
 1

A Performance Test of a Power Index Computer Program

 2

Acta politica aboensia, B 3
Department of Political Science and Contemporary History
FI-20014 UNIVERSITY OF TURKU
ISBN 978-951-29-4922-9
ISSN 1798-3134
ISSN-L 1798-3134
Uniprint Turku 2012

 3

Abstract

There is a considerable literature studying voting power and power indices, however a

study exploring the practical aspects of voting power computation seems missing. This

study examines a power index program termination time and runtime memory usage in

large voting bodies up to 190 voters. In a comparison an up-to-date computer

surprisingly performs overwhelmingly better compared to a slightly older model. The

simulations reveal the greater speed of the up-to-date computer being due to more

advanced processor architecture together with a more efficient data bus and memory.

The applied all-in-one program is found rather slow due to simultaneous processing of

many indices. The runtime memory usage is found modest in the simulations. The

literature suggests that the time and storage complexity of the applied algorithm could

be reduced.

 4

Introduction

The tools of voting power analysis, the power indices, are used to measure voting power

of the members of a voting body. The only variables, which are taken into account, are

the resources of the voters (votes) and the vote threshold (quota). Thinking of

constitutional design the motivation is to analyse a priori what the voters can do with

their votes in a voting body instead of just comparing formal vote amounts. Here power

is understood as being on a pivotal position in a vote and thus having the ability to

control the vote outcome. This information cannot be revealed by comparing the voters’

vote amounts. Another possible motivation for the use of power indices is normative.

For example, in an existing voting body it is possible to analyse and argue the fairness

of some vote distribution. The computation of the power indices is, however, very

tedious and can reliably be carried out only with the aid of a computer. In what follows I

shall focus on certain aspects of computerized voting power analysis.

The scholarly literature on voting power and power indices is vast.1 The publications

can roughly be divided into two main branches, from which the first apply the power

indices and hence analyse voting bodies. For example the European Union enlargements

have motivated numerous analyses with respect to the fairness of various Member

States’ vote distributions in the Council of Ministers (see e.g. Hosli 1993; Widgrén

1994, 1995; Felsenthal and Machover 2000; Leech 2002a). Other popular objects of

similar analyses have been the U.S. presidential Electoral College, the European

Parliament as well as national parliaments. The second branch of literature is more

mathematically oriented and is interested in the properties of power indices (see e.g.

Felsenthal and Machover 1998; Pajala 2003; Widgrén and Napel 2008). On the

background of these literature branches there are few studies, which discuss the

computer aided computation of voting power. These studies have emerged from the

need to be able to study voting bodies with more than just few voters. The articles

present, develop and analyse various methods and algorithms for power index

computation (Brams and Affuso 1976; Leech 2002a; Lambert 1982; Lucas 1978; Mann

and Shapley 1960, 1962; Matsui and Matsui 1998, 2000; Uno 2003). Although the

studies include theoretical discussion on the complexity of the computation in the

1 Homo Oeconomicus alone has published several special issues on power indices (see Widgrén 2000;

Holler and Owen 2000; Holler and Owen 2002; Gambarelli and Holler 2005; Gambarelli 2007 and the
references therein).

 5

algorithm level, present outlines of computer programs and even give some hints in

practical terms, to the best of my knowledge no empirical studies exist on the subject.

In all practical computation two aspects are of primary interest: the program termination

time and the runtime memory usage. These measures indicate the limits of the computer

internal components i.e. the hardware. The two related questions are: First, is the

processor capable of processing the computational task? And second, do we have

enough memory resources for the process? Accordingly, this technical report will

examine and discuss termination times and runtime memory usage of a power index

program. The limit of how large voting bodies can be analysed with a computer has

risen over the decades. The first known computer programs together with the related

articles appeared in the early 1960s. In those days the mainframe computers were able

to analyse at least a 50 member body. While the two seminal articles by Mann and

Shapley (1960, 1962) report program termination times, they provide no information on

the memory usage. Later studies appear to provide even less information on the

practical aspects of computation. Nowadays the processors and other computer

hardware are developing rapidly and the processing capability of a modern desktop

computer is more or less astronomical compared to the mainframes of the 1960s.

This article has its roots in the need to know how large voting body a World Wide Web

based public calculator service could analyse within a reasonable time. For online

solutions the computation time cannot be more than few seconds. The first respective

analyses were carried out in 2003. In addition to the search of the limits of feasible

online voting games it was tested whether the computer hardware and the program

could cope with very large voting bodies up to 190 voters. This refers roughly to the

size of the IMF board of governors, which is the largest public organization having been

analysed in the literature. Roughly two or three (Intel) processor generations later an

identical test sequence was carried out again in 2009 and 2010, however now using an

up-to-date workstation. This time the comparison was done in order to evaluate whether

it was worth considering updating the old server hardware dating from 2003. 2 Our main

research questions are: First, to what extend do the execution times differ between the

2 In technical terms the old CPU is a single core Intel Pentium 4 generation CPU running at the clock

frequency of 2.4 GHz. The new CPU is an Intel Core 2 Duo generation CPU running at 2.66 GHz.
The new CPU has two cores, however only one core at the time is used in the program execution.

 6

old and new workstations? Second, what are the main causes for the possible

differences? And third, how substantial are the memory requirements regarding the

computation processes?

In a nutshell, the test sequences begin with an input of a 50 voter voting game [638; 1,

2,..., 50], which is fed to the program and the execution time is measured. For each

subsequent measurement round 10 more voters are added to the game ending up with

190 voters. Also a second test sequence is carried out, however this time multiplying the

voters’ votes by 10 and thus giving the processor (CPU) a much harder load. The quota

is always kept at the simple majority.3 Regarding the memory requirements the

literature points out that the applied calculation algorithm is modest on processor time

consumption, however the trade-off is that the memory requirements can be substantial.

Simulations carried out in 2010 will, for the first time, provide an insight to the memory

consumption aspect of the computation.

The comparison between the hardware used in 2003 and 2009/2010 appeared to be very

interesting. What came as a surprise were that seemingly only small advances in

computer technology within just few years substantially affected the program

termination times. The new computer was in certain voting games well over ten times

faster compared to the old hardware. Moreover, the comparison of the computation

times between the computers using a hard input appeared to be counterintuitive at the

first sight. Regarding small voting bodies the new hardware was gaining relative speed

over the old hardware, however regarding large voting bodies the relative speed

surprisingly diminishes. The memory requirements appeared to be rather modest

considering the amount of physical memory available in modern computers. It became

apparent that the applied program could be enhanced in several ways.

Subsequent to the introduction I shall briefly discuss voting power measurement

together with the relevant literature. This is followed by a brief discussion on the

applied power index computation algorithms and the key aspects of computer hardware.

Subsequently I report the computation time and memory usage analyses and discuss the

3 Memory requirement and computation speed grow in the opposite directions: a higher quota speeds up

the computation, however affects the memory usage to increase (and vice versa). Simple majority is
thus the hardest possible load regarding program termination time.

 7

effects of the computer hardware. Finally, I review and discuss several possibilities to

enhance the applied program.

Voting power and the software side of computation

In a nutshell the power index values are based on the analysis of either voter

combinations or voter permutations of a voting body. Why computers are needed is

because there are always 2n voter combinations or n! voter permutations to analyse, n

being the number of voters. Regarding each combination or permutation we need the

information whether any voter(s) are in a pivotal position so that if a voter i changes

(swings) her vote from yes to no the remaining of the voter combination is no longer

winning without her i.e. does not meet the vote threshold. The pivots and swings are the

raw material for power index calculation. For example, the voter permutation based

Shapley-Shubik index value for voter i is her relative amount of all voters all pivots

(Shapley and Shubik 1954). The voter combination based standardized Banzhaf index

value, in turn, is the relative amount of all voters all swings for voter i (Banzhaf 1965).

Dividing voters swings with the constant of 2n-1 constitutes the third of the most applied

power indices – the Penrose (a.k.a. Penrose-Banzhaf, or absolute Banzhaf) index

(Penrose 1946). For more discussion and details of the power indices the reader is

advised to refer to the in depth studies of e.g. Felsenthal and Machover (1998) or

Straffin (1994).

Turning to the computerized voting power analysis Penrose (1946) or few years later

Shapley and Shubik (1954) carried out their analyses with pen and paper. The two

seminal papers regarding computerized power index analysis were published by Mann

and Shapley (1960; 1962) in the beginning of the 1960s. Applying the Shapley-Shubik

index Mann and Shapley analysed the U.S. Presidential Electoral College, which at the

time consisted of the 50 U.S. States. It is remarkable that the basic idea of the

computation algorithm introduced by Mann and Shapley in their 1962 paper is the same

applied here. In fact, the Mann and Shapley algorithm was virtually forgotten for

decades and has been studied in more detail during the last ten years. Later in the 1960s

John Banzhaf (1965) introduced the (standardized) Banzhaf index. Most probably he

was able to use a computer at least in some of his analyses. Banzhaf did not apply the

Mann and Shapley (1962) method of computation for the first such application in

 8

conjunction with the Banzhaf index appeared later in Brams and Affuso (1976). To the

best of my knowledge Lee Papayanapoulos was consulting Banzhaf, at least in some

point. Papayanapoulos has also later studied the computation of the Banzhaf index (see

e.g. Papayanapoulos 1981).

There are several known algorithms for power index computation. These can roughly be

divided into two categories: First, the so-called approximation algorithms compute

index values, which are, as the name suggests, approximations (Leech 2003; Owen

1972, 1975). Second, there are algorithms, which area able to yield exact index values.

Both categories include several techniques (see the survey by Leech (2002b)). The

challenge to the computer is the complexity of the computation, which brings about

heavy demands for computer resources in one way or another. With respect to exact

index value computation the algorithms are either very processor intensive, or

alternatively, very storage intensive. A workaround to this have been the approximation

algorithms.

Setting aside the approximation methods, among the exact computation algorithms the

simplest way to analyse a voting body is called direct enumeration. The iterative,

though not very effective, algorithm is a rather natural way of thinking of how to

compute power index values. It is a very straightforward algorithm which rests on the

idea that every voter combination is actually created in the computer memory and then

analysed for voter swings or pivots. The algorithm is very processor intensive, however

the storage requirements remain very modest. In fact, the random access memory

(RAM) is only used to store few rather short vectors, which are updated only when

needed. The number of possible voter combinations double with every additional voter,

and unfortunately the same applies to the program execution time. The practical

computation time limit (assuming no voters have the same amount of votes and

applying the simple majority quota) in a modern PC is around 30 voters.4 Accordingly, a

31 voter voting game [233; 1, 2, ..., 31] takes over an hour to terminate, so a 32 member

body would require 2-3 hours to terminate and so on. In the mid-1970s the

computational limit was less than 20 voters (Brams and Affuso 1976).

4 Algorithm researchers usually set the limit of reasonable program execution time to one hour (Uno

2003).

 9

The computation algorithm we apply here is based on the mathematical properties of the

so-called generating functions. Among the known algorithms it is the most effective.

The seminal paper was published by Mann and Shapley in1962. Previously Mann and

Shapley (1960) were only able to come up with approximations of voting power

regarding the member states of the U.S. Presidential Electoral College. The computation

of the exact values became possible after David Cantor proposed the use of generating

functions to Mann and Shapley (Mann and Shapley 1962). The algorithm and its

mathematical and other properties in conjunction with various power indices have been

later studied at least by Brams and Affuso (1976), Lucas (1978), Lambert (1988), Leech

(2002), Matsui and Matsui (2000) and Uno (2003) (see also Alonso-Meijide et al. 2005;

2009). In terms of a computer program a generating functions based algorithm, after

certain optimization, is rather short in code length. Basically, the core of the program

consists of few recursive loops (instead of iterative loops) which are able to reduce the

time complexity of the algorithm into polynomial time (instead of exponential). In

comparison to the above the voting game [233; 1, 2, ..., 31] will now terminate within

few fractions of a second, which is feasible for online use. The challenge and problem

in direct enumeration algorithm is that the number of coalitions double every time a new

player is added to the game. However, provided that the weights of the voters and the

quota are integer numbers there is a workaround using a different approach. The

generating functions enable a quick and easy way to find out the number of coalitions of

each size. The numbers (of coalitions of each size) are certain coefficients of the

generating function. To discover the swings for the Banzhaf and Coleman indices it

actually suffices to analyse coalitions having the total weight equal to the quota or less.

Once this information is obtained it is possible to find out the swings by knowing the

weights of the voters. The same idea with a different generating function can be used to

find out the pivots for the Shapley-Shubik index. For the Deegan-Packel index the

computation is harder as it is based on minimal winning coalitions thus requiring

processing of certain additional information. Basically, the generating functions

(recursively) create a sequence of sub-problems, i.e. matrices of the generating function

coefficients (or factorials), which include part of the information for the swing and pivot

analyses. The program will store the unsolved sub-problems into a stack until the root of

the recursion is reached and all the sub-problems can be solved. Recursion is a loop

 10

structure which a computer is able to execute extremely fast, however downside is that

the coefficient matrices can become very large and require a lot of RAM memory for

the sub-problem stack. During the computation process some of the integers can also

become very large. As is shown below, there is variation in how fast the algorithm can

perform in conjunction with various power indices. More details of the algorithm

together with computer program outlines are discussed e.g. in Brams and Affuso (1976),

Matsui and Matsui (2000), Lambert (1988) and Leech (2002).

The hardware side of the computation

In order to compare and explain possible differences in the performance of the two

workstations the most important components the computers need to be briefly

discussed. Basically, a computer consists of three main parts: First, the most important

part of a PC is its processor, which is able to do arithmetic and logical operations.

Second, for any data to be processed the computer needs (various kinds of) user

programmable memory. Third, the computer needs a certain infrastructure, the

motherboard, to enable the processor and memory to work together. Table 1 shows the

key components of the old and new hardware and also the most important memory

types and speeds together with the speed of the data bus.

Table 1. Key hardware components in two PC workstations

Motherboard

(Asus)

CPU (Intel) CPU clock

frequency

CPU L1

cache

CPU L2

cache

Data bus

speed

RAM

speed

P4S533-MX Pentium 4 2.4 GHz 12 Kb 512 Kb 400 MHz 333 MHz

P5K-VM Core 2 Duo 2.66 GHz 2x32Kb* 6 Mb* 1333 MHz 667 MHz

*The cache is shared among both CPU cores.

The new CPU in table 1 was introduced roughly 2-3 Intel processor generations after

the old one. The Pentium 4 (single core) CPU was introduced in the year 2000 while the

newer Core 2 Duo type (dual core) processor was released in 2006. The clock

frequencies at which the processors run are nearly equal, however the new CPU has two

cores (i.e. two processors in one chip) running at 2.6 GHz instead of the single 2.4 GHz

core of the old CPU. There has been certain development in the CPU architecture; most

notably the L2 cache memory size is ten times larger and the L1 cache size is five times

larger in the new CPU. The L2 cache is shared among the cores of the new CPU. If two

 11

processors are running at the same clock frequency, the caches will have the effect that

the one with the larger L2 cache is the more efficient. Regarding the internal CPU

architecture the instruction set of the new CPU is more advanced.

All internal and external data traffic flow through the motherboard. This printed circuit

board hosts all hardware components and peripherals which communicate via the

motherboard using the data bus. The data bus can be thought as a collection of wires

joining every computer component together. Compared to the old PC the data bus is

three times faster in the new PC.

The fastest type of memory is integrated into the CPU as the cache memory. The

processor uses the cache memory for the most frequently used data and can access the

data extremely fast without the data bus. The idea using cache memory is that first the

CPU searches the L1 level cache. If L1 does not include the desired information the

CPU accesses the L2 cache and if it does not contain the desired information the third

option, the main memory, is accessed. The main memory, however, produces a

considerably higher memory operations latency compared to the cache. Table 1 shows

the main memory speed having doubled in the new PC. I could not find details on the

cache memory speed(s), however, if they function close to the CPU clock frequency the

cache of the new PC is slightly faster compared to the old PC in this respect. Other

computer hardware components do not have much of an effect in the computation speed

in our case.

Computation results

The applied power index program is written in C programming language. The sources

were compiled into executable files in various ways in both workstations in order to

maximize the comparability of the results. The program is based on the algorithms

presented in Matsui and Matsui (2000) for computing the Shapley-Shubik, Banzhaf and

Deegan-Packel indices. The applied program has additional routines in order to compute

the Holler, Zipke and Coleman indices to initiate and prevent action. Basically, the

values of the additional indices are deducted from the information provided by the

original three indices. The program will also output the number of winning and losing

coalitions, the number of minimal winning coalitions and the Coleman power of the

 12

collectivity to act index value.5 It is important to notice that the computational

complexity of the indices vary (within polynomial time). Matsui and Matsui (1998;

2000) and Uno (2003) provide us with the following: The Banzhaf index is the easiest

to compute and in terms of complexity the values for all players can be computed in

O(n2q) time. The complexity of the Shapley-Shubik index is in the order of O(n3q) and

for the Deegan-Packel index O(n4q), respectively. Hence, the program would be faster

(and more simple) should only e.g. the Banzhaf index values be computed. As this is not

possible in the current implementation the termination times below are bounded by the

Deegan-Packel index. That is, the program can perform only as fast as the slowest index

(Deegan-Packel) allows. For comparison the time complexity of the direct enumeration

algorithm is exponential in the order of O(2n). The magnitude of the space complexity

in the current program is in the order of O(n2).6 The input and the programs are equal,

so they should use an equal amount of memory in both computers. There are, however,

very marginal differences between the two PCs in this respect due to program

compilation.

For comparable results the new and the old hardware have the same Linux operating

system (OS) installed (SuSE 10.3). The program sources are compiled separately in

both machines ensuring the best performance. Figure 1 show the program termination

times for games with 50-190 voters using a simple majority quota. Accordingly, the 50

voter game is [638; 1, 2,..., 50] and the largest 190 voter game is [9073; 1, 2,..., 190]. As

the mathematical complexity analysis suggests, the measured termination times appear

to follow the complexity (growth rate) of the Deegan-Packel index. Up to 100 voters the

programs terminate within few fractions of a second in both computers, however in

larger games the speed of the new machine is superior to the old one. Regarding the 190

voter game the program terminates just under three minutes in the new PC (167

seconds), while the old machine requires around 29 minutes to terminate. The new

machine is over ten times faster regarding games larger than 140 voters, so the

difference is considerable. When 10 more voters are added to the game the termination

time grows around 40-50 % in each round. If we take a look at the relation between the

5 For the index definitions see Deegan and Packel (1979), Holler (1982), Nevison et al. (1978) and

Coleman (1971).
6 It is not feasible to compare the effect of input size magnitude, which would require program execution

with e.g. input size of 10, 100, 1000 and possibly even 10 000 voters.

 13

termination times in figure 1 we see that up to 160 voters the new machine is gaining a

speed difference up to 12 times. In games larger than 160 voters the relative speed of the

new machine, however, begins to diminish. Figure 1 also shows the limitation of the all-

in-one program. A generating functions based online program ipgenf by Dennis Leech

computes only the Banzhaf and the Coleman indices. Giving ipgenf the above 190 voter

game it will terminate within one second.

Figure 1. Power index program termination times and the relation between the

termination times in two computers

Figure 2 shows the program termination times in games with 50-190 voters where the

previous vote amounts have been multiplied by ten (e.g. [6376; 10, 20,...,500]). As

expected, the termination times are now considerably higher and again follow the

suggested growth rate of the Deegan-Packel index. The CPUs now have to deal with

larger numbers and also more memory is used compared to figure 1. This is due to the

fact that the coefficient matrices become larger. Now the termination times are in the

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

E
xe

cu
tio

n
T

im
e

(s
)

Number of Voters

New hw

Old hw

 14

order of thousands of seconds instead of hundreds of seconds. The new hardware is now

able to compute the 190 voter game in just under seven minutes while the old hardware

will need approximately half an hour (nearly 10 600 seconds) to terminate. When 10

additional voters are added to the game this increases the termination times around 30-

50 % in each round. Surprisingly the relation between the program termination times

seems to be the opposite compared to figure 1: In a 60 voter game the new computer is

roughly 18 times faster while in a 160 voter game the new computer is only six times

faster and in a 190 voter game only four times faster. The difference to ipgenf is even

more striking here as ipgenf will still terminate within few seconds if the 190 voter

game is given to the program.

Figure 2. Power index program termination times and the relation between the

termination times in two computers

Now, why is the new PC so much faster to the old one? For the answer we shall

consider several variables and explanations. Accordingly, additional simulations were

carried out in order to control for differences in certain hardware and software aspects.

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

E
xe

cu
ti

on
 T

im
e

(s
)

Number of Voters

New hw

Old hw

 15

Let us first consider the programs and the input i.e. the software side of the

computation: The input files and the program source files are identical. However, the

compiled and executable version of the program regarding the new computer might be

more effective as the compiler optimizes the program for each CPU. The instruction set

in the new CPU is more advanced and if the compiler is able to utilize the advantage the

executable program version for the new CPU might be (substantially) more efficient. To

measure and control for the impact of the instruction set, the obvious way is to compile

the sources in the old hardware for the old CPU and use the obtained executable in the

new hardware. As both machines are using the same OS version the differences should

mainly reflect the impact of the instruction set. Performing the same sequences of

computations as in figs. 1 and 2 in the new hardware, the computation takes around 35

% longer time in average. Hence, the instruction set has a clear effect, however it is only

a partial explanation to the overwhelming performance of the new PC.

It was also possible to compare differences between Linux OS generations (SuSE 9.0

vs. SuSE 10.3). It could be suspected that the OS generations are not likely to affect the

termination times substantially, as the programs are executed in a command shell and

not necessarily requiring a graphical user interface. Indeed, performing the computation

sequences in figs. 1 and 2 shows that the new OS version is faster, however the

difference is only around 10 % in average. The difference is probably due to a slightly

improved and more efficient Linux kernel version.

Second, among the hardware components, the CPU clock frequencies (2.4 GHz and

2.66GHz) refer to the number of operations the CPUs are able to perform within a

certain period of time. The respective values are nearly equal so they cannot explain the

greater speed of the new computer. The fact that the new computer architecture is a 64-

bit vis-á-vis a 32-bit architecture in the old PC contributes mainly to the capability of

the new computer to handle larger numbers with total accuracy.

Third, according to table 1 the data bus in the new computer is three times faster and

also the main RAM memory modules are twice as fast. This obviously affects the

computation times as the data bus sets the internal speed limit of the computer. A stream

 16

of bits can not move from the CPU to the main memory (or back) faster than the data

bus allows, even if the CPU would have the capacity of performing faster. The same

effect applies to the main memory modules; they can become bottlenecks in the

computation process as the modules are able to exchange data only as fast as their clock

frequencies allow. It is difficult to estimate precisely how much the more advanced data

bus and main memory affect the computation even when the CPU clock frequencies are

virtually equal. In the light of the above results, however, we know that the new

computer is at least three times faster regarding any of the given inputs.7 Hence, it is

likely that the new computer can perform from three to four times faster in any similar

computational task.

Finally, we consider a fourth possible cause, as the above factors are not able to explain

the peculiar relation between the computation times but only partially. Table 1 shows

the amount of the level 2 cache memory being ten times larger in the new PC. Indeed,

the speed and especially the size of the L2 cache play the key role in the computation

speed difference between the hardware setups. Figure 1 shows the overwhelming speed

of the new computer up to 160 voters. In larger games the relative speed in new

computer is not increasing any more, but rather the difference seems to diminish. This

phenomenon is due to the L2 caches. The sequences of coefficient tables, which the

program creates, fit considerably better in the L2 cache of the new PC. Recall that the

cache memory is available to the CPU without the main memory latency. The cache in

the new computer is only so large and when more voters are added to the game the

coefficient table will grow in size and eventually will have to reside more and more in

the main memory. The cache saturation point seems to be around 160 voters as in larger

games the relative speed of the new computer begins to diminish. Using the same logic

we can also explain the mirror phenomenon in the computation time relation in figure 2.

Regarding games with 50-60 voters the coefficient matrices still fit mostly in the cache

of the new PC. In larger games the main memory is increasingly used and the relative

speed of the new computer rapidly diminishes. Eventually in a 190 voter game the new

computer is only four times faster as the coefficient tables now reside for the most parts

in the main memory. From this we can deduct that the same phenomenon would appear

7 The 50 voter game in figure 1 is disregarded due to measurement difficulties. The program takes only

few milliseconds to terminate in both workstations and the automatic OS processes probably create
fluctuation in the computation times.

 17

also in figure 1 if games larger than 190 voters were analysed. As stated above, the new

computer would probably perform from three to four times faster due to the other more

advanced hardware components even if the voting game would include several hundred

voters.

Now we shall focus on the runtime memory consumption of the computation process.

This analysis is needed to confirm the above L2 cache effect. As stated above (and after

certain testing), the memory consumption is virtually equal regarding both computers

due to the same algorithm. The memory consumption is measured with the system

utility TOP, which is run parallel with the power index program. In Linux (or UNIX)

systems the TOP program is able to list several details of running or sleeping processes

(tasks). One of these details is a task's currently used share of available physical

memory, which is comprised of the L2 cache and the main memory. The measurement

TOP is able to provide is a bit rough, however the accuracy is sufficient for our

purposes.

In figure 3 we can see the process memory consumption of two sets of voting games.

Referring to the grey line and games in figure 1, the observed RAM memory

consumption is (i.e. the process will reserve) 1.4Mb for the 50 voter game. Growing

almost linearly the 190 voter game requires approximately 13Mb of memory. The

storage complexity is less demanding compared to the time complexity and so the

almost linear growth rate in figure 3 does not apply for the program execution times.

Multiplying the voters’ votes by 10 substantially increases the required memory space:

Following the black line in figure 3 the game [6376; 10, 20,..., 500] will use around

13Mb of memory. The largest 190 voter game consumes around 131Mb while the

growth rate is again almost linear, however much steeper compared to the previous

(recall the above difference to program execution times). Keeping in mind that modern

desktop computers have several gigabytes of RAM memory available, we can conclude

that in the above games the memory consumption is quite modest.8 Rather, in our case

the bottleneck seems to be the program execution time. Another result is that the

8 The memory requirements can be substantial in certain cases, especially, if the total number of votes is

very large. As an example, consider the 24 IMF executive directors (elected by predefined groups of
countries of the IMF governing board) having a total of 2 214 607 votes. If the simple majority quota
is applied, the computation process will terminate within 90 seconds, however the memory
requirement is over 300Mb.

 18

saturation point (6Mb) of the L2 cache memory of the new PC is around 120-130

voters. Apparently the use of main memory is still so marginal that up to the 160 voter

game in figure 1 the new computer is still gaining relative speed. Notably the memory

requirement is roughly equal between the 190 voter game in figure 1 and the 50 voter

game in figure 2. The memory consumption grows in a steeper manner regarding figure

2 causing the relative speed difference to reduce between the PCs.

Figure 3. Power index program runtime memory usage under two voting scenarios

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

U
se

d
m

em
or

y
(M

b)

Number of Voters

Votes

 19

Discussion and development possibilities

With respect to the research questions we have demonstrated that the voting power of

members of a voting body having the size of the U.S. Electoral College can nowadays

be computed in just few fractions of a second. This result is irrespective whether the

computation is carried out using an up-to-date hardware or a computer being half a

decade older. A large voting body having the size of the IMF board of governors could

also be computed with both modern computers, however now the program will

terminate considerably faster in the new workstation. For comparison Mann and

Shapley (1962, 7) used an IBM 7090 model mainframe to measure voting power in the

U.S. Electoral College and their FORTRAN program took around 70 seconds to

terminate.9 The IBM 7090 generation mainframe had roughly the size of a volleyball

field and typically was worth $2 900 000 at the time. The inspection of the applied main

hardware components show that the more advanced architecture of the new CPU (larger

cache memory and a more advanced instruction set) is the key to the speed of the new

hardware. In every computational scenario the new PC will perform at least 3-4 times

faster to the old one. The memory requirements in the above voting game examples

were found to be rather modest as the most demanding computational task used about

132Mb RAM memory, while the available amount of RAM memory in standard

desktops is several gigabytes. However, it has to be noted that when the total amount of

voters and especially votes is very large, the memory requirements can be substantial.

The applied program is an all-in-one implementation. The main strength of the program

is that it will output results regarding many indices. The main weakness of the program

is that it cannot perform faster as the most complex index allows; in our case the

Deegan-Packel index. The termination times would be substantially lower if only the

least complex indices (the Banzhaf indices) are computed. An obvious enhancement to

the program would be to allow the user to choose which indices are to be computed.

Currently everything is executed automatically. The computation algorithms could also

be improved. According to Uno (2003) the complexity of the algorithms could be

significantly reduced: The Banzhaf indices for all voters could be computed in only

9 The three Electoral College variants Mann and Shapley analysed were comprised of only 18 or 19

different size voters as many states had the same amount of votes. This reduces memory requirements
as well as execution time compared to our 50 voter example.

 20

O(nq) time and the Shapley-Shubik and the Deegan-Packel indices in O(n2q) time.

Currently the complexities are in the order of O(n2q), O(n3q) and O(n4q), respectively.

The program execution on the hardware could possibly be enhanced, if the

computational task could be parallel with respect to the multiple cores of modern CPUs.

There might still be certain slowing bottlenecks, from which the CPU cache size and the

speed of the data bus and main memory are the most important. The computation could

also be enhanced with respect to space complexity. The applied algorithms seem to do

no unnecessary operations, however the data structure regarding certain variables could

be changed from a matrix into a linked list (Uno 2003). The coefficient matrices can

grow substantial in size, however it is known that the matrices are sparse as majority of

the cell values are zeros. The more there are voters and especially the larger the vote

total is, the more zeros appear in the coefficient matrices. The idea behind the linked list

is that when the first zero is encountered in a matrix row, this zero is replaced with a

link pointing to the beginning of the next row. This is possible as the mathematical

properties stemming from the generating functions suggest that the first zero in a row is

only followed by more zeros. The idea of a linked list in combination with power index

computation has been suggested at least by Uno (2003) and Lindner (2004). In terms of

space complexity it would be interesting to compare the original storage method to a

modified linked list algorithm. Of equal interest would also be to compare the program

execution times under both storage scenarios: A linked list is a slower data structure

compared a two-dimensional vector, however a linked list would require far fewer

memory operations. In any case, a linked list data structure would at least potentially

enable the analysis voting bodies in which the total amount of votes is in the order of

106 or possibly even 107.

 21

References

Alonso-Meijide, J., Bilbao, J., Casas-Mendéz, B. and Férnandez, J. 2009. Weighted

multiple majority games with unions: Generating functions and applications to the

European Union. European Journal of Operational Research 198, 530-44.

Alonso-Meijide, J. and Bowles, C. 2005. Generating Functions for Coalitional Power

Indices: An Application to the IMF. Annals of Operations Research 137, 21-44.

Banzhaf, J. 1965. Weighted Voting Does not Work: A Mathematical Analysis. Rutgers

Law Review 35, 317-43.

Brams, S. and Affuso, P. 1976. Power and Size: A New Paradox. Theory and Decision 7,

29-56.

Coleman, J. 1971. Control of Collectivities and the Power of a Collectivity to Act. In

Lieberman (ed.), Social Choice. New York: Gordon & Breach, 269-300.

Deegan, J. and Packel, E. 1979. A New Index of Power for Simple n-Person Games.

International Journal of Game Theory 7:2, 113-23.

Felsenthal, D. S. and Machover, M. 2000. Enlargement of the EU and Weighted Voting

in its Council of Ministers. VPP 01/00 Centre for Philosophy of Natural and Social

Science.

Felsenthal, D. S. and Machover, M. 1998. The Measurement of Voting Power: Theory

and Practice, Problems and Paradoxes. Cheltenham: Edward Elgar.

Gambarelli, G. (ed.). 2007. Power Measures IV. Homo Oeconomicus 24:3-4, special

issue.

Gambarelli, G. and Holler, M. (eds.). 2005. Power Measures III. Homo Oeconomicus

22:4, special issue.

 22

Holler, M. 1982. Forming Coalitions and Measuring Voting Power. Political studies 30,

262-71.

Holler, M. and Owen, G. (eds.). 2000. Power Measures I. Homo Oeconomicus 17:1-2,

special issue.

Holler, M. and Owen, G. (eds.). 2002. Power Measures II. Homo Oeconomicus 19:3,

special issue.

Hosli, M. 1993. Admission of European Free Trade Association States to the European

Community: Effects on Voting Power in the European Community Council of

Ministers. International Organization 47, 629-43.

Lambert, J. 1988. Voting Games, Power Indices and Presidential Elections. UMAP

Journal 9, 216-77.

Leech, D. 2002a. Designing the voting system for the Council of the European Union.

Public Choice 113, 437–64.

Leech, D. 2002b. Computation of Power Indices. Warwick Economic Research Papers,

Number 644. URL: http://www.warwick.ac.uk/~ecrac/twerp644.pdf.

Leech, D. 2003. Computing Power Indices for Large Voting Games. Management

Science 49, 831-38.

Lindner, I. 2004. Power Measures in Large Weighted Voting Games: Asymptotic

Properties and Numerical Methods. University of Hamburg.

Lucas, W. 1978. Measuring Power in Weighted Voting Systems. In Brams, S., Lucas, W.

and Straffin, P. (eds.), Modules in Applied Mathematics 2: Political and related

Models,183-238.

Mann, I. and Shapley, L. 1960. Values of Large Games, IV: Evaluating the Electoral

 23

College by Monte Carlo Techniques. Memorandun RM-2651, The RAND Corporation,

Santa Monica.

Mann, I. and Shapley, L. 1962. Values of Large Games, VI: Evaluating the Electoral

College Exactly. Memorandun RM-3158-PR, The RAND Corporation, Santa Monica.

Matsui, T. and Matsui, Y. 2000. A Survey of Algorithms for Calculating Power Indices

of Weighted Majority Games. Journal of Operations Research Society of Japan 41, 71-

86.

Matsui, Y. and Matsui, T. 1998. NP-completeness for Calculating Power Indices of

Weighted Majority Games. Technical Report METR 98-01. Dept. of Mathematics,

Faculty of Science, University of Tokyo.

Nevison, C., Zicht, B. and Schoepke, S. 1978. A Naive Approach to the Banzhaf Index

of Power. Behavioral Science 23, 130-131.

Owen, G. 1972. Multilinear Extensions of Games. Management Science 18, 64-79.

Owen, G. 1975. Multilinear Extensions and the Banzhaf Value. Naval Research

Logistics Quarterly 22, 741-50.

Pajala, A. 2003. Expexted Power and Success in Coalitions and Space. Annales

Universitatis Turkuensis, ser. B, no. 253.

Papayanopoulos, L. 1981. Computerized Weighted Voting Reapportionment. AFIPS

Joint Computer Conferences. Proceedings of the National Computer Conference, May

4-7, USA, 623-29.

Penrose, L. 1946. ’The Elementary Statistics of Majority Voting’. Journal of the Royal

Statistical Society 109, 53-7.

Shapley, L. 1953. A Value for n-Person Games. Annals of Mathematics Study 28, 307-

 24

17.

Shapley, L. and Shubik, M. 1954. ’A Method of Evaluating the Distribution of Power in

a Committee System’. American Political Science Review 48, 787-92.

Uno, T. 2003. Efficient Computation of Power Indices for Weighted Majority Games.

NII Technical Report NII-2003-006E. National Institute of Informatics, Japan.

Widgrén, M. 1994. Voting Power in the EU and the Consequences of Two Different

Enlargements. European Economic Review 38, 1153-70.

Widgrén, M. 1995. Probabilistic Voting Power in the EU Council: The Cases of Trade

Policy and Social Regulation. Scandinavian Journal of Economics 97, 345-56.

Widgrén, M. (ed.), 2000. Symposium: Power Measures. Homo Oeconomicus 16:4.

Widgrén, M. and Napel, S. 2008. Shapley-Shubik vs. Strategic Power: Live from the

UN Security Council. In Braham, M. and Steffen, F. (eds.), Power, Freedom and Voting,

Springer, 99-118.

