensures energy efficiency, which is important to consider especially 
for embedded and IoT devices.

Transparency is another major factor in applicability and usability of diversi
fication solutions [5]. Diversifying interfaces is transparent in the sense that it 
does not change the user experience. The diversified version of the program 
works in the same way as the original program. In some cases, however, 
diversification causes inconvenience to the users. An example is the case 
when the command shell language has been diversified and a user wants to 
use the command shell. This at least requires the user to learn the new diversi
fied commands, but in most cases it completely prevents writing scripts. From 
this standpoint, the system call interface and library function symbol diversifica
tion solutions are more transparent. With regards to software development, 
none of the three IID solutions should complicate the process. Software is 
developed in a standard way via referencing APIs and languages, and 
a uniquely diversified version is automatically generated for every execution 
environment in the deployment phase.

Finally, IID is a practical approach because it is orthogonal to many other 
security measures. For example, it can be used together with traditional security 
measures such as encryption and intrusion detection. This way, IID can present 
operating systems with additional security. This is especially useful for systems 
with high-security requirements such as governmental applications, banking 
servers, military applications and certain critical devices. Furthermore, sensitive 
devices such as IoT machines inside a private residence could be equipped with 
such protection. The reasoning is that as IoT devices might be quite rarely or 
never updated, their security could be enhanced as a countermeasure to the 
lack of security updates.

7.2. Limitations

Automation of diversification arose as a major challenge when implementing 
the three solutions. While the IID process can in most cases be performed 
automatically, there are some challenging cases that require attention from 
the programmer. For example, Section 4 shows that automatic system call 
diversification is not possible in, for example, cases where there are gaps 
between instructions. However, at least in the lightweight operating systems 
having less program code, the number of problematic cases is not large. 
Moreover, for the essential parts of the system such as popular libraries, manual 
fixes only need to be done once.

In a diversified operating system, updates are a challenge. Obviously, any 
update would have to be compatible with the interfaces it depends on. 
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Therefore, it has to be diversified accordingly. This can be done for instance by 
having the diversification engine automatically operating in the diversified 
system. Another option is to locate the diversification engine on a dedicated 
server and making it more difficult to discover and compromise for adversaries. 
Sharing updates through an app store, as suggested by previous studies [20], is 
also a possibility. The main reason to use external servers for storing the 
diversification engine or key is that there exists a risk that the key might some
how leak to adversaries if the system was compromised and inspected. Once an 
attacker obtains the key, diversification becomes useless. It is thus essential to 
store keys safely and use robust diversification schemes to ensure that they are 
not discoverable.

Another method for securing the IID is to make it dynamic, that is, by re- 
diversifying the interfaces in the system regularly. Different diversification cycles 
can also be applied to different interfaces in the system; the components 
considered critical to the system could be diversified more often than others.

One limitation that is particularly relevant in implementing IID is that some 
applications might be already obfuscated for additional security, which makes it 
more difficult to further diversify system call numbers and symbols in binaries. 
However, if obfuscation is applied to the binary after diversification, then it 
obviously does not cause any problems for IID. When considering using IID in 
a system, software developers could be advised not to use obfuscation on 
source code level to avoid the above-described issues.

Finally, it is worth considering that IID solutions are not perfect. For example, 
they do not prevent return-oriented programming (ROP)-based attacks, where 
the attacker makes use of carefully chosen machine instruction sequences that 
are already present in machine’s memory. One example to protect from such 
attacks would be the G-free technique developed by Onarlioglu et al. [34] that 
transforms binaries so that they are protected against any possible form of ROP. 
IID can very well be implemented in a system together with the G-free techni
que, and they could both play their part in enhancing the systems multilayered 
security protection. Another way to counter ROP attacks would be to dynami
cally change diversification forming several possible execution paths for differ
ent diversified versions of an interface in the binary executables. This could 
mitigate also attacks where an adversary blindly tries to guess system call 
numbers. To prevent scenarios where the function names or system calls are 
not used directly (e.g. exploiting knowledge of the order of the PLT/GOT 
entries), the binary could be for obfuscated after diversification.

8. Related work and other solutions

Many authors have proposed renaming or randomizing symbols as a method of 
software diversification. Diversification of system call entry points by function 
renaming in order to defeat buffer overflow attacks was initially proposed by 
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Chew and Song in 2002 [17]. Along with system call entry points, they diversify 
the mapping of system calls in the kernel. They also propose diversifying the 
stack placement, which makes it more difficult for the adversary to find out the 
return address needed for executing injected code.

Jiang et al. [35] introduced a scheme called RandSys that combines 
Instruction Set Randomization (ISR) and Address Space Layout Randomization 
(ASLR) to build a robust protection against malware. RandSys utilizes a dynamic 
load-time scheme that allows each process to have uniquely diversified system 
calls at the cost of an increase in execution time. The scheme includes diversify
ing libraries (e.g. renaming functions uniquely for each executing process) and 
diversifying the system calls. In a similar fashion, Liang et al. [36] discuss 
diversifying the system calls in order to defeat malicious attacks. Our multilayer 
diversification scheme introduced and implemented in this paper can be seen 
as an extension to this previous work. In addition, we provided a technical 
description, an implementation as well as empirical results of testing done on 
the solution to solidify its feasibility as a malware countermeasure.

Diversification solutions have been created for the Windows operating sys
tem as well. For example, Abrath et al. [37] obfuscated the interfaces between 
application binaries and dynamically linked libraries in Windows. They noted 
that by statically linking the libraries into the program and obfuscating the 
whole resulting binary makes reverse-engineering considerably harder and 
shrinks the attack surface.

When it comes to diversifying script languages, Portokalidis et al. proposed 
an approach closest to our work [32] with the Bash interpreter. They modified 
the Perl interpreter so that it executes diversified scripts. Execution of malicious 
Perl code will fail because it is not correctly diversified, which makes it incom
patible with the system. Rauti et al. continue this research by diversifying the 
Bash shell language and strengthen the original scheme by uniquely diversify
ing individual script.

Boyd and Keromytisproposed a similar approach for the SQL language [38]. 
They adopted a proxy-based approach in which an intermediate proxy compo
nent transforms diversified queries into queries conforming to original SQL 
language, passing them on to the database. Rauti et al. improved upon this 
scheme by making the diversification application specific and more secure, and 
presented a proof-of-concept implementation for SQL diversification in [21].

Generally, diversifying internal interfaces, or instruction sets [39,40], can be 
considered an effective approach for preventing code injection attacks. When 
applying diversification on source code or byte-code level, identifier renaming is 
also regularly used to disrupt the decompiling process. The resulting code will 
be filled with syntax or semantic errors and reverse-engineering efforts will be 
thwarted [41].
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9. Conclusions

In this paper, we discussed diversification as a method that prevents malware 
from using the important resources of the operating system. We gauged the 
applicability IID by presenting experiments with three interface diversification 
schemes that can be seen as one joint approach to protect the system: (1) 
diversifying system calls; (2) library functions; and (3) shell commands. We 
showed that diversification can be done automatically to a great extent. We 
presented several challenges in interface diversification and proposed methods 
to alleviate them. These methods can be used to build practical tools that boost 
the multi-layer cybersecurity of systems.

As outlined in this paper, we see diversification as a comprehensive security 
mechanism that encompasses all the important interfaces and software layers of 
operating systems. Internal interface diversification methods show a lot of 
promise in systems with relatively small amounts of code and infrequent 
updates such as IoT devices. Furthermore, it can boost the multi-layered security 
of systems with high-security requirements. We hope to see practical diversifi
cation solutions being applied to embedded systems with lightweight operat
ing systems (IoT, industrial Internet) in the near future.
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