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Abstract 

There is a considerable literature studying voting power and power indices, however a 

study exploring the practical aspects of voting power computation seems missing. This 

study examines a power index program termination time and runtime memory usage in 

large voting bodies up to 190 voters. In a comparison an up-to-date computer 

surprisingly performs overwhelmingly better compared to a slightly older model. The 

simulations reveal the greater speed of the up-to-date computer being due to more 

advanced processor architecture together with a more efficient data bus and memory. 

The applied all-in-one program is found rather slow due to simultaneous processing of 

many indices. The runtime memory usage is found modest in the simulations. The 

literature suggests that the time and storage complexity of the applied algorithm could 

be reduced. 
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Introduction 

The tools of voting power analysis, the power indices, are used to measure voting power 

of the members of a voting body. The only variables, which are taken into account, are 

the resources of the voters (votes) and the vote threshold (quota). Thinking of 

constitutional design the motivation is to analyse a priori what the voters can do with 

their votes in a voting body instead of just comparing formal vote amounts. Here power 

is understood as being on a pivotal position in a vote and thus having the ability to 

control the vote outcome. This information cannot be revealed by comparing the voters’ 

vote amounts. Another possible motivation for the use of power indices is normative. 

For example, in an existing voting body it is possible to analyse and argue the fairness 

of some vote distribution. The computation of the power indices is, however, very 

tedious and can reliably be carried out only with the aid of a computer. In what follows I 

shall focus on certain aspects of computerized voting power analysis. 

 

The scholarly literature on voting power and power indices is vast.1 The publications 

can roughly be divided into two main branches, from which the first apply the power 

indices and hence analyse voting bodies. For example the European Union enlargements 

have motivated numerous analyses with respect to the fairness of various Member 

States’ vote distributions in the Council of Ministers (see e.g. Hosli 1993; Widgrén 

1994, 1995; Felsenthal and Machover 2000; Leech 2002a). Other popular objects of 

similar analyses have been the U.S. presidential Electoral College, the European 

Parliament as well as national parliaments. The second branch of literature is more 

mathematically oriented and is interested in the properties of power indices (see e.g. 

Felsenthal and Machover 1998; Pajala 2003; Widgrén and Napel 2008). On the 

background of these literature branches there are few studies, which discuss the 

computer aided computation of voting power. These studies have emerged from the 

need to be able to study voting bodies with more than just few voters. The articles 

present, develop and analyse various methods and algorithms for power index 

computation (Brams and Affuso 1976; Leech 2002a; Lambert 1982; Lucas 1978; Mann 

and Shapley 1960, 1962; Matsui and Matsui 1998, 2000; Uno 2003). Although the 

studies include theoretical discussion on the complexity of the computation in the 
                                                 
1 Homo Oeconomicus alone has published several special issues on power indices (see Widgrén 2000; 

Holler and Owen 2000; Holler and Owen 2002; Gambarelli and Holler 2005; Gambarelli 2007 and the 
references therein). 
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algorithm level, present outlines of computer programs and even give some hints in 

practical terms, to the best of my knowledge no empirical studies exist on the subject. 

 

In all practical computation two aspects are of primary interest: the program termination 

time and the runtime memory usage. These measures indicate the limits of the computer 

internal components i.e. the hardware. The two related questions are: First, is the 

processor capable of processing the computational task? And second, do we have 

enough memory resources for the process? Accordingly, this technical report will 

examine and discuss termination times and runtime memory usage of a power index 

program. The limit of how large voting bodies can be analysed with a computer has 

risen over the decades. The first known computer programs together with the related 

articles appeared in the early 1960s. In those days the mainframe computers were able 

to analyse at least a 50 member body. While the two seminal articles by Mann and 

Shapley (1960, 1962) report program termination times, they provide no information on 

the memory usage. Later studies appear to provide even less information on the 

practical aspects of computation. Nowadays the processors and other computer 

hardware are developing rapidly and the processing capability of a modern desktop 

computer is more or less astronomical compared to the mainframes of the 1960s. 

 

This article has its roots in the need to know how large voting body a World Wide Web 

based public calculator service could analyse within a reasonable time. For online 

solutions the computation time cannot be more than few seconds. The first respective 

analyses were carried out in 2003. In addition to the search of the limits of feasible 

online voting games it was tested whether the computer hardware and the program 

could cope with very large voting bodies up to 190 voters. This refers roughly to the 

size of the IMF board of governors, which is the largest public organization having been 

analysed in the literature. Roughly two or three (Intel) processor generations later an 

identical test sequence was carried out again in 2009 and 2010, however now using an 

up-to-date workstation. This time the comparison was done in order to evaluate whether 

it was worth considering updating the old server hardware dating from 2003. 2 Our main 

research questions are: First, to what extend do the execution times differ between the 
                                                 
2 In technical terms the old CPU is a single core Intel Pentium 4 generation CPU running at the clock 

frequency of 2.4 GHz. The new CPU is an Intel Core 2 Duo generation CPU running at 2.66 GHz. 
The new CPU has two cores, however only one core at the time is used in the program execution. 
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old and new workstations? Second, what are the main causes for the possible 

differences? And third, how substantial are the memory requirements regarding the 

computation processes? 

 

In a nutshell, the test sequences begin with an input of a 50 voter voting game [638; 1, 

2,..., 50], which is fed to the program and the execution time is measured. For each 

subsequent measurement round 10 more voters are added to the game ending up with 

190 voters. Also a second test sequence is carried out, however this time multiplying the 

voters’ votes by 10 and thus giving the processor (CPU) a much harder load. The quota 

is always kept at the simple majority.3 Regarding the memory requirements the 

literature points out that the applied calculation algorithm is modest on processor time 

consumption, however the trade-off is that the memory requirements can be substantial. 

Simulations carried out in 2010 will, for the first time, provide an insight to the memory 

consumption aspect of the computation. 

 

The comparison between the hardware used in 2003 and 2009/2010 appeared to be very 

interesting. What came as a surprise were that seemingly only small advances in 

computer technology within just few years substantially affected the program 

termination times. The new computer was in certain voting games well over ten times 

faster compared to the old hardware. Moreover, the comparison of the computation 

times between the computers using a hard input appeared to be counterintuitive at the 

first sight. Regarding small voting bodies the new hardware was gaining relative speed 

over the old hardware, however regarding large voting bodies the relative speed 

surprisingly diminishes. The memory requirements appeared to be rather modest 

considering the amount of physical memory available in modern computers. It became 

apparent that the applied program could be enhanced in several ways. 

 

Subsequent to the introduction I shall briefly discuss voting power measurement 

together with the relevant literature. This is followed by a brief discussion on the 

applied power index computation algorithms and the key aspects of computer hardware. 

Subsequently I report the computation time and memory usage analyses and discuss the 
                                                 
3 Memory requirement and computation speed grow in the opposite directions: a higher quota speeds up 

the computation, however affects the memory usage to increase (and vice versa). Simple majority is 
thus the hardest possible load regarding program termination time. 
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effects of the computer hardware. Finally, I review and discuss several possibilities to 

enhance the applied program. 

 

Voting power and the software side of computation 

In a nutshell the power index values are based on the analysis of either voter 

combinations or voter permutations of a voting body. Why computers are needed is 

because there are always 2n voter combinations or n! voter permutations to analyse, n 

being the number of voters. Regarding each combination or permutation we need the 

information whether any voter(s) are in a pivotal position so that if a voter i changes 

(swings) her vote from yes to no the remaining of the voter combination is no longer 

winning without her i.e. does not meet the vote threshold. The pivots and swings are the 

raw material for power index calculation. For example, the voter permutation based 

Shapley-Shubik index value for voter i is her relative amount of all voters all pivots 

(Shapley and Shubik 1954). The voter combination based standardized Banzhaf index 

value, in turn, is the relative amount of all voters all swings for voter i (Banzhaf 1965). 

Dividing voters swings with the constant of 2n-1 constitutes the third of the most applied 

power indices – the Penrose (a.k.a. Penrose-Banzhaf, or absolute Banzhaf) index 

(Penrose 1946). For more discussion and details of the power indices the reader is 

advised to refer to the in depth studies of e.g. Felsenthal and Machover (1998) or 

Straffin (1994). 

 

Turning to the computerized voting power analysis Penrose (1946) or few years later 

Shapley and Shubik (1954) carried out their analyses with pen and paper. The two 

seminal papers regarding computerized power index analysis were published by Mann 

and Shapley (1960; 1962) in the beginning of the 1960s. Applying the Shapley-Shubik 

index Mann and Shapley analysed the U.S. Presidential Electoral College, which at the 

time consisted of the 50 U.S. States. It is remarkable that the basic idea of the 

computation algorithm introduced by Mann and Shapley in their 1962 paper is the same 

applied here. In fact, the Mann and Shapley algorithm was virtually forgotten for 

decades and has been studied in more detail during the last ten years. Later in the 1960s 

John Banzhaf (1965) introduced the (standardized) Banzhaf index. Most probably he 

was able to use a computer at least in some of his analyses. Banzhaf did not apply the 

Mann and Shapley (1962) method of computation for the first such application in 
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conjunction with the Banzhaf index appeared later in Brams and Affuso (1976). To the 

best of my knowledge Lee Papayanapoulos was consulting Banzhaf, at least in some 

point. Papayanapoulos has also later studied the computation of the Banzhaf index (see 

e.g. Papayanapoulos 1981). 

 

There are several known algorithms for power index computation. These can roughly be 

divided into two categories: First, the so-called approximation algorithms compute 

index values, which are, as the name suggests, approximations (Leech 2003; Owen 

1972, 1975). Second, there are algorithms, which area able to yield exact index values. 

Both categories include several techniques (see the survey by Leech (2002b)). The 

challenge to the computer is the complexity of the computation, which brings about 

heavy demands for computer resources in one way or another. With respect to exact 

index value computation the algorithms are either very processor intensive, or 

alternatively, very storage intensive. A workaround to this have been the approximation 

algorithms. 

 

Setting aside the approximation methods, among the exact computation algorithms the 

simplest way to analyse a voting body is called direct enumeration. The iterative, 

though not very effective, algorithm is a rather natural way of thinking of how to 

compute power index values. It is a very straightforward algorithm which rests on the 

idea that every voter combination is actually created in the computer memory and then 

analysed for voter swings or pivots. The algorithm is very processor intensive, however 

the storage requirements remain very modest. In fact, the random access memory 

(RAM) is only used to store few rather short vectors, which are updated only when 

needed. The number of possible voter combinations double with every additional voter, 

and unfortunately the same applies to the program execution time. The practical 

computation time limit (assuming no voters have the same amount of votes and 

applying the simple majority quota) in a modern PC is around 30 voters.4 Accordingly, a 

31 voter voting game [233; 1, 2, ..., 31] takes over an hour to terminate, so a 32 member 

body would require 2-3 hours to terminate and so on. In the mid-1970s the 

computational limit was less than 20 voters (Brams and Affuso 1976). 

                                                 
4 Algorithm researchers usually set the limit of reasonable program execution time to one hour (Uno 

2003). 
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The computation algorithm we apply here is based on the mathematical properties of the 

so-called generating functions. Among the known algorithms it is the most effective. 

The seminal paper was published by Mann and Shapley in1962. Previously Mann and 

Shapley (1960) were only able to come up with approximations of voting power 

regarding the member states of the U.S. Presidential Electoral College. The computation 

of the exact values became possible after David Cantor proposed the use of generating 

functions to Mann and Shapley (Mann and Shapley 1962). The algorithm and its 

mathematical and other properties in conjunction with various power indices have been 

later studied at least by Brams and Affuso (1976), Lucas (1978), Lambert (1988), Leech 

(2002), Matsui and Matsui (2000) and Uno (2003) (see also Alonso-Meijide et al. 2005; 

2009). In terms of a computer program a generating functions based algorithm, after 

certain optimization, is rather short in code length. Basically, the core of the program 

consists of few recursive loops (instead of iterative loops) which are able to reduce the 

time complexity of the algorithm into polynomial time (instead of exponential). In 

comparison to the above the voting game [233; 1, 2, ..., 31] will now terminate within 

few fractions of a second, which is feasible for online use. The challenge and problem 

in direct enumeration algorithm is that the number of coalitions double every time a new 

player is added to the game. However, provided that the weights of the voters and the 

quota are integer numbers there is a workaround using a different approach. The 

generating functions enable a quick and easy way to find out the number of coalitions of 

each size. The numbers (of coalitions of each size) are certain coefficients of the 

generating function. To discover the swings for the Banzhaf and Coleman indices it 

actually suffices to analyse coalitions having the total weight equal to the quota or less. 

Once this information is obtained it is possible to find out the swings by knowing the 

weights of the voters. The same idea with a different generating function can be used to 

find out the pivots for the Shapley-Shubik index. For the Deegan-Packel index the 

computation is harder as it is based on minimal winning coalitions thus requiring 

processing of certain additional information. Basically, the generating functions 

(recursively) create a sequence of sub-problems, i.e. matrices of the generating function 

coefficients (or factorials), which include part of the information for the swing and pivot 

analyses. The program will store the unsolved sub-problems into a stack until the root of 

the recursion is reached and all the sub-problems can be solved. Recursion is a loop 



 10

structure which a computer is able to execute extremely fast, however downside is that 

the coefficient matrices can become very large and require a lot of RAM memory for 

the sub-problem stack. During the computation process some of the integers can also 

become very large. As is shown below, there is variation in how fast the algorithm can 

perform in conjunction with various power indices. More details of the algorithm 

together with computer program outlines are discussed e.g. in Brams and Affuso (1976), 

Matsui and Matsui (2000), Lambert (1988) and Leech (2002). 

 

The hardware side of the computation 

In order to compare and explain possible differences in the performance of the two 

workstations the most important components the computers need to be briefly 

discussed. Basically, a computer consists of three main parts: First, the most important 

part of a PC is its processor, which is able to do arithmetic and logical operations. 

Second, for any data to be processed the computer needs (various kinds of) user 

programmable memory. Third, the computer needs a certain infrastructure, the 

motherboard, to enable the processor and memory to work together. Table 1 shows the 

key components of the old and new hardware and also the most important memory 

types and speeds together with the speed of the data bus. 

 

Table 1. Key hardware components in two PC workstations 

Motherboard 

(Asus) 

CPU (Intel) CPU clock 

frequency 

CPU L1 

cache 

CPU L2 

cache 

Data bus 

speed 

RAM 

speed 

P4S533-MX Pentium 4 2.4 GHz 12 Kb 512 Kb 400 MHz 333 MHz 

P5K-VM Core 2 Duo 2.66 GHz 2x32Kb* 6 Mb* 1333 MHz 667 MHz 

*The cache is shared among both CPU cores. 

 

The new CPU in table 1 was introduced roughly 2-3 Intel processor generations after 

the old one. The Pentium 4 (single core) CPU was introduced in the year 2000 while the 

newer Core 2 Duo type (dual core) processor was released in 2006. The clock 

frequencies at which the processors run are nearly equal, however the new CPU has two 

cores (i.e. two processors in one chip) running at 2.6 GHz instead of the single 2.4 GHz 

core of the old CPU. There has been certain development in the CPU architecture; most 

notably the L2 cache memory size is ten times larger and the L1 cache size is five times 

larger in the new CPU. The L2 cache is shared among the cores of the new CPU. If two 
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processors are running at the same clock frequency, the caches will have the effect that 

the one with the larger L2 cache is the more efficient. Regarding the internal CPU 

architecture the instruction set of the new CPU is more advanced. 

 

All internal and external data traffic flow through the motherboard. This printed circuit 

board hosts all hardware components and peripherals which communicate via the 

motherboard using the data bus. The data bus can be thought as a collection of wires 

joining every computer component together. Compared to the old PC the data bus is 

three times faster in the new PC. 

 

The fastest type of memory is integrated into the CPU as the cache memory. The 

processor uses the cache memory for the most frequently used data and can access the 

data extremely fast without the data bus. The idea using cache memory is that first the 

CPU searches the L1 level cache. If L1 does not include the desired information the 

CPU accesses the L2 cache and if it does not contain the desired information the third 

option, the main memory, is accessed. The main memory, however, produces a 

considerably higher memory operations latency compared to the cache. Table 1 shows 

the main memory speed having doubled in the new PC. I could not find details on the 

cache memory speed(s), however, if they function close to the CPU clock frequency the 

cache of the new PC is slightly faster compared to the old PC in this respect. Other 

computer hardware components do not have much of an effect in the computation speed 

in our case. 

 

Computation results 

The applied power index program is written in C programming language. The sources 

were compiled into executable files in various ways in both workstations in order to 

maximize the comparability of the results. The program is based on the algorithms 

presented in Matsui and Matsui (2000) for computing the Shapley-Shubik, Banzhaf and 

Deegan-Packel indices. The applied program has additional routines in order to compute 

the Holler, Zipke and Coleman indices to initiate and prevent action. Basically, the 

values of the additional indices are deducted from the information provided by the 

original three indices. The program will also output the number of winning and losing 

coalitions, the number of minimal winning coalitions and the Coleman power of the 
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collectivity to act index value.5 It is important to notice that the computational 

complexity of the indices vary (within polynomial time). Matsui and Matsui (1998; 

2000) and Uno (2003) provide us with the following: The Banzhaf index is the easiest 

to compute and in terms of complexity the values for all players can be computed in 

O(n2q) time. The complexity of the Shapley-Shubik index is in the order of O(n3q) and 

for the Deegan-Packel index O(n4q), respectively. Hence, the program would be faster 

(and more simple) should only e.g. the Banzhaf index values be computed. As this is not 

possible in the current implementation the termination times below are bounded by the 

Deegan-Packel index. That is, the program can perform only as fast as the slowest index 

(Deegan-Packel) allows. For comparison the time complexity of the direct enumeration 

algorithm is exponential in the order of O(2n). The magnitude of the space complexity 

in the current program is in the order of O(n2).6 The input and the programs are equal, 

so they should use an equal amount of memory in both computers. There are, however, 

very marginal differences between the two PCs in this respect due to program 

compilation. 

 

For comparable results the new and the old hardware have the same Linux operating 

system (OS) installed (SuSE 10.3). The program sources are compiled separately in 

both machines ensuring the best performance. Figure 1 show the program termination 

times for games with 50-190 voters using a simple majority quota. Accordingly, the 50 

voter game is [638; 1, 2,..., 50] and the largest 190 voter game is [9073; 1, 2,..., 190]. As 

the mathematical complexity analysis suggests, the measured termination times appear 

to follow the complexity (growth rate) of the Deegan-Packel index. Up to 100 voters the 

programs terminate within few fractions of a second in both computers, however in 

larger games the speed of the new machine is superior to the old one. Regarding the 190 

voter game the program terminates just under three minutes in the new PC (167 

seconds), while the old machine requires around 29 minutes to terminate. The new 

machine is over ten times faster regarding games larger than 140 voters, so the 

difference is considerable. When 10 more voters are added to the game the termination 

time grows around 40-50 % in each round. If we take a look at the relation between the 

                                                 
5 For the index definitions see Deegan and Packel (1979), Holler (1982), Nevison et al. (1978) and 

Coleman (1971). 
6 It is not feasible to compare the effect of input size magnitude, which would require program execution 

with e.g. input size of 10, 100, 1000 and possibly even 10 000 voters. 
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termination times in figure 1 we see that up to 160 voters the new machine is gaining a 

speed difference up to 12 times. In games larger than 160 voters the relative speed of the 

new machine, however, begins to diminish. Figure 1 also shows the limitation of the all-

in-one program. A generating functions based online program ipgenf by Dennis Leech 

computes only the Banzhaf and the Coleman indices. Giving ipgenf the above 190 voter 

game it will terminate within one second. 

 

 

Figure 1. Power index program termination times and the relation between the 

termination times in two computers 

 
 

 

Figure 2 shows the program termination times in games with 50-190 voters where the 

previous vote amounts have been multiplied by ten (e.g. [6376; 10, 20,...,500]). As 

expected, the termination times are now considerably higher and again follow the 

suggested growth rate of the Deegan-Packel index. The CPUs now have to deal with 

larger numbers and also more memory is used compared to figure 1. This is due to the 

fact that the coefficient matrices become larger. Now the termination times are in the 
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order of thousands of seconds instead of hundreds of seconds. The new hardware is now 

able to compute the 190 voter game in just under seven minutes while the old hardware 

will need approximately half an hour (nearly 10 600 seconds) to terminate. When 10 

additional voters are added to the game this increases the termination times around 30-

50 % in each round. Surprisingly the relation between the program termination times 

seems to be the opposite compared to figure 1: In a 60 voter game the new computer is 

roughly 18 times faster while in a 160 voter game the new computer is only six times 

faster and in a 190 voter game only four times faster. The difference to ipgenf is even 

more striking here as ipgenf will still terminate within few seconds if the 190 voter 

game is given to the program. 

 

 

Figure 2. Power index program termination times and the relation between the 

termination times in two computers 
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Let us first consider the programs and the input i.e. the software side of the 

computation: The input files and the program source files are identical. However, the 

compiled and executable version of the program regarding the new computer might be 

more effective as the compiler optimizes the program for each CPU. The instruction set 

in the new CPU is more advanced and if the compiler is able to utilize the advantage the 

executable program version for the new CPU might be (substantially) more efficient. To 

measure and control for the impact of the instruction set, the obvious way is to compile 

the sources in the old hardware for the old CPU and use the obtained executable in the 

new hardware. As both machines are using the same OS version the differences should 

mainly reflect the impact of the instruction set. Performing the same sequences of 

computations as in figs. 1 and 2 in the new hardware, the computation takes around 35 

% longer time in average. Hence, the instruction set has a clear effect, however it is only 

a partial explanation to the overwhelming performance of the new PC. 

 

It was also possible to compare differences between Linux OS generations (SuSE 9.0 

vs. SuSE 10.3). It could be suspected that the OS generations are not likely to affect the 

termination times substantially, as the programs are executed in a command shell and 

not necessarily requiring a graphical user interface. Indeed, performing the computation 

sequences in figs. 1 and 2 shows that the new OS version is faster, however the 

difference is only around 10 % in average. The difference is probably due to a slightly 

improved and more efficient Linux kernel version. 

 

Second, among the hardware components, the CPU clock frequencies (2.4 GHz and 

2.66GHz) refer to the number of operations the CPUs are able to perform within a 

certain period of time. The respective values are nearly equal so they cannot explain the 

greater speed of the new computer. The fact that the new computer architecture is a 64-

bit vis-á-vis a 32-bit architecture in the old PC contributes mainly to the capability of 

the new computer to handle larger numbers with total accuracy. 

 

Third, according to table 1 the data bus in the new computer is three times faster and 

also the main RAM memory modules are twice as fast. This obviously affects the 

computation times as the data bus sets the internal speed limit of the computer. A stream 
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of bits can not move from the CPU to the main memory (or back) faster than the data 

bus allows, even if the CPU would have the capacity of performing faster. The same 

effect applies to the main memory modules; they can become bottlenecks in the 

computation process as the modules are able to exchange data only as fast as their clock 

frequencies allow. It is difficult to estimate precisely how much the more advanced data 

bus and main memory affect the computation even when the CPU clock frequencies are 

virtually equal. In the light of the above results, however, we know that the new 

computer is at least three times faster regarding any of the given inputs.7 Hence, it is 

likely that the new computer can perform from three to four times faster in any similar 

computational task. 

 

Finally, we consider a fourth possible cause, as the above factors are not able to explain 

the peculiar relation between the computation times but only partially. Table 1 shows 

the amount of the level 2 cache memory being ten times larger in the new PC. Indeed, 

the speed and especially the size of the L2 cache play the key role in the computation 

speed difference between the hardware setups. Figure 1 shows the overwhelming speed 

of the new computer up to 160 voters. In larger games the relative speed in new 

computer is not increasing any more, but rather the difference seems to diminish. This 

phenomenon is due to the L2 caches. The sequences of coefficient tables, which the 

program creates, fit considerably better in the L2 cache of the new PC. Recall that the 

cache memory is available to the CPU without the main memory latency. The cache in 

the new computer is only so large and when more voters are added to the game the 

coefficient table will grow in size and eventually will have to reside more and more in 

the main memory. The cache saturation point seems to be around 160 voters as in larger 

games the relative speed of the new computer begins to diminish. Using the same logic 

we can also explain the mirror phenomenon in the computation time relation in figure 2. 

Regarding games with 50-60 voters the coefficient matrices still fit mostly in the cache 

of the new PC. In larger games the main memory is increasingly used and the relative 

speed of the new computer rapidly diminishes. Eventually in a 190 voter game the new 

computer is only four times faster as the coefficient tables now reside for the most parts 

in the main memory. From this we can deduct that the same phenomenon would appear 
                                                 
7 The 50 voter game in figure 1 is disregarded due to measurement difficulties. The program takes only 

few milliseconds to terminate in both workstations and the automatic OS processes probably create 
fluctuation in the computation times. 
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also in figure 1 if games larger than 190 voters were analysed. As stated above, the new 

computer would probably perform from three to four times faster due to the other more 

advanced hardware components even if the voting game would include several hundred 

voters. 

 

Now we shall focus on the runtime memory consumption of the computation process. 

This analysis is needed to confirm the above L2 cache effect. As stated above (and after 

certain testing), the memory consumption is virtually equal regarding both computers 

due to the same algorithm. The memory consumption is measured with the system 

utility TOP, which is run parallel with the power index program. In Linux (or UNIX) 

systems the TOP program is able to list several details of running or sleeping processes 

(tasks). One of these details is a task's currently used share of available physical 

memory, which is comprised of the L2 cache and the main memory. The measurement 

TOP is able to provide is a bit rough, however the accuracy is sufficient for our 

purposes. 

 

In figure 3 we can see the process memory consumption of two sets of voting games. 

Referring to the grey line and games in figure 1, the observed RAM memory 

consumption is (i.e. the process will reserve) 1.4Mb for the 50 voter game. Growing 

almost linearly the 190 voter game requires approximately 13Mb of memory. The 

storage complexity is less demanding compared to the time complexity and so the 

almost linear growth rate in figure 3 does not apply for the program execution times. 

Multiplying the voters’ votes by 10 substantially increases the required memory space: 

Following the black line in figure 3 the game [6376; 10, 20,..., 500] will use around 

13Mb of memory. The largest 190 voter game consumes around 131Mb while the 

growth rate is again almost linear, however much steeper compared to the previous 

(recall the above difference to program execution times). Keeping in mind that modern 

desktop computers have several gigabytes of RAM memory available, we can conclude 

that in the above games the memory consumption is quite modest.8 Rather, in our case 

the bottleneck seems to be the program execution time. Another result is that the 
                                                 
8 The memory requirements can be substantial in certain cases, especially, if the total number of votes is 

very large. As an example, consider the 24 IMF executive directors (elected by predefined groups of 
countries of the IMF governing board) having a total of 2 214 607 votes. If the simple majority quota 
is applied, the computation process will terminate within 90 seconds, however the memory 
requirement is over 300Mb. 
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saturation point (6Mb) of the L2 cache memory of the new PC is around 120-130 

voters. Apparently the use of main memory is still so marginal that up to the 160 voter 

game in figure 1 the new computer is still gaining relative speed. Notably the memory 

requirement is roughly equal between the 190 voter game in figure 1 and the 50 voter 

game in figure 2. The memory consumption grows in a steeper manner regarding figure 

2 causing the relative speed difference to reduce between the PCs. 

 

 

Figure 3. Power index program runtime memory usage under two voting scenarios 
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Discussion and development possibilities 

With respect to the research questions we have demonstrated that the voting power of 

members of a voting body having the size of the U.S. Electoral College can nowadays 

be computed in just few fractions of a second. This result is irrespective whether the 

computation is carried out using an up-to-date hardware or a computer being half a 

decade older. A large voting body having the size of the IMF board of governors could 

also be computed with both modern computers, however now the program will 

terminate considerably faster in the new workstation. For comparison Mann and 

Shapley (1962, 7) used an IBM 7090 model mainframe to measure voting power in the 

U.S. Electoral College and their FORTRAN program took around 70 seconds to 

terminate.9 The IBM 7090 generation mainframe had roughly the size of a volleyball 

field and typically was worth $2 900 000 at the time. The inspection of the applied main 

hardware components show that the more advanced architecture of the new CPU (larger 

cache memory and a more advanced instruction set) is the key to the speed of the new 

hardware. In every computational scenario the new PC will perform at least 3-4 times 

faster to the old one. The memory requirements in the above voting game examples 

were found to be rather modest as the most demanding computational task used about 

132Mb RAM memory, while the available amount of RAM memory in standard 

desktops is several gigabytes. However, it has to be noted that when the total amount of 

voters and especially votes is very large, the memory requirements can be substantial. 

 

The applied program is an all-in-one implementation. The main strength of the program 

is that it will output results regarding many indices. The main weakness of the program 

is that it cannot perform faster as the most complex index allows; in our case the 

Deegan-Packel index. The termination times would be substantially lower if only the 

least complex indices (the Banzhaf indices) are computed. An obvious enhancement to 

the program would be to allow the user to choose which indices are to be computed. 

Currently everything is executed automatically. The computation algorithms could also 

be improved. According to Uno (2003) the complexity of the algorithms could be 

significantly reduced: The Banzhaf indices for all voters could be computed in only 
                                                 
9 The three Electoral College variants Mann and Shapley analysed were comprised of only 18 or 19 

different size voters as many states had the same amount of votes. This reduces memory requirements 
as well as execution time compared to our 50 voter example. 



 20

O(nq) time and the Shapley-Shubik and the Deegan-Packel indices in O(n2q) time. 

Currently the complexities are in the order of O(n2q), O(n3q) and O(n4q), respectively. 

The program execution on the hardware could possibly be enhanced, if the 

computational task could be parallel with respect to the multiple cores of modern CPUs. 

There might still be certain slowing bottlenecks, from which the CPU cache size and the 

speed of the data bus and main memory are the most important. The computation could 

also be enhanced with respect to space complexity. The applied algorithms seem to do 

no unnecessary operations, however the data structure regarding certain variables could 

be changed from a matrix into a linked list (Uno 2003). The coefficient matrices can 

grow substantial in size, however it is known that the matrices are sparse as majority of 

the cell values are zeros. The more there are voters and especially the larger the vote 

total is, the more zeros appear in the coefficient matrices. The idea behind the linked list 

is that when the first zero is encountered in a matrix row, this zero is replaced with a 

link pointing to the beginning of the next row. This is possible as the mathematical 

properties stemming from the generating functions suggest that the first zero in a row is 

only followed by more zeros. The idea of a linked list in combination with power index 

computation has been suggested at least by Uno (2003) and Lindner (2004). In terms of 

space complexity it would be interesting to compare the original storage method to a 

modified linked list algorithm. Of equal interest would also be to compare the program 

execution times under both storage scenarios: A linked list is a slower data structure 

compared a two-dimensional vector, however a linked list would require far fewer 

memory operations. In any case, a linked list data structure would at least potentially 

enable the analysis voting bodies in which the total amount of votes is in the order of 

106 or possibly even 107. 
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