
NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 1

Abstract

This paper presents a study aimed at examining the novice student answers in an introductory

programming final e-exam, to identify misconceptions and types of errors. Our study used the Delphi

Concept Inventory (DCI) to identify student misconceptions and Skill, Rule, and Knowledge (SRK) based

errors approach to identify the types of errors made by novices in Python programming. The students’

responses to each question were scrutinized by using the DCI, heuristic-analytic theory and Neo-Piagetian

theory of cognitive development for qualitative data analysis. Moreover, the motivation for this

exploratory study was to also address the misconceptions that students held in programming, and help

educators to redefine the teaching methods to correct those alternative conceptions. Student

misconceptions were spotted in list referencing and inbuilt functions in Python. In a further quantitative

analysis the study found that students who had misconceptions, made knowledge errors and failed to

complete the coding tasks. Surprisingly, and coincidentally, it was identified that only a few students were

able to write code related to mathematical problems.

Keywords: Delphi’s CI, Programming courses, ViLLE, E-Final exam, Student misconceptions,

Taxonomy of errors

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 2

Introduction

This paper presents a study to identify taxonomy of misconceptions and errors from analyzing

university novice students’ programming e-final exam answers. A misconception is an erroneous belief,

which is not true or valid. Misconceptions arise due to various reasons such as preconceived notions,

nonscientific beliefs, and vernacular alternative conceptions (Moore;Abella;& Boggs, 1997). For

example, some students have misconceptions about learning computer programming that, “only math

experts can program a computer”, which is not completely true (Perry & Miller, 2013). Misconceptions in

learning mathematics, science and arts are quite common and a normal part of the learning process.

Student misconceptions in learning occur due to teachers, textbooks that contain incorrect information

and errors, student’s prior learning and self-developed ideas that are scientifically inaccurate, linguistic

transfer, and lack of knowledge of the subject (Moore;Abella;& Boggs, 1997; Nakiboglu & Tekin, 2006;

Black & Lucas, 1993; Simanek, 2008). Student misconceptions affect learning and impede students from

acquiring new concepts in computer programming. To date, several studies have been conducted to

identify student misconceptions of programming. Notably, novice misconceptions of programming are

one of the biggest concerns to programming educators and students (Kaczmarczyk;Petrick;East;&

Herman, 2010; Özdener, 2008; Bringula;Manabat;Tolentino;& Torres, 2012).

In addition, novice programming students often make different kinds of errors due to various reasons

such as, lack of attention, misjudgment, misconception and strong habit intrusions

(Kaczmarczyk;Petrick;East;& Herman, 2010; Bringula;Manabat;Tolentino;& Torres, 2012). Notably,

study of taxonomy of novice programming errors has long been of interest to researchers and educators

and there have been many studies done on novice programmer errors to identify the type and cause of

those errors (Bringula;Manabat;Tolentino;& Torres, 2012; McCall & Kölling, 2014). However, learning

to program or to write code without misconceptions and errors is often believed to be difficult for novice

programming students at university level. Educators are always looking for effective teaching methods to

reduce novice misconceptions of programming and errors. Notably, novice programming misconceptions

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 3

and errors are frequently analyzed to improve their code writing and debugging skills

(Kaczmarczyk;Petrick;East;& Herman, 2010; Özdener, 2008; Bringula;Manabat;Tolentino;& Torres,

2012; Spohrer & Soloway, 1986; Teague;Corney;Colin Fidge;Ahadi;& Lister, 2012; Lahtinen;Ala-

Mutka;& Järvinen, 2005).

Moreover, many teaching techniques and educational technologies have been developed to alleviate

some of the problems in computer programming learning (Muller M. , 2006; Salleh;Mendes;& Grundy,

2011; Tiwari;Lai;So;& Yuen, 2006; Uysal, 2014; Lee, 2005) errors identified in practical sessions are

frequently examined, and for which solutions are often proposed in the literature, we observed that

misconceptions and specific types of errors still occur when students answer questions, particularly when

writing program solutions in the final programming e-exam.

It is important for educators to identify programming related misconceptions and errors, devising ways

to address them, and to enhance their teaching methods and quality. Moreover, identifying the novice

programming errors would help educators to improve the teaching and learning of computer

programming (Marceau;Fisler;& Krishnamurthi, 2011; Ebrahimi;Kopec;& Schweikert, 2006). Goldman

et al. developed the Delphi Concept Inventory (DCI), which contains a list of topics that are important

and difficult for students to learn in programming fundamentals subject (Goldman, ym., 2008). This CI

was defined based on the decisions supplied by panel of experts who had taught computing courses

frequently and published textbooks or pedagogical articles (Goldman, ym., 2008). There have been

studies that used DCI to identify the programming misconceptions of programming

(Kaczmarczyk;Petrick;East;& Herman, 2010). However, none have yet examined the student answers in

programming final exams (summative assessments), which reflect what students have actually learned

and misunderstood, as well as the skills gained throughout the entire study period. Summative assessment

at the end of a study period serves an important formative purpose for further study as misconceptions in

the former period will have a compounding impact in future study periods.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 4

Thus, the goal of this research is to refine our teaching methods from learning novice programming

misconceptions and identifying skill, rule and knowledge based errors. Towards this aim, this paper

addresses the following research questions.

 What types of programming misconceptions might be identified within solutions presented to coding

questions in e-exams?

 What types of programming errors are made in the final e-exam and why are such errors made?

In order to find answers to these research questions, we collected and analyzed introductory programming

final e-exam data.

This paper is organized as follows. Section II presents a literature review of studies conducted around

misconceptions, and errors and their significance in relation to final exam results. Section III, describes

the research methodologies used in this study to find the answers for our research questions. Section IV

describes the findings of the study. Finally, Section V presents conclusions, future work intentions, and

limitation of the study to proceed for the next stage of the research, which is to produce an enhanced and

innovative approach to teaching introductory programming course.

Literature review

Student Misconceptions

There has been much research done on student misconceptions in learning science, mathematics, arts,

and concluded that student misconceptions act as barrier to learning (Goldman, ym., 2008; Almstrum,

ym., 2006; E.Byrd;McNeil;Chesney;& G.Matthews, 2015; Hestenes;Wells;& Swackhamer, 1992). Sirkiä

quoted “the less you know the subject, the more severe the misconception can be” (Sirkiä, 2012). For

example, students who interpret equal sign only as arithmetic specific may suffer learning the preliminary

level algebra where the equal sign has different interpretations [3].Technology-supported learning fosters

students’ knowledge acquisition. On the other hand, it increases student misconceptions. Wendt et al.

tested the effect of on-line collaborative learning in alignment with students’ science misconceptions and

concluded that “students who participated in collaborative activities in the on-line environment had more

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 5

science misconceptions than students who participated in collaborative activities in the traditional

classroom” (L.;Wendt;& Rockinson-Szapkiw, 2014). Students come to class with various experiences

and knowledge. Students’ prior understanding about the topic plays a vital role in learning. However,

educators at the university level often ignore the engagement of student’s prior understanding which leads

them as procedural based problem solvers (Vigeant;Prince;& Nottis, 2014). Moreover, once the

misconception has been formed it is very hard to change (Eggen & Kauchak, 2004). So, it is important for

educators to know students’ prior understanding about the topic to identify if students have alternative

conceptions (Kaczmarczyk;Petrick;East;& Herman, 2010).

Misconceptions in Learning Computer Programming Languages

There has been considerable research done on student misconceptions in learning computer

programming languages such as BASIC, C, Java, and concluded that “bugs are likely to arise” when

students have misconceptions about programming language constructs (Kaczmarczyk;Petrick;East;&

Herman, 2010; Özdener, 2008; Bringula;Manabat;Tolentino;& Torres, 2012). Sorva prepared a catalogue

of novice misconceptions about introductory programming courses extracted from various research

articles (Sorva, 2012). It seems novice programming related misconceptions occur due to confusion about

the computational model. That is, how the computer program is executed; and how the variables and

control structures are linked (Sorva, 2012). Notably, students who fail to see the difference between

syntax and semantics make syntax errors and fail to trace the code linearly (Kaczmarczyk;Petrick;East;&

Herman, 2010; Spohrer & Soloway, 1986). Besides, Özdener found that both high school and university

students have similar kinds of misconceptions about time-efficiency in algorithms. They believe code

which contains less syntax, fewer variables, and commands require less execution time. Furthermore,

these kinds of misconceptions would affect students’ programming skills (Özdener, 2008). Hence,

knowledge of students’ conceptual misunderstandings in programming would help educators to improve

student learning by addressing such misconceptions.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 6

Concept Inventory in Learning Computing Courses

Student misconceptions can be identified by educators through testing their prior understanding by

developed concept inventories and defined assessment tasks (Almstrum, ym., 2006;

E.Byrd;McNeil;Chesney;& G.Matthews, 2015). Concept Inventories (CI) are a form of diagnostic tests

widely used in education to examine students’ misconceptions in learning arts, mathematics, science, and

computing courses (Goldman, ym., 2008; Almstrum, ym., 2006; Hestenes;Wells;& Swackhamer, 1992;

Treagust, 1988). These CI-based test results are used by educators to redefine teaching strategies and to

help students to reconstruct correct conceptions. The first concept inventory, the Force Concept Inventory

was a test designed by physics educators, to identify student misconceptions of Newtonian physics in

physics (Hestenes;Wells;& Swackhamer, 1992). Goldman et al. developed the Delphi Concept Inventory

(DCI) and addressed important and difficult concepts of introductory computing courses. Moreover, DCI

is a significant assessment approach to measure the programming concepts that students are struggling

with and what specific programming misconceptions they hold (Goldman, ym., 2008). Kaczmarczyk et al.

used a Delphi CI to reveal programming misconceptions held by novices in Java

(Kaczmarczyk;Petrick;East;& Herman, 2010). They analyzed the verbatim transcripts of audio & video

recorded interviews and found that students commit mistakes due to programing misconceptions.

However, they did not conduct any summative assessments to identify if students have programming

misconceptions when writing program solutions.

Taxonomy of Errors

People make mistakes in daily life for various reasons. Errors are said to be made due to lack of

knowledge, carelessness, and misjudgment (Meister, 1989; Sutcliffe & Rugg, 1998). Knowledge errors

occur when a person fails to achieve the task due to lack of knowledge. Skill based errors or “slips and

lapses” occur due to strong habit intrusions. This kind of error happens when a person misses a step in

isolation sequence or presses the wrong key. Moreover, this kind of mistake often even made by

experienced, highly trained and skilled persons (James, 1990). For example, use of “/” instead of “%” to

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 7

get the remainder value from integer division in a program, by experienced programmers, can be

considered a skill-based error. Rule-based errors occur due to misapplication of a rule (James, 1990;

http://patientsafetyed.duhs.duke.edu/module_e/types_errors.html, 2014; Embrey, 2005). Furthermore,

these types of errors occur when people make unwarranted assumptions to solve a problem (Davidson &

Sternberg, 2003). For example, the application of string handling functions to numerical values in the

program can be considered a rule-based error (Bringula;Manabat;Tolentino;& Torres, 2012).

Novice Errors in Computer Programming

Several research studies have been conducted on novice programming errors and have concluded that

many novices make knowledge type errors (Bringula;Manabat;Tolentino;& Torres, 2012; Lahtinen;Ala-

Mutka;& Järvinen, 2005; Butler & Morgan, 2007). Bringula et al. conducted a laboratory study to predict

the errors committed by novice Java programmers and concluded that “a knowledge type error is one of

the consistent predictors of novice Java programmers” (Bringula;Manabat;Tolentino;& Torres, 2012).

Lahtinen et al. reported that novices make knowledge errors in defining loops, and passing parameters

and semantics due to lack of understanding in language construction, use of semantics and poor

understanding of programming concepts (Lahtinen;Ala-Mutka;& Järvinen, 2005). Mathew et al.

concluded that for beginners it is hard to define algorithms and methods, understand the difference

between syntax and semantics, and the scope of variables inside nested loops (Butler & Morgan, 2007).

Final Exam

A final exam is a summative assessment instrument, which typically takes place at the end of a course

of study. (Summative testing may also be conducted at various intervals in the study period as a way to

monitor progress of students at strategic milestones.) A final exam is one of the core assessment tasks at

educational institutions to assess student academic performance. Final exam data are frequently used at

higher education to assess student learning and performance, and to evaluate course learning outcome

(Reeves, 2006; Richard O. Mines, 2014). Moreover, the results of final exams indicate what has actually

been learnt, and what skills have been attained, by the end of the study period. Besides, final results give

great insight to teachers (Santiago & Benavides, 2009). There has been research that used exams as a tool

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 8

of measurement to identify students’ errors and misconceptions (Nakiboglu & Tekin, 2006; Olsen, 1999;

Movshovitz-Hadar;Zaslavsky;& Inbar, 1987). Olsen used an error analysis approach and examined

Norwegian students’ English final exam papers to identify the grammar and vocabulary errors committed

by lower secondary school students (Olsen, 1999). Hadar et al. examined high school students’ written

answers of mathematics matriculation exam and generated a system of six error categories (Movshovitz-

Hadar;Zaslavsky;& Inbar, 1987). Nakiboglu et al. examined the Turkish high school students’ multiple

choice test answers, and concluded that pre-university students have a series of misconceptions in

learning nuclear chemistry (Nakiboglu & Tekin, 2006).

Moreover, Simanek pointed that exam questions allow students to use certain student misconceptions to

get “the right answer” in the exam (Simanek, 2008). So, the cited studies endorse that it is possible to

identify the taxonomy of misconceptions and errors by scrutinizing students’ written work. Moreover, to

the best of the authors’ knowledge, although novice programming misconceptions are frequently

investigated through formative tests, none has attempted to identify beginners programming

misconceptions through summative tests notably by examining student answers of tests.

Research Method

This study analyses the answers written for final programming exam in 2014 by students from different

disciplines at university. There were 69 students enrolled in the course. However, only 39 students

attended the final exam. The final exam was conducted online at the end of a course of study. This exam

was a closed book and three hours in duration. The final exam contained two multiple choice questions,

two code tracing questions, and six code writing questions, covering the syllabus topics and reflecting the

Delphi CI given in the Table A1. The list of final programming exam questions is provided in the

Appendix.

Qualitative Analysis

The primary purpose of this analysis was to reveal misconceptions held by novice students in their

introductory programming (Python) course. The analysis protocol list for this study was derived via the

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 9

Delphi process. A Delphi Concept Inventory has thirty-two concepts that are important and difficult in

programming fundamentals courses. These key concepts were identified through the Delphi process

(Goldman, ym., 2008). We derived 10 topics from those as key themes based on the topics covered in the

programming language final exam. Table A1 shows the key topics derived from Delphi CI for qualitative

analysis. The Python programming language does not support array data structures but it has a higher

order list data structure instead.

Table A1

We collected Python programming final exam data via the ViLLE collaborative tutorial software tool.

ViLLE is software used in introductory programming course to support technology enhanced

programming classes (ViLLE). ViLLE is mainly used to provide lecture materials, homework, lab

exercises, and class work for programming courses. All novice programming exercises were made

available via ViLLE for students to practice and grade their submitted answers automatically (ViLLE).

We analyzed the student answers for multiple choice questions, code tracing questions, and code writing

questions. Table A2 shows the list of questions with details that were examined for qualitative analysis.

Question 1a was a multiple choice question. Its purpose was to check if students understood the basic

syntax and semantics of Python programming. Questions 1c and 1d were prepared to measure if student

understood the loop and decision statements and able to trace the code in Python programming. The final

six coding questions numbered from 2 to 7 tested code writing skills covering the syllabus topics taught in

the introductory programming course. Question 1b was omitted due to its irrelevance for this study.

Table A2

We analyzed 39 students’ answers in the final exam. The students’ responses to each question were

scrutinized by using the DCI, heuristic-analytic theory and Neo-Piagetian theory of cognitive

development for qualitative data analysis as described in the Kaczmarczyk et al.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 10

(Kaczmarczyk;Petrick;East;& Herman, 2010), Kryjevskaia et al. (Kryjevskaia;Stetzer;& Grosz, 2014),

and Teague et al., (Teague;Corney;Colin Fidge;Ahadi;& Lister, 2012), respectively.

1. All of the student answers were compared with solutions to check if the student committed any

mistakes due to lack of knowledge, confusion, assumption, and or used certain misconception to get

right answers for exam questions.

2. We classified the findings based on the CI- key topics listed in the table A1 to seek for answers to the

questions given here.

a) Does the code contain skill/rule/knowledge based errors?

b) Does the student have misconception about the coding questions and or topics that he/she

learned?

3. The coding mistakes and our findings were grouped to identify the cognitive stage of novices based

on Neo-Piagetian theory to develop the types of errors, and if any other key themes emerged from

those.

For example, Figure B1 shows a screenshot of a student answer for Question 5.

Figure B1 Student’s answer versus sample solution

As shown in Figure B1, each student’s answer was verified against a sample solution and the details

given in the question to identify whether or not the student had any misconceptions or had made any

errors. In this example, the student has answered the question correctly but has failed to follow the details

given in the question, that is, “print the largest fraction”. So, we checked the student’s answers to the

other questions that had similar details to identify if student committed similar error, however not. So, we

confirmed that the student had committed the skill based error due to “slips and lapses”.

Quantitative analysis

The secondary purpose of this study was to identify the types of errors made by students. In

quantitative analysis, we counted the number of mistakes that were identified in the qualitative analysis

by statistical methods. That is, all types of errors were counted and the average calculated based on the

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 11

number of students. Table A3 shows the types of errors that were prepared based on the literature review

and the errors detected from students’ answers.

Table A3

Results and Discussion

Results of Qualitative Analysis

Table A4 shows the results that were generated from our qualitative analysis.

Table A4

Table A5

From the results it was identified that students had confusion about the application of inbuilt functions,

and failed to see a type of data that was required. Moreover, students did not understand the difference

between string and numeric data type values syntactically and semantically. For example, Figure B2

shows a screenshot of a student answer for Question 3.

Figure B2 Student’s answer versus misapplication of comparison operator

In Question 3, students were asked to find the longest string from procedure outputLongest(s1, s2, s3),

which receives three strings as arguments. Seven students out of the 39 students applied the comparison

operators on string type variables to find the longest string assumed those operators can be applied on

strings. This kind of misconception occurs when students attempt to integrate the new and previous

understandings. Moreover, this confusion occurs if the new concept is much more similar to previously

learned concept (Alhalifa, 2006).

Hristova et al. identified that novices had misconceptions in defining methods and calling parameters

(Hristova;Misra;Rutter;& Mercuri, 2003). However, our findings did not support (refer table A5) their

statements fully. 67% of students defined the methods correctly though a few had problems in using the

return statement in functions. Moreover, 68% of the students understood the application of functions,

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 12

although 8% of the students passed the wrong argument/value as the return value, which may be

considered as semantics error (refer table A5). For example, Figure B3 shows a screenshot of a student

answer for Question 5.

Figure B3 Student’s answer versus skill based error

In Question 5, the incomplete code was given including comments as specifications to write the

missing part of the code as answer. Nearly one third of students did not read or did not follow or ignored

the comments preceded with # as tips.

Tracing loop execution needs cognitive skills and students should have that ability to trace the code

linearly. Our results reflected that a few students failed to trace the code linearly due to the lack of

knowledge in “how the looping technique works”. For example, Figure B4 shows a screenshot of a

student answer for code tracing Question 1c.

Figure B4 Student’s answer versus code tracing skill

Surprisingly, 83% of the students (refer table A5) who answered incorrectly for tracing the code

Question 1c were able to write program solutions that require looping statements. It seems students used

mental shortcut approach called availability heuristic technique to get the right answer

(Kryjevskaia;Stetzer;& Grosz, 2014). That is, solving the problem based on individuals prior knowledge,

experience and belief and therefore more likely to be correct.

According to Delphi CI, reference to arrays versus array elements, identifying off by one index errors

which occur when a student using less than or equal to where is less than, and declaring and manipulating

arrays as important and difficult topic for students (Goldman, ym., 2008). Notably, Boulay identified that

students had misconceptions with array subscripts and dimensions (Boulay, 1986). We also had similar

results with students confused about lists and list indices. Moreover, 13% of the students used negative

numbers as indices to read or display the values from lists.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 13

Apart from those listed in the Table A4, there were also a few other misconceptions identified in our

study that are similar to Bruce’s list of Python programming misconceptions (Bruce, 2015). They are:

confusion in variable declaration, index out of bound errors in lists, inappropriate use of comparison

operators, confusion between a key and its corresponding associated value in the list.

Results of Quantitative Analysis

The same set of exam question data was used for our quantitative analysis to enumerate the types of

errors made by students in the final exam. The results of quantitative analysis are shown in Figure B5.

Figure B5 Misconceptions and type of errors committed in the final exam

As Bringula et al. identified (Bringula;Manabat;Tolentino;& Torres, 2012) that it is common for

learners who are inexperienced in coding to most often make knowledge type errors. Statistical results of

our study support Bringula et al.’s conclusion with, on average (see Figure B2), 69.2% of students failing

to completely answer the code writing questions, due to lack of knowledge in the topics reflected in these

questions. Remarkably, a few students made rule based errors due to “assumption based confusion”

around the use of library functions in coding their answers. Notably, these rule based error findings

strongly support “The psychology of problem solving - Education Psychology literature - assumption

based attitude or this kind of cognitive behavior is ubiquitous” (Davidson & Sternberg, 2003). That is, it

is a common tendency of humans to automatically bring their prior knowledge as a tool, assuming that it

would solve the problem and this kind of attitude cannot be turned off easily. In addition, due to “slips

and lapses” only 5.1% of students committed skill-based errors. For example, a few students ignored the

instructions given in the questions, and included unnecessary commands in the program (refer Figure B6).

Figure B6 Student’s answer versus ignorance of directives

It was accepted that some knowledge of mathematics would help to learn “how to program”. Moreover,

programming is often concerned with mathematical concepts of logic. So, math based coding questions

were frequently asked in the introductory programming courses to test students’ problem solving skills.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 14

This study analysis also explored that novices of programming struggled in writing code for math related

questions 6 and 7 (refer Appendix). Nearly 66% of students did not do well in the mathematical problems

based questions though explained and allowed to surf the Internet to seek for more details during the

exam hours. A Neo-Piagetian theory of cognitive development stated that students who are at the concrete

operational stage struggle to write large programs with partial specifications, although they can write

small programs from well-defined specifications (Teague;Corney;Colin Fidge;Ahadi;& Lister, 2012).

Conclusion and Future work

This study analyzed the student answers of E-final exam questions to reveal misconceptions of novice

programming learners. The qualitative data analysis based on the Delphi Concept Inventory of

programming misconceptions and applied heuristic-analytic theory and Neo-Piagetian theory of cognitive

development research was conducted to identify students’ alternative conceptions of programming. In a

further quantitative analysis it was found that students who had misconceptions, made knowledge errors

and failed to complete the coding tasks. However, relatively few students made rule and skill based

errors. Besides, it was accidently identified that more than two-thirds of all students failed to answer the

mathematical task-based coding questions in the exam, which might be considered by educators in

refining teaching methods to foster students’ problem solving skills. This issue can also be connected

with math anxiety for future research work.

The motivation for this explorative study was to address the misconceptions that novice students held

in programming, and help educators to redefine the teaching methods to correct those misconceptions.

Further research could be conducted to measure the correlation between type of errors committed by

student and student misconceptions. Another way to explore is to study the gender difficulties and

misconceptions in programming courses. That is, “Are there gender effects on student misconceptions of

programming?” Finally, this study will also be implemented to different courses, institutions, countries

and with different student populations to explore student misconceptions.

Like all research, this study has several limitations and not free from its weakness. First, the sample

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 15

size of this study is not adequate enough to generalize our findings. Second, this research did not focus on

students’ prerequisite skills, test anxiety, how student think during exam hours, and influence of other

assessment tasks’ such as homework, project work results. Finally, students’ answers to the questions

may be out of researcher’s control to confirm the findings strongly.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 16

References

Abu-Oda, G. S., & El-Halees, A. M. (2015). Data Mining in Higher Education: University student

dropout case study. International Journal of Data Mining & Knowledge Management process,

5(1), 15-27.

Afzaal H. Seyal, Y. S., Matusin, M. H., Siau, H. N., & Rahman, A. A. (2015). Understanding Students

Learning Style and Their Performance in Computer Programming Course:Evidence from

Bruneian Technical Institution of Higher Learning. International Journal of Computer Theory

and Engineering , 7(3), 243-247.

Alastair, I. (2010). An Investigation into the Impact of Formative Feedback on the Student Learning

Experience. Durham University.

Alavi, M. (1994, June). Computer-Mediated Collaborative Learning: An Empirical Evaluation. MIS

Quarterly, 18(2), 159-174.

Alexandre, R., Queiros, P., & Leal, J. P. (2012). PETCHA: a programming exercises teaching assistant.

ITiCSE'12-17th ACM annual conference on Innovation and technology in computer science

education, (pp. 192-197).

Alhalifa, E. M. (2006). Effects of Learner Misconceptions on Learning. IADIS International Conference

on Cognition and Exploratory Learning in Digital Age (CELDA 2006), (pp. 123-128). CELDA.

Ali, A., & Smith, D. (2014). Teaching an Introductory Programming Language. Journal of Information

Technology Education: Innovations in Practice, 13, 57-67.

Ali, A., & Smith, D. (2014). Teaching an introductory programming language in a general education

course. Journal of Information Technology Education: Innovations in Practice, 13, 57-67.

Ali, N., Jusoff, K., Ali, S., Mokhtar, N., & Salamat, A. S. (2009). The Factors influencing Students'

Performance at Universiti Teknologi MARA Kedah, Malaysia. Management Science and

Engineering, 3(4), 81-90.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 17

Almstrum, V. L., Henderson, P. B., Harvey, V., Heeren, C., Marion, W., Riedesel, C., . . . Tew, A. E.

(2006). Concept Inventories in Computer Science for the Topic Discrete Mathematics. ITiCSE '06

(pp. 26-28). Bologna, Italy: ACM.

AlQahtani, D. A., & Al-Gahtani, S. M. (2014). Assessing Learning Styles of Saudi Dental Students Using

Kolb's Learning Style Inventory. Journal of Dental Education, 78(6), 927-933.

Anjali, G. (2014). Alignment of Teaching Style to Learning Preference: Impact of Student Learning.

Training and Development Journal, 5(2), 119-131.

Bennett, S., Bishop, A., Dalgarno, B., Waycott, J., & Kennedy, G. (2012). Implementing Web 2.0

technologies in higher education: A collective case study. Computers & Education, 59(2), 524-

534.

Biggs, J. (1998). What the student does: Teaching for enhanced learning in the '90s. The higher Education

research and development society of Australiasia annual International conference. Auckland,

New Zealand.

Black, P. J., & Lucas, A. M. (1993). Children's Informal Ideas in Science. Routledge.

Blerkom, M. L. (1992). Class Attendance in Undergraduate Courses. The Journal of

Psychology:Interdisciplinary and Applied, 126(5), 487-494.

Boulay, B. D. (1986). Some Difficulties of Learning to Program. Journal of Educational Computing

Research, 2(1), 57-73.

Brijesh Kumar Baradwaj, S. P. (2011). Mining Educational Data to Analyse Students' Performance.

International Journal of Advanced Computer Science and Applications, 2(6), 63-69.

Bringula, R. P., Manabat, G. M., Tolentino, M. A., & Torres, E. L. (2012). Predictors of Errors of Novice

Java Programmers. World Journal of Education, 2(1), 3-15.

Bruce, E. (2015, July 8). https://edwinbruce.wordpress.com. (wordpress.com) Retrieved September 29,

2015, from https://edwinbruce.wordpress.com/2015/07/08/programming-misconceptions-2/

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 18

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice programming students studying

high level and low feedback concepts. Proceedings of the 24th ascilite Conference, (pp. 2-5).

Singapore.

Cakiroglu, U. (2014). http://www.irrodl.org. (Athabasca University) Retrieved 07 27, 2015, from

http://www.irrodl.org/index.php/irrodl/article/view/1840/3004

Carrillo-de-la-Pena, M. T., Bailles, E., Caseras, X., Martinez, A., Ortet, G., & Perez, J. (2009). Formative

assessment and academic achievement in pre-graduate students of health sciences. Adv in Healh

Science Education, 14, 61-67.

Castano-Munoz, J., Duart, J. M., & Sancho-Vinuesa, T. (2014). The Internet in face-to-face higher

education: Can interactive learning improve academic achievement? British Journal of

Educational Technology, 45(1), 149-159.

ChanMin Kim, S. W., & Cozart, J. (2014). Affective and motivational factors of learning in online

mathematics courses. British journal of Educational Technology, 45(1), 171-185.

Chatti, M., Dyckhoff, A., Schroeder, U., & Thus, H. (2012). A Reference Model for Learning Analytics.

International Journal of Technology Enhanced Learning, 4(5-6), 318-331.

Chen, J., & Lin, T.-F. (2008). Class Attendance and Exam Performance: A Randomized Experiment. he

Journal of Economic Education, 39(3), 213-227.

Cohn, E., & Johnson, E. (2006). Class attendance and performance in Principles of Economics. Education

Economics, 14(2), 211-233.

Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring: Impact

on learning rate, achievement and attitudes. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (pp. 245-252). New York: ACM.

Credé, M., Roch, S. G., & Kieszczynka, U. M. (2010). Class Attendance in College: A Meta-Analytic

Review of the Relationship of Class Attendance With Grades and Student Characteristics. Review

of Educational Research , 80(2), 272-295.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 19

Davidson, J. E., & Sternberg, R. J. (2003). The Fundamental Computational Biases of Human cognition.

In The Psychology of problem Solving (pp. 291-310). Cambridge: Cambridge University Press.

de-la-Fuente-Valentín, L., Pardo, A., & Kloos, C. D. (2013). Addressing drop-out and sustained effort

issues with large practical groups using an automated delivery and assessment system. Computers

& Education, 61(February), 33-42.

Dinh, T. H. (1987). Introduction to Vietnamese Culture. ERIC.

E.Byrd, C., McNeil, N. M., Chesney, D. L., & G.Matthews, P. (2015). A specific misconception of the

equal sign acts as a barrier to children's learning of early algebra. Learning and Individual

differences, 38, 61-67.

Ebrahimi, A., Kopec, D., & Schweikert, C. (2006). Taxonomy of Novice Programming Error Patterns

with Plan, Web, and Object Solutions. ACM Computing Surveys.

Eggen, P., & Kauchak, D. (2004). Windows on classrooms. Educational Psychology, 6.

Embrey, D. (2005). www.humanreliability.com. Retrieved August 04, 2015, from

http://www.humanreliability.com/articles/Understanding%20Human%20Behaviour%20and%20E

rror.pdf

Eren, O., & Henderson, D. J. (2008). The impact of homework on student achievement. The

Econometrics Journal, 11(2), 326-348.

Farooq, M., Chaudhry, A., Shafiq, M., & Berhanu, G. (2011). Factors affecting students' quality of

Academic performance: A case of Secondary school level. Journal of Quality and Technology

Management, VII(II), 1-14.

Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge construction

with visualization tools. Learning and Instruction, 12(2), 213-232.

Fleming, N. (2001). Teaching and Learning styles: VARK strategies. Honolulu Community College.

Gaal, F. V., & Ridder, A. D. (2013). The Impact of assessment tasks on subsequent examination

performance. Active Learning in Higher Education, 14(3), 213-225.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 20

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., C.Loui, M., & Zilles, C. (2008).

Identifying Important and difficult concepts in introductory computing courses using a Delphi

process. SIGCSE '08 Proceedings of the 39th SIGCSE technical symposium on Computer science

education (pp. 256-260). Portland: ACM.

Gratchev, I., & Balasubramaniam, A. (2012). Developing assessment tasks to improve the performance of

engineering students. AAEE 2012 conference. Melbourne.

Gries, D. (1974). What should we teach in an introductory programming course? SIGCSE '74

Proceedings of the fourth SIGCSE technical symposium on Computer science education, 6, pp.

81-89. New York, USA.

Gruba, P., & Sondergaard, H. (2001). A Constructivist Approach to Communication Skills Instruction in

Computer Science. Computer Science Education, 11(3), 203-219.

Gump, S. E. (2005). The Cost of Cutting Class: Attendance As A Predictor of Success. College Teaching,

53(1), 21-26.

Handelsman, M. M., Briggs, W. L., Sullivan, N., & Towler, A. (2005). A Measure of College Student

Course Engagement. The Journal of Educational Research, 98(3), 184-192.

Hestenes, D., Wells, M., & Swackhamer, G. (1992, March). Force Concept Inventory. The Physics

Teacher, 30(3), 141-158.

Higgins, C. A., Gray, G., Symeonidis, P., & Tsintsifas, A. (2005). Automated assessment and experiences

of teaching programming. Journal on Educational Resources in Computing, 5(3).

Hofstede, G., Hofstede, G. J., & Minov, M. (2010). Culturers and Organizations: Software of the Mind.

New York: McGraw-Hill.

Holvitie, J., Haavisto, R., Kaila, E., Teemu Rajala, M.-J. L., & Salakoski, T. (2012). Electronic exams

with automatically assessed exercises. ICEE 2012 - International Conference on Engineering

Education. Turku, Finland.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 21

Horton, D. M., Wiederman, S. D., & Saint, D. A. (2012). Assessment outcome is weakly correlated with

lecture attendance: influence of learning style and use of alternative materials. Advances in

Physiology Education, 36(2), 108-115.

housand, J. S. (2002). The practical guide to empowering students, teachers, and families. Baltimore:

Paul H. Brookes Publishing Co.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting Java Programming

errors for introductory computer science students. SIGCSE '03 Proceedings of the 34th SIGCSE

technical symposium on Computer science education, 35, pp. 153-156. New York.

http://patientsafetyed.duhs.duke.edu/module_e/types_errors.html. (2014). Retrieved June 30, 2015

HU, K., AM, K., IU, M., A, M., S, A., MH, K., . . . SH, S. (2002). Impact of class attendance upon

examination results of students in basic medical sciences. Journal of Ayub Medical College,

Abbottabad, 15(2), 56-58.

Huet, I., Pacheco, O. R., Tavares, J., & Weir, G. (2004). New Challenges in Teaching Introductory

Programming courses: A Case Study. ASEE/IEEE Frontiers in Education Conference. Savannah,

GA.

James, R. (1990). Human error. Cambridge university press.

Judy Kay, M. B., Fekete, A., Greening, T., Hollands, O., & Crawford, J. H. (2000). Problem-Based

Learning for Foundation Computer Science Courses. Computer Science Education, 10(2), 109-

128.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying Student

Misconceptions of Programming. SIGCSE '10 Proceedings of the 41st ACM technical symposium

on Computer science education (pp. 107-111). Milwaukee, Wisconsin: ACM.

Kaila, E., Rajala, T., & Mikko-Jussi Laakso, S. (2008). Automatic Assessment of Program Visualization

Exercises. 8th koli Calling International Conference on Computing Education Research. Joensuu,

Finland.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 22

Kasuya, M. (2008). Classroom Interaction Affected by Power Distance. Language Teaching Methodology

and Classroom Research and Research Methods.

Kennelly, B., & Flannery, J. C. (2011). Online Assignments in Economics: A Test of Their Effectiveness.

The Journal of Economic Education, 42(2), 136-146.

Kim, V., & Seung Won Park, J. C. (2014). Affective and motivational factors of learning in online

mathematics courses. British Journal of Educational Technology, 45(1), 171-185.

Knowles, M. S., III, E. F., & Swanson, R. A. (2014). The Adult Learner: The definitive classic in adult

education and human resource development. Routledge.

Kolb, D. A. (1984). Experiential Learning: Experience as a source of learning and development'. New

Jersey: Prentice Hall.

konan, P. N., Chatard, A., & Leila Selimbegovic, G. M. (2010). Cultural Diversity in the Classroom and

its Effects on Academic Performance: A Cross National Perspective. Social Psychology, 41(4),

230-237.

Koulouri, T., Lauria, S., & Macredie, R. D. (2014). Teaching Introductory Programming: A Quantitative

Evaluation of Different Approaches. ACM Transactions on Computing Education (TOCE), 14(4),

26.1-26.27.

Krpan, D. &. (2011). Introductory programming languages in higher education. 2011 Proceedings of the

34th International Convention - IEEE.

Kryjevskaia, M., Stetzer, M. R., & Grosz, N. (2014). Answer first: Applying the heuristic-analytic theory

of reasoning to examine intuitive thinking in the context of physics. Physical Review Special

Topics-Physics Education Research, 10(2), 020109-1- 020109-12.

L., J., Wendt, & Rockinson-Szapkiw, A. (2014). The Effect of Online Collaboration on Middle School

Student Science Misconceptions as an Aspect of Science Literacy. Journal of Research in Science

Teaching, 51(9), 1103-1118.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 23

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice

programmers. ITiCSE '05 Proceedings of the 10th annual SIGCSE conference on Innovation and

technology in computer science education. 37, pp. 14-18. iTiCSE '05.

Latif, E., & Miles, S. (2013). Class Attendance and Academic Performance: A Panel Data Analysis.

Economic Papers, 32(4), 470-476.

Lee, L. (2005). Using Web-based Instruction to Promote Active Learning: Learners' Perspectives.

CALICO Journal, 23(1), 139-156.

Lenox, T. L., & Woratschek, C. R. (2008). Exploring Declining CS/IS/IT Enrollments. Information

System Education Journal, 6(44), 1-11.

lin, T.-F., & Chen, J. (2006). Cumulative class attendance and exam performance. Applied Economics

Letters, 13(14), 937-942.

Lister, R., & Leaney, J. (2003). Introductory Programming, criterion-referencing and bloom. ACM SIGCE

BULLETIN, 35(1), 143-147.

M.A. Chatti, A. D. (2012). A reference model for Learning Analytics. International Journal of

Technology Learning, 4(5-6), 318-331.

Maguire, p., Maguire, R., Hyland, P., & Marshall, P. (2014). Enhancing collaborative Learning Using

Pair Programming: Who Benefits? All Ireland Journal of Teaching and Learning in Higher

Education, 6(2), 14111-14124.

Mallik, G. (2011). Lecture and Tutorial Attendance and Student Performance in the First year economics

course: A quantile regression approach. Denver, United States: American Economic Association

Annual Meeting.

Marburger, D. R. (2001). Absenteeism and Undergraduate Exam Performance. The Journal of Economic

Education, 32(2), 99-109.

Marburger, D. R. (2006). Does Mandatory Attendance improve Student Performance? The Journal of

Economic Education, 37(2), 148-155.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 24

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011). Measuring the Effectiveness of Error Messages

Designed for Novice Programmers. Proceedings of the 42nd ACM technical symposium on

Computer science education.

McCall, D., & Kölling, M. (2014). Meaningful Categorisation of Novice Programmer Errors. Frontiers in

Education Conference (FIE), 2014 IEEE. IEEE, 2014.

Meister, D. (1989). The nature of human error. Global Telecommunications Conference and Exhibition

'Communications Technology for the 1990s and Beyond' (GLOBECOM), 1989, IEEE. 2, pp. 783-

786. Dallas, TX: IEEE.

Miliszewska, I., & Tan, G. (2007). Information and Beyond Issues in Informing Science & Information

Technology. In Befriending Computer Programming: A proposed Approach to Teaching

Introductory Programming (pp. 277-289). Santa Rosa: Informing Science Press.

Mlambo, V. (2011). An analysis of some factors affecting student academic performance in an

introductory biochemistry course at the University of West Indies. Caribbean Teaching Scholar,

1(2), 79-92.

Moore, C. B., Abella, I. D., & Boggs, G. (1997). Science Teaching Reconsidered: A Handbook. In

Chapter 4: Misconceptions as Barriers to Understanding Science (pp. 27-30). Washington D.C.:

National Academy Press.

Movshovitz-Hadar, N., Zaslavsky, O., & Inbar, S. (1987). An Empirical Classification Model for Errors

in High School Mathematics. Journal for Research in Mathematics Education, 18(1), 3-14.

Muller, M. (2006). A Preliminary Study on the Impact of a Pair Design Phase on Pair Programming and

Solo Programming. Information and Software Technology, 48(5), 335-344.

Muller, M. M. (2006). A preliminary study on the impact of a pair design phase on pair programming and

solo programming. Information and software Technology, 48, 335-344.

Muller, M. M., & Padberg, F. (2004). An Empirical Study about the Feelgood Factor in Pair

Programming. Proceedings of the 10th International Symposium on Software Metrics.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 25

Nakiboglu, C., & Tekin, B. B. (2006). Identifying Students' Misconceptions about Nuclear Chemistry.

Journal of Chemical Education, 83(11), 1712-1718.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., . . . Velázquez-

Iturbide, J. Á. (2002). Exploring the role of visulaization and engagement in computer science

education. ITiCSE-WGR '02 Working group reports from ITiCSE on Innovation and technology

in computer science education. New York.

Narula, M., & Nagar, P. (2013). Relationship Between Students' Performance and Class Attendance in a

Programming Language Subject in a Computer Course. International Journal of Computer

Science and Mobile Computing, 2(8), 206-210.

O'Grady, & J, M. (2012). Practical Proble-Based Learning in Computing Education. BACM Transactions

on Computing Education, 2(3), A1-A14.

Olsen, S. (1999). Errors and compensatory strategies: a study of grammar and vocabulary in texts written

by Norwegian learners of English. ScienceDirect-System, 27(2), 191-205.

Orion, N., & Hofstein, A. (1994). Factors that influence Learning during a Scientific Field Trip in a

Natural Environment. Journal of Research in Science Teaching, 31(10), 1097-1119.

Osmanbegović, E., & Suljic, M. (2012). Data mining approach for predicting student performance.

Journal of Economics and Business, X(1), 3-12.

Ota, A. (2013, January 1). Factors Influencing Social, Cultural, and Academic Transitions of Chinease

Interntional ESL Students in U.S. Higher Education. Port´land State University. PDXScholar.

Retrieved August 4, 2015

Palincsar, A. S., Stevens, D. D., & Gavelek, J. R. (1989). Collaborating with teachers in the interest of

student collaboration. International Journal of Educational Research, 13(1), 41-53.

Payne, L. (1989). A step towards group learning in computer programming. Computer Education , 23-25.

Perry, G., & Miller, D. (2013). Sams Teach yourself Beginning Programming in 24 Hours. Indianapolis,

Indiana: Pearson Education.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 26

Pudaruth, S., Nagowah, L., Sungkur, R., Moloo, R., & Chiniah, A. (2013). The Effect of Class

Attendance on the Performance of Computer Science Students. 2nd International Conference on

Machine Learning and Computer Science(IMLCS'2013). Kuala Lumpur (Malaysia) .

Purcell, P. (2007). Engineering Student Attendance at Lectures: Effect on Examination Performance.

International Conference on Engineering Education – ICEE 2007 . Coimbra, Portugal.

Rajala, T., & Kaila, E. (2010). How does Collaboration Affect Algorithm Learning- A Case Study Using

TRAKLA2. International Conference on Education Technology and Computer(ICETC

2010)Shanghai, (pp. 22-24).

Rajala, T., Kaila, E., Laakso, M.-J., & Salakoski, T. (2009). Effects of collaboration in program

visualization. Technology Enhanced Learning Conference 2009 (TELearn 2009).

Rajala, T., Kaila, E., Laakso, M.-J., & Salakoski, T. (2010). How Does Collaboration Affect Algorithm

Learning? - A case study using TRAKLA2. International Conference on Education Technology

and Computer (ICETC 2010), (pp. 22-24). Shanghai.

Rajala, T., Kaila, E., Laakso, M.-J., & Salakoski, T. (2011). Comparing the collaborative and independent

viewing of program visualizations. ASEE-IEEE Frontiers in Education Conference. Rapid City,

SD.

Rajala, T., Kaila, E., Laakso, M.-J., & Salakoski, T. (2011). Comparing the collaborative and independent

viewing of program visulaizations. 41st ASEE-IEEE Frontiers in Education Conference. Rapid

City: IEEE.

Redecker, C. (2013). The Use of ICT for the Assessemnt of Key Competences. Luxembourg: European

Commission, Joint Research Centre, Institute for Prospective Technological Studies. Retrieved

from r http://europa.eu/

Reeves, T. C. (2006). How do you know they are learning?: the importance of alignment in higher

education. International Journal of Learning Technology, 2(4), 294-309.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 27

Reza Kormi-Nouri, S. M., Farahani, M.-N., Trost, K., & Shokri, O. (2015). Academic Stress as A Health

Measure and Its Relationship to Patterns of Emotion in Collectivist and Individualist Cultures:

Similarities and Differences. International Journal of Higher Education, 4(2), 92.

Richard O. Mines, J. (2014). The Impact of Testing Frequency and Final Exams on Student Performance.

ASEE Southeast Section Conference : American Society for Engineering Education, 2014.

Macon, GA.

Roberts, T. S. (2005). Computer supported collaborative learning in higher education. Australia: IGI

Global.

Rocca, C. L., Margottini, M., & Capobianco, R. (2014). Collaborative Learning in Higher Education.

Open Journal of Social Sciences, 61-66.

Romero, C., Ventura, S., Espejo, P. G., & Hervás, C. (2008). Data Mining Algorithms to Classify

Students. Educational Data Mining 2008.

Salleh, N., Mendes, E., & Grundy, J. C. (2011). Emperical Studies of Pair Programming for CS/SE

Teaching in Higher Education: A Systematic Literature Review. IEEE Transactions on Software

Engineering, 37(4), 509-525.

Santiago, P., & Benavides, F. (2009). Teacher evaluation: A conceptual framework and examples of

country practices. OECD-Mexico Workshop ‘Towards a Teacher Evaluation Framework in

Mexico: International Practices, Criteria and Mechanisms. Mexico City.

Sherman, M., Bassil, S., Lipman, D., Tuck, N., & Martin, F. (2013). Impact of auto-grading on an

introductory computing course. Journal of Computing Sciences in Colleges, 28(6), 69-75.

Shuhidan, S., Hamilton, M., & D'Souza, D. (2010). Instructor perspectives of multiple-choice questions in

summative assessment for novice programmers. Computer Science Education, 20(3), 229-259.

Shute, V. J. (2008). Focus on Formative Feedback. Educational Testing Service.

Simanek, D. E. (2008, November). Didaktikogenic Physics Misconceptions: Student misconceptions

induced by teachers and textbooks. Retrieved October 6, 2015, from

https://www.lhup.edu/~dsimanek/scenario/miscon.htm

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 28

Sirkiä, T. (2012). Recognizing Programming Misconceptions. Aalto University.

Sorva, J. (2012). Misconception Catalogue - Appendix A. In Visual Program Simulation in Introductory

Programming Education (pp. 358-368). Espoo, Finland: Aalto University publication series.

Spohrer, J. C., & Soloway, E. (1986). Alternatives to construct-based programming misconceptions. CHI

'86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 17, pp.

183-191. Boston.

Stanca, L. (2006). The Effects of Attendance on Academic Performance: Panel Data Evidence for

Introductory Microeconomics. The Journal of Economic Education, 37(3), 251-266.

Sun, P.-C., Tsai, R. J., Finge, G., Chen, Y.-Y., & Yeh, D. (2008). What dirves a successful e-Learning?

An empirical investigation of the critical factors influencing learner satisfaction. Computers &

Education, 50(4), 1183-1202.

Sutcliffe, A., & Rugg, G. (1998). A Taxonomy of Error Types for Failure Analysis and Risk Assessment.

International Journal of Human-Computer Interaction, 10(4), 381-405.

Teague, D., Corney, M., Colin Fidge, M. R., Ahadi, A., & Lister, R. (2012). Using Neo-Piagetian Theory,

Formative In-Class Tests and Think Alouds to Better Understand Student Thinking: A

Preliminary Report on Computer Programming. AAEE2012 Conference. Melbourne, Australia.

Thanh, P. T. (2011). An Investigation of Perceptions of Vietnamese Teachers and Students toward

Cooperative Learning (CL). International Education Studies, 4(1), 3-12.

Tiwari, A., Lai, P., So, M., & Yuen, K. (2006). A comparison of the effects of problem-based learning

and lecturing on the development of students' critical thinking. Medical Education, 40(6), 547-

554.

Tran, V. D. (2014). The Effects of Cooperative Learning on the Academic Achievement and Knowledge

Retention. International Journal of Education, 3(2), 131-140.

Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in

science. International Journal of Science Education, 10(2), 159-169.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 29

Trumbull, E., & Lash, A. (2013). Understanding Formative Assessment: Insights from Learning Theory

and Measurement Theory. San Francisco: WestEd.

Uysal, M. P. (2014). Improving First Computer Programming Experiences: The Case of Adapting a Web-

Supported and Well- Structured problem-Solving Method to a Traditional Course. Contemporary

Educational Technology, 5(3), 198-217.

Weinberger, A., Fischer, F., & Stegmann, K. (2005). Computer-supported collaborative learning in higher

education:scripts for argumentative knowledge construction in distributed groups. CSCL '05

Proceedings of th 2005 conference on Computer support for collaborative learning: learning

2005: the next 10 years!

Vigeant, M., Prince, M., & Nottis, K. (2014). Repairing Engineering Students' Misconceptions About

Energy and Thermodynamics. In Teaching and Learning of Energy in K–12 Education (pp. 223-

236). Springer International Publishing.

ViLLE. (n.d.). (University of Turku) Retrieved 10 20, 2015, from http://villeteam.fi/index.php/en/

Willging, P. A., & Johnson, S. D. (2009). Factors that Influence Students’ Decision to Dropout of Online

Courses. Journal of Asynchronous Learning Networks, 13(3), 115-127.

Wilson, B. C., & Shrock, S. (2001). Contributing to Success in an Introductory Computer Science

Course: A Study of Twleve Factors. ACM SIGCSE Bulletin, 33(1), 184-188.

Virtanen, A., Tynjälä, P., & Eteläpelto, A. (2014). Factors promoting vocational students. Journal of

Education and Work, 27(1), 43-70.

Vygotsky, L. (1992). Educational Psychology. Florida: St. Lucie Press.

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard

university press.

Yoo, J. Y., Swann, W. B., & Kim, K. O. (2014). The Influence of Identity Fusion on Patriotic

Consumption: A Cross-Cultural Comparison of Korea and the US. The Korean Journal of

Advertising , 25(5), 81-106.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 30

Zualkernan, I. A., & Qadah, G. Z. (2006). Learning Styles of Computer Programming Students: A Middle

Eastern and American Comparison. IEEE Transactions on 49.4 (2006): 443-450.

Özdener, N. (2008). A comparison of the misconceptions about the time-efficiency of algorithms by

various profiles of computer-programming students. Computers & Education, 51(3), 1094-1102.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 31

Appendix A

Table A1. Delphi’s CI

No. Key topics derived from Delphi’s CI (Goldman, ym., 2008)

1 Syntax and semantics

2 Writing expressions for conditionals

3 Tracing control flow through execution

4 Tracing loop execution correctly

5 Understanding loop variable scope

6 Issues of scope, local vs global & understanding loop

variable scope

7 Parameters scope and use in design

8 call by ref vs call by value

9 Writing expressions for conditionals

10 *Declaring and manipulating lists, referencing list elements

(*Python does not have array data structure)

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 32

Table A2. E-final exam questions - Analyzed

Question Topic covered Concept - Delphi CI

1a Variable declaration and assignment Syntax and semantics

1c Loop execution Tracing loop execution correctly

1d Loop and if statements in lists Tracing control flow through

execution

2 String handling functions and nested if

statements

Writing expressions for conditionals

3 Using loop and functions in String handling Understanding loop variable scope

4 Functions Parameters scope and use in design,

and

call by ref vs call by value

5 Lists Declaring and manipulating lists, and

referencing list elements

6 Mathematical problem Writing expressions for conditionals

Understanding loop variable scope

7 Lists (kind of multi- dimensional array) Declaring and manipulating lists, and

referencing list elements

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 33

Table A3. Variables of Quantitative Analysis

Error type Meaning (Meister, 1989)

Knowledge error due to insufficient knowledge

Skill based error due to slips and lapses

Rule based error due to incorrect implementation of rule/method

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 34

Table A4. Results of Qualitative analysis

Key topics Misconception

Syntax and semantics student misunderstood the meaning of

inbuilt functions and its application

parameter scope student confused about the use of return

statement and data type of the parameter

passing

Writing expressions for conditionals student misunderstood the process of

control flow and especially nested if

Tracing loop execution student misunderstand the process of for

loop operation

Defining and referencing list elements Student was not clear with index position

and referencing list elements

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 35

Table A5. Key themes versus number of students

Details No. of

students

in %

Defined the methods correctly 26 67

Failed to define methods 4 10

Failed to trace the code 6 15

Failed to trace the code (6 students) but written program

solutions that require looping statements

5 83

Had confusion in return statement of methods 3 8

Applied negative numbers as index positions in lists 5 13

Failed to complete mathematical problems based

questions

26 67

Held programming misconception 14 36

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 36

Appendix B

Figure B1 Student’s answer versus sample solution

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 37

Figure B2 shows a screenshot of a student answer for Question 3.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 38

Figure B3 shows a screenshot of a student answer for Question 5.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 39

Figure B4 shows a screenshot of a student answer for code tracing Question 1c.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 40

The results of quantitative analysis are shown in Figure B5.

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 41

Figure B6 Student’s answer versus ignorance of directives

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 42

Appendix C

Question Details

1a Which one of the following expressions evaluates into an object of type string?

“abc”.count(“a”)

“abc” is “ab” + “c”

“abc”.find(“a”)

“abc”[1:2]

len(“abc”)

”abc” == ”a” + ”bc”

1c Which number should be placed in place of x so that the following program outputs 24?

s=1

for i in range (1, x):

s *= i

print s

1d The following function...

def abc(lst):

 lst2 = []

 for i in lst:

 if i % 2 == 0:

 lst2.append(i)

 return lst2

..is equivalent to which expression given below?

abc = lambda x : [y for y in x if y % 2 == 0]

abc = if y % 2 == 0: lambda x : [y for y in x]

abc = lambda x : [y for y in x] % 2

abc = [y for y in x if y % 2 == 0]

2 Write a procedure outputLongest(s1,s2,s3), which gets three random strings as arguments.

The procedure outputs the longest string. DO NOT OUTPUT ANYTHING ELSE, just the

NOVICE STUDENT PROGRAMMING MISCONCEPTIONS 43

longest string!

3 Write a function removeVowels, which gets a random string s as an argument. The function

creates and returns a new string, which contains all character in s except for vowels (a, e, i, o,

u, y). For example, if the function was called with a string "python", it would return a string

"pthn".

4 Write a function minMidMax(numberList), which gets a list of integers as an argument. The

function returns a tuple containing minimum, median and maximum items from the list. The

median item is an item which has an equal amount of smaller and larger items in the list. For

example, if the function was called with list [5, 3, 1, 2, 4], it would return a tuple (1, 3,

5).Note, that you can NOT change the list given as an argument in any way!

5 Write a function findPairs(d), which receives a dictionary as an argument. The function

finds all items from a dictionary where key and value are equal (such as 3:3 or -145: -145),

and saves these values into a listFinally, the list is sorted into increasing order and returned.

6* Write a function isPermutation(s1, s2), which returns true, if string s1 is a permutation of

string s2. For s1 to be a permutation of s2, the number of times each character [a...z] occurs

in the string should be equal for s1 and s2. The order of characters does not matter.

7* Write a procedure flip(matrix), which receives a matrix with random items as an argument.

The matrix is a square matrix (i.e. there is an equal amount of rows and columns).The

procedure is supposed to flip the matrix, i.e. convert the rows into columns and vice versa.

For example, if called with matrix like this [[1,2], [3,4]], the procedure transforms it into

[[1,3],[2,4]].

*students were allowed to use internet facilities to know more about Permutation and square matrix

during exam hours.

