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ABSTRACT
BACKGROUND: The identification of early biomarkers of psychotic experiences (PEs) is of interest because early
diagnosis and treatment of those at risk of future disorder is associated with improved outcomes. The current study
investigated early lipidomic and coagulation pathway protein signatures of later PEs in subjects from the Avon
Longitudinal Study of Parents and Children cohort.
METHODS: Plasma of 115 children (12 years of age) who were first identified as experiencing PEs at 18 years of age
(48 cases and 67 controls) were assessed through integrated and targeted lipidomics and semitargeted proteomics
approaches. We assessed the lipids, lysophosphatidylcholines (n = 11) and phosphatidylcholines (n = 61), and the
protein members of the coagulation pathway (n = 22) and integrated these data with complement pathway protein
data already available on these subjects.
RESULTS: Twelve phosphatidylcholines, four lysophosphatidylcholines, and the coagulation protein plasminogen
were altered between the control and PEs groups after correction for multiple comparisons. Lipidomic and proteomic
datasets were integrated into a multivariate network displaying a strong relationship between most lipids that were
significantly associated with PEs and plasminogen. Finally, an unsupervised clustering approach identified four
different clusters, with one of the clusters presenting the highest case-control ratio (p , .01) and associated with a
higher concentration of smaller low-density lipoprotein cholesterol particles.
CONCLUSIONS: Our findings indicate that the lipidome and proteome of subjects who report PEs at 18 years of age
are already altered at 12 years of age, indicating that metabolic dysregulation may contribute to an early vulnerability
to PEs and suggesting crosstalk between these lysophosphatidylcholines, phosphatidylcholines, and coagulation
and complement proteins.
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The early identification and treatment of subjects with psy-
chiatric disorders, both psychotic and affective, significantly
improves their clinical outcome (1). Consequently, over the last
decade, there has been a shift in research focus to a high-risk
paradigm for individuals at increased risk for later psychotic
disorder (PD) (2–4). Research over the past 15 years has
revealed that 8% to 17% of children and adolescents (5) and
7% of adults (6) in the general population report psychotic
experiences (PEs). It is known that these individuals who report
subclinical symptoms in early life are at increased risk of PD
(7,8) as well as other disorders (9,10).
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The identification of a biological signature of psychotic ill-
nesses can provide insights into pathophysiological basis of
the disorders (11,12) and also has the potential to be used as a
part of biomarker signature for early detection and diagnosis
(13). Recent research on schizophrenia and related psychoses
has highlighted a number of metabolic perturbations such as
glucoregulatory processes (14,15), lipid metabolism (16–18),
mitochondrial function (19), proline (13), and tryptophan
metabolism (20), with the most consistent findings involving
pathways common to fatty acids and the pro-oxidant/
antioxidant balance (21–23). A recent systematic review of
blished by Elsevier Inc. This is an open access article under the
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Table 1. Descriptive Data of the ALSPAC Individuals
Included in the Study

Cases Controls p

Participants, n 48 67

Male/Female, n 22/26 39/28 .19

BMI, kg/m2, Mean 6 SD 18.16 6 2.85 17.73 6 2.53 .40

Descriptive information was compared between cases and controls.
Statistical comparisons are from Pearson chi-square or Student’s t test
as appropriate.

ALSPAC, Avon Longitudinal Study of Parents and Children; BMI,
body mass index.
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metabolite biomarkers for schizophrenia by Davison et al. (24)
revealed that although definite consistencies have been
described in the literature, none of the potential biomarkers
have been validated reproducibly in large cohorts. Essential
polyunsaturated fatty acids, lipid-peroxidation metabolites,
phosphatidylcholines (PCs) and lysophosphatidylcholines
(LPCs), glutamate, 3-methoxy-4-hydroxyphenylglycol, and
vitamin E emerged from this review as potential biomarkers
(24), emphasizing the hypotheses of oxidative stress and
inflammation (25) and membrane phospholipid alterations (26).
While these studies have contributed to our understanding of
the disease mechanisms, they generally focus on the adult
population that has already transitioned to psychosis, with a
majority being medicated. These studies are therefore limited
in terms of identifying early molecular signatures of the
disease.

To address this issue, we recently applied broad metab-
olomics, lipidomics, and shotgun and semitargeted prote-
omics approaches to plasma samples from children at 12
years of age who were reported to develop PD at 18 years of
age, from the Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort (27). We observed increased PCs and LPCs,
and complement and coagulation proteins among these sub-
jects during childhood (22,23). These findings provided
intriguing support for the view that psychosis is associated
with a broad range of inflammatory (23,28), glucoregulatory
(29), and lipid (22) dysregulation from early childhood. The
interrelationship between these early lipid and protein changes
has not yet been investigated. In the current investigation, we
have extended our previous work by testing the hypothesis
that altered LPCs and PCs and the family of coagulation pro-
teins are associated with not only outcomes of PD, but also the
milder phenotype of PEs. Specifically, lipidomic and semi-
targeted proteomic approaches were employed to semitarget
PCs and LPCs and coagulation proteins at 12 years of age
among apparently well subjects who go on to develop PEs at
18 years of age in the ALSPAC cohort. These data were then
integrated with other complement protein data available of the
same subjects to assess the broader functional relationships
between these proteins and lipids at 12 years of age among
those who later report PEs at 18 years of age.

METHODS AND MATERIALS

Study Cohort

The study comprised subjects from the ALSPAC cohort. The
ALSPAC cohort is a prospective general population cohort that
includes 14,062 live births from southwest England (30,31).
Written informed consent was acquired before taking the
plasma samples. Ethical approval for the study was obtained
from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees (RCSI REC 1240). The study
website contains details of all the data that is available through
a fully searchable data dictionary (http://www.bristol.ac.uk/
alspac/researchers/our-data/).

Measures of PEs and Comorbid Depression

PEs were identified at 12 and 18 years of age through the face-
to-face, semistructured Psychosis-Like Symptoms interview
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(27), conducted by trained psychology graduates in assess-
ment clinics, and were coded according to the definitions and
rating rules for the Schedules for Clinical Assessment in
Neuropsychiatry, Version 2.0 (32). Interviewers rated PEs as
not present, suspected, or definitely psychotic. Patients were
also assessed for the presence of depressive disorder ac-
cording to the ratings on the Clinical Interview Schedule–
Revised whereby Clinical Interview Schedule–Revised scores
.7 are defined as fulfilling criteria for depression (28).
Study Design

We undertook a nested case-control study of the ALSPAC
cohort and chose to assess all available plasma samples from
12-year-old children with outcomes of definite PEs at 18 years
of age but who did not have PD (27). Available plasma samples
from controls of age-matched individuals were then randomly
selected. The present study consisted of a hypothesis-driven
lipidomic and proteomic analysis of samples from 48 children
without suspected or definite PEs at 12 years of age but with
definite PEs at 18 years of age (n = 48). Control samples (n =
67) without suspected or definite PEs at 12 and 18 years of age
were selected (see Table 1). Socioeconomic status and pres-
ence of depression according to Clinical Interview Schedule–
Revised scores were also tested.
Plasma Sampling

Nonfasting blood samples were collected from the participants
into heparin S-Monovette tubes (Sarstedt, Nümbrecht, Ger-
many). Once collected, samples were stored on ice for a
maximum of 90 minutes until processed. Postcentrifugation,
the samples were stored at 280�C until further analyses.
Lipidomic Analysis and Data Preprocessing

Sample processing, data acquisition, and quantification of
lipids were performed as previously described (22). Lipidomic
analysis was performed using an ultra-high-performance liquid
chromatography quadrupole time-of-flight mass spectrometry
system (Agilent Technologies, Santa Clara, CA).

Lipidomic data were first processed using MZmine 2 (33),
then normalized by lipid-class specific internal standards, and
finally quantified using the inverse-weighted linear model (see
Supplement). Analysis of lipidomics data was focused on
detected PCs (n = 61) and LPCs (n = 11) based on our previous
findings (22).
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Proteomic Analysis and Data Preprocessing

Sample analysis and data acquisition proteins were performed
in the same individuals as examined in the current lipidomic
analysis and using methods as previously described (23). To
improve the dynamic range for proteomic analysis, 40 mL of
plasma from each case in all samples was immunodepleted of
the 14 most abundant proteins (34) (see Supplement).

Protein digestion and peptide purification was performed
as previously described (35) and is further detailed in the
Supplement. We used the semitargeted approach of data
independent acquisition (DIA) to specifically target 22
members of the coagulation pathway (see Supplemental
Table S1). For DIA analysis, 5 mL of each sample was injec-
ted into the Thermo Scientific Q-Exactive, connected to a
Dionex Ultimate 3000 (RSLCnano; Thermo Fisher Scientific,
Bremen, Germany) chromatography system, and data were
acquired in DIA mode (see Supplement).

Statistical Analysis

To assess differences of demographic data among groups,
Pearson chi-square test and independent Student’s t test were
used on categorical and continuous variables, respectively.

Early PEs Signatures at 12 Years of Age. Principal
component analysis was used on the log-transformed, mean-
centered, and scaled-to-unit-variance lipidomics dataset to
acquire an overview of the data. For supervised data analysis,
uni- and multivariate approaches were performed.

For univariate analysis, the Mann-Whitney U test was
applied to the untransformed dataset to examine changes of
lipids and proteins as related to PEs. Benjamini-Hochberg
false discovery rate was applied to account for multiple
comparisons.

Multivariate modeling of PEs was performed on the log-
transformed data using a partial least squares discriminant
analysis of lipidomic profiles with the KODAMA R package v
1.4 (36). Modeling was performed in a repeated double cross-
validation framework (37). The goodness of fit and prediction
parameters were defined using a standard description reported
elsewhere (38). The features were ranked in ascending order
based on the absolute loading scores (termed as loading rank)
(39). Model performance was further assessed through per-
mutation testing (R2), considering a statistical significance at
p , .05.

Lipidomics and Proteomics Integration. Regularized
canonical correlation analysis was performed on all individuals
as an integrative multivariate approach to assess correlations
between both lipidomics and proteomics data using the
mixOmics R package v 5.2.0 (40).

The method allows the study of the relationship of two
multivariate datasets, for instance, the relationship between
specific lipids and proteins within the same individuals (41).
Quantitative data, derived from DIA analysis, on the broad
family of complement pathway proteins were also available on
these same subjects (42), and these data were available for
integrative analysis. Regularization parameters were esti-
mated by means of a leave-one-out cross-validation. Once
the regularized canonical correlation analysis was acquired,
B

the corresponding clustered heat maps, termed clustered
image maps, and the integrative network were acquired (43).
Data were then exported to Gephi 0.9.2 (44), and the layout
algorithm Yifan Hu was used to allow the biological interpre-
tation (45). The network graph describes connections between
lipids and proteins based on a similarity score ..3 (45). To
evaluate obtained multivariate correlations, a further
Spearman correlation analysis was implemented for each
variable individually, considering the significant correlation at
a p value of ,.05.

Identification of Metabolic Phenotypes. The unsuper-
vised algorithm based on knowledge discovery by accuracy
maximization (KODAMA) (46) was used to identify the un-
derlying patterns representative of different metabolic phe-
notypes across all individuals. This learning algorithm allows
an unsupervised clustering of individuals from noisy high-
dimensional datasets (36). The partition around medoids
method (47) along with a silhouette algorithm (48) were car-
ried out on KODAMA scores to identify the optimal distribu-
tion of clusters (49). Further descriptions of this method are
shown elsewhere (36,49). The demographic data and
cholesterol profile were then tested among the identified
clusters using the K-test. This method predicts an indepen-
dent variable using the variance in the KODAMA scores by
means of permutation testing (49,50). Thus, causality of
phenotyping was explored by other variables (49) such as the
cholesterol profile and demographics. Data on cholesterol
profile including cholesterol esters and lipoprotein particle
data of selected individuals at 7 years of age were measured
and reported elsewhere (30,51). Statistical significance was
considered at a false discovery rate–corrected p value of
, .05.

All statistical analyses were performed in the statistical
programming environment R version 3.3.1 (R Foundation for
Statistical Computing, Vienna, Austria). Data used for this
article will be made available on request to the ALSPAC Ex-
ecutive Committee (alspac-exec@bristol.ac.uk).

RESULTS

The lipidomic dataset that was used to investigate potential
biomarkers of PEs in children 12 years of age who reported
PEs at 18 years of age included 61 PCs and 11 LPCs. PCs and
LPCs were the focus because of previous results showing a
potential lipidomic signature of PD with elevated levels of PCs
and LPCs (22). The proteomic dataset that we assessed
contained 22 members of the coagulation pathway
(Supplemental Table S1) as defined by KEGG pathway analysis
(http://www.genome.jp/kegg/pathway.html).

There were no significant differences between the control
group and the PEs group in terms of gender, body mass index
(BMI), or social class (data not shown). As expected, there was
an excess of depression cases among those with PEs
compared with controls, with 9 subjects in the PEs group
reaching criteria for depression and no cases in the normal
control group. Variance in the lipid profiles of individuals was
first explored using principal component analysis. No grouping
could be observed through principal component analysis when
examining factors such as PEs, gender, and BMI.
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 3
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Early PEs Signatures at 12 Years of Age

Univariate analysis revealed that a total of 34 molecular lipids
and 3 coagulation proteins (plasminogen [PLG], coagulation
factor XI, alpha2-antiplasmin) were different between PEs and
healthy controls at the nominal p , .05 level (Table 2). After
false discovery rate correction, 16 lipids and one protein (PLG)
remained significantly increased. For multivariate analysis,
partial least squares discriminant analysis entailed a resulting
model (R2Y = .3) with a permutation test p , .05. Interestingly,
there is a strong agreement between uni- and multivariate
analyses performed individually, in which the lowest p values
matched the highest loading scores and, thus, lowest loading
rank. Significant changes of PCs and LPCs with p value and
loading rank corresponding to uni- and multivariate analyses,
respectively, are also presented in Table 2.

Lipidomics and Proteomics Integration

The coagulation and complement pathway proteins are closely
functionally related. For this reason, we included in our inte-
grative analysis of lipids and proteins the levels of complement
proteins in the total dataset for which there were data available
(42). The regularized canonical correlation analysis revealed
Table 2. Differential Plasma Lipids and Proteins Between
the Control and PEs Groups

Compound
Control
Group

PEs
Group p FDR LR

Lipid

PC(34:1) 2571.91 3013.09 .0002 .0066 1

PC(34:2)a 3759.47 4303.88 .0002 .0066 2

PC(32:1) 238.88 319.25 .0011 .0161 3

PC(36:4)a 135.46 160.55 .0023 .0241 4

PC(36:2) 2940.24 3421.47 .0003 .0067 5

LPC(16:1) 38.27 41.69 .0080 .0361 6

LPC(18:1)a 231.84 273.67 .0029 .0259 7

LPC(20:3)a 37.21 41.58 .0050 .0259 8

PC(36:1) 721.67 945.44 .0008 .0137 10

LPC(18:2)a 394.75 486.68 .0045 .0259 11

PC(38:2) 70.50 86.11 .0023 .0241 12

PC(O-38:6) 28.13 33.58 .0037 .0259 14

PC(38:3) 616.10 752.18 .0079 .0361 15

PC(30:0) 56.88 73.01 .0098 .0414 16

PC(32:0) 175.51 204.39 .0041 .0259 17

PC(36:3) 1753.26 2059.53 .0049 .0259 23

Protein

PLGb 843,597,014.93 1,052,478,260.87 .0006 .0138 –

F11 16,925,970.15 19,053,478.26 .0304 .2379 –

SERPINF2 487,134,328.36 542,565,217.39 .0324 .2379 –

The p value of the Mann-Whitney U test and loading rank of double
cross-validation partial least squares discriminant analysis are shown.

F11, coagulation factor XI; FDR, false discovery rate; LPC,
lysophosphatidylcholine; LR, loading rank; PC, phosphatidylcholine;
PD, psychotic disorder; PEs, psychotic experiences; PLG,
plasminogen; SERPINF2, alpha2-antiplasmin.

aIncreased compounds in agreement with O’Gorman et al. (22)
including PD individuals.

bIncreased compounds in agreement with English et al. (23)
including PD individuals.
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that 17 lipids have a positive correlation with six proteins (PLG,
heparin cofactor 2, complement C2, complement factor H,
clusterin, and vitronectin), which exceeded a similarity score
higher than 0.3. A strong positive relationship with the 16 lipids
was observed for coagulation proteins PLG, heparin cofactor
2, and the complement pathway protein vitronectin (Figure 1).
A relevance network graph illustrates other minor connections
observed for complement proteins clusterin, complement C2,
and complement factor H (Figure 2). Interestingly, PLG had the
highest number of connections, followed by vitronectin and
heparin cofactor 2. Table 3 shows specific lipid connections
with PLG, with 10 lipids showing a correlation exceeding a
similarity score higher than 0.3.

Underlying Clustering in the Data
To detect potential underlying metabolic phenotypes present
in the study population, the KODAMA algorithm was applied to
all individuals with available clinical data (n = 90). Following
this, partition around medoids clustering was performed on
KODAMA scores to identify underlying similar phenotypes in
this study population. According to the highest silhouette
median value (Supplemental Figure S1), four different clusters
were identified (Figure 3), named A, B, C, and D. Interestingly,
PEs occurrence was significantly different among clusters
(p = .007). Furthermore, neither BMI nor gender was statisti-
cally significant across the clusters (Table 4). Likewise,
depression status and social class were not significantly
different across the clusters (p . .05 in both variables, data not
shown). Further examination of the clusters revealed that
cluster D exhibited a high probability of developing PEs. This
cluster exhibited a PEs occurrence of 71%, while clusters A, B,
and C showed a PEs occurrence of 42%, 29%, and 19%,
respectively.

Clusters were then examined for associations between the
cholesterol data with the resulting KODAMA scores. In total,
nine cholesterol parameters (different parameters related to
low-density lipoprotein [LDL], very low-density lipoprotein, and
intermediate-density lipoprotein with specific particle sizes)
were significantly associated with the clustering (Supplemental
Table S3). Similarly, KODAMA score plots were performed
(Supplemental Figure S3), colored by the resulted clusters, PEs
occurrence, gender, and BMI. Score plots color coded by the
concentration of small LDL particles and the phospholipids to
total lipids ratio in small LDL particles were also performed for
visualization and interpretation purposes. There was a signifi-
cant difference in distribution of PEs cases across the clusters
(Supplemental Figure S3B). Interestingly, the levels of certain
lipoproteins across the clusters were also statistically different
(Supplemental Table S3). Of particular note were differences in
the small LDL particles and phospholipid to total lipid ratio in
small LDL particles, with a similar distribution to PEs cases.
Additional cholesterol-related parameters are shown in
Supplemental Figure S4. In summary, cluster D represented a
metabolic phenotype with a high probability of developing PE.

DISCUSSION

The present findings point to early dysregulation of both the
lipidome and proteome several years before the development
of PEs. Our findings are relevant to PD, anxiety disorder, and
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Figure 1. Heatmap analysis performed by using regularized canonical correlations analysis showing the relation between proteomic and lipidomic datasets.
For proteomic data, the gene names are displayed. Correlation strengths are indicated by the color key.
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depression, as approximately 20% to 30% of subjects who
experience PEs go on to develop PD (52), with approximately
50% to 60% going on to develop other psychiatric comorbid
disorders (2). The present findings support the literature that
phospholipid metabolism and the proteins of the coagulation
cascade are abnormal in schizophrenia and depression
B

(26,53–55) and extend this literature by providing evidence for
such alterations in early childhood before the development of
PEs. Furthermore, the present findings are broadly in line with
our findings from the previous discovery metabolomics, lip-
idomic, and proteomic study in the ALSPAC cohort, in which
we demonstrated similar changes at 12 years of age for
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 5
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Table 3. Significant Lipids Correlated With Plasminogen
From Multi- and Univariate Approaches on the PEs Dataset

Lipid rCCA
Spearman
Correlation p

PC(30:0)a .38 .27 .005

PC(32:0)a .26 .19 .043

PC(34:1)a .24 .26 .006

PC(40:6) .29 .19 .047

PC(32:1)a .33 .28 .003

PC(38:2)a .31 .20 .039

PC(38:3)a .35 .22 .019

PC(36:1)a .32 .22 .022

PC(35:1) .39 .25 .007

PC(36:4)a .28 .23 .014

LPC(16:1)a .31 .24 .010

PC(40:5) .35 .27 .004

PC(40:4) .35 .26 .006

PC(33:1) .40 .34 .001

PC(37:4) .24 .20 .032

PC(36:3)a .22 .19 .043

PC(O-36:3) .31 .24 .013

PC(31:0) .28 .21 .029

The p values of Spearman correlation analysis are shown. Results
are listed for the 18 significant compounds using a p value , .05.

LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PEs,
psychotic experiences; rCCA, regularized canonical correlation
analysis.

aSignificant lipids associated with PEs development in the present
study.

Figure 2. Relevance network graph depicting correlations derived from
regularized canonical correlation analysis between lipids and proteins based
on a similarity score ..3 (45). Nodes (circles) represent variables and are
sized according to number of connections. Lines are colored according to
association score with augmented intensity indicating higher correlation
scores. LPC, lysophosphatidylcholine; PC, phosphatidylcholine.
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subjects who later went on to develop PD (22). The findings
have the potential to contribute to risk calculators for future
psychotic illness and mental disorders (4,56,57) as well as to
an increased understanding of psychosis and psychiatric
illness as a multisystem disorder involving lipids and proteins
(22,23,29). Critically, a novelty of our study lies in the integra-
tion of proteomic and lipidomic data, specifically of the PCs
and LPCs and the protein members of the complement and
coagulation cascades from the same subjects. In so doing, we
have identified a robust yet unexpected interdependence of
these biological processes that underpin psychotic disease. A
tangible advance derived is that our findings highlight early
lipid and protein changes associated with vulnerability to a
broad range of PD and, in so doing, identify potential novel
therapeutic targets.

There is no simple interpretation of the findings of early LPC
and PC changes in relation to later psychiatric diseases.
However, it is noteworthy that several lines of evidence impli-
cate altered LPC and PC levels in early life and medical mor-
bidities in later life (58). First, Hellmuth et al. (59) observed a
positive correlation between LPCs in cord blood during preg-
nancy and early weight gain and later-life high BMI. Second,
Rzehak et al. (60) showed that LPC(14:0) and PC(38:3)
measured at 6 months of age positively correlated with over-
weight/obesity at 6 years of age. Similar to our findings, these
observations suggest an early metabolic alteration that can
trigger later disorder (60). Third, a cross-sectional study of
6 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
early life suggested an inverse association between obesity
and LPC(18:1), LPC(18:2), and LPC(20:4) in obese individuals
between 6 and 15 years of age (61). These LPCs were also
found at lower levels in obese children between 7 and 15 years
of age in another cross-sectional study (62). Fourth, an
investigation of adults sampled in the Western Australian
Pregnancy Cohort showed decreased LPC(18:2) and
LPC(18:1) levels in obese subjects compared with normal-
weight individuals independent of LDL and high-density lipo-
protein cholesterol levels, while LPC(14:0) and PC(32:2) were
positively correlated with homeostatic model assessment of
insulin resistance, as a measure of insulin resistance, in the
same study (63). Overall, these studies suggest elevation of
certain LPCs preceding later metabolic disorder and PD.

Perry et al. (29) recently showed an association between insulin
resistance at 9 years of age and PEs at 18 years of age in the
ALSPAC birth cohort. Insulin resistance was also associated with
inflammation markers suggesting that inflammation and meta-
bolic risk factors interact to increase risk of psychosis in some
people (29). In relation to this, although opposite effects have also
been reported (64,65), reduced levels of specific LPCs have been
connectedwith insulin resistance (45), impaired glucose tolerance
(66), andprogression to diabetes (67). Furthermore, schizophrenia
has been associated with a high prevalence of other comorbid
disorders such as diabetes (68), metabolic syndrome (69), and
cardiovascular disease (70). Therefore, the early biomarkers such
as LPC(18:2), PC(34:2), and PC(32:1) found in the present study
may reflect a shared vulnerability to both psychosis and car-
diometabolic disorders (58,67,71). Previous lipidomic studies in
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Figure 3. Partition around medoids analysis of the knowledge discovery by accuracy maximization output: (A) silhouette plot of partition around medoids
including the optimal number of clusters (j), individuals at each cluster (nj), and the average silhouette width by samples (avei∊Cj Si); (B) clustering according to
the calculated silhouette mean values.
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psychosis have identified elevated plasma levels of LPC(16:0),
LPC(18:0), LPC(18:1), and LPC(18:2) in first-episode neuroleptic
drug-naïve schizophrenia patients as compared with healthy
control subjects (72). However, there are inconsistencies in the
reported literature, with one study reporting diminished levels of
LPCs in the serum of schizophrenia patients compared with their
co-twins as well as healthy control subjects (16).

Both the coagulation and the complement pathways have
recently been highlighted in schizophrenia (57,73,74). Our
current study used the semitargeted proteomic method of DIA
to extend these findings and show that upregulation of PLG
within the coagulation pathway at 12 years of age is associ-
ated with later PEs. This more complete analysis of the
coagulation pathway proteins in PEs was then combined with
complement pathway protein data already available to us on
the same subjects (42) to allow a unique integration of lip-
idomic, complement, and coagulation data. Our integrative
network analysis demonstrates that PLG had the strongest
connections to PCs and LPCs that were increased in the PEs
group. The role of PLG as a carrier for PCs and LPCs was
previously investigated by Edelstein et al. (75), who suggested
that oxidized PCs are integral components of circulating PLG,
and Leibundgut et al. (76), who showed that PLG covalently
binds oxidized phospholipids that influence fibrinolysis, which
has known roles associated with neuroinflammation and neu-
rodegeneration (77). Therefore, increased PLG such as we
described in PEs is very consistent with higher specific PC and
Table 4. Descriptive Data of the ALSPAC Individuals by Cluster

Cluster A Cluster B

PEs, Cases/Controls, n 14/19 4/10

Male/Female, n 17/16 8/6

BMI, kg/m2, Mean 6 SD 17.43 6 2.29 17.95 6 3.51

Descriptive information was compared between clusters. Statistical comp
ALSPAC, Avon Longitudinal Study of Parents and Children; BMI, body m

B

LPC concentrations in the PEs group. Our findings of elevated
levels of PLG in subjects who later report PEs are intriguing in
light of recent evidence that blood-derived PLG drives brain
inflammation (78) and evidence that alpha2-antiplasmin, which
is the main inhibitor of PLG-derived plasmin, is upregulated in
schizophrenia (79). Interestingly, proteomics studies discov-
ered a high number of complement and coagulation proteins
as lipoprotein-associated components, such as complement
4A, complement C4B, vitronectin, clusterin, complement factor
H, alpha1/2-antiplasmin, and kininogen, among others (80).
There is a surprisingly strong overlap with the proteins that
correlate with phospholipids in this study and those that are
upregulated in schizophrenia (11). Together, the data provide a
link among phospholipid binding proteins, (apo)lipoproteins,
complement, and coagulation, and they support growing
literature implicating these processes in neuroinflammation
and neurodegeneration (77,81).

Schizophrenia may represent an etiologically heterogeneous
disorder,with somesubjects havinga largely inflammatory basis
and some an autoimmune etiology (23,82,83). Similarly, it is
appreciated that there are heterogeneous outcomes among
subjectswho experiencePEs (2). Thismay have relevance to the
results of KODAMA (36) analysis inwhichwe identified fourmain
clusters, of which cluster D was associated with a high proba-
bility of subjects within that cluster experiencing PEs. Interest-
ingly, the lipoprotein particle size parameters were also
significantly different across the clusters, with cluster D having
Cluster C Cluster D p

5/21 12/5 .007

13/13 11/6 .781

18.88 6 2.68 17.33 6 2.72 .170

arisons are from Pearson chi-square or Student’s t test as appropriate.
ass index; PEs, psychotic experiences.
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increased levels of small LDL particles. Smaller LDL particles are
more susceptible to oxidation than larger particles, being more
frequently associated to metabolic diseases (84–86). However,
in the present study, the oxidation status and lipidomic analyses
onspecificLDLparticle sizewerenot includedat 12 yearsof age,
and thus the results should be interpreted with caution. Future
studies evaluating different LDL subtypes might clarify these
observed associations.

The present study has several strengths: the longitudinal
ALSPAC cohort was used and included both longitudinal
clinical assessments and biosampling. The use of samples
before disease onset rules out the potential confounding from
medications. Furthermore, in contrast to most other studies,
our study focused on children who were well at the time of
biosampling, unlike other studies, in which the subjects already
had experienced a first episode of psychosis. The multiomics
integration has allowed a unique insight into the existence of a
functional relationship between these lipids and proteins that
was unknown previously in the context of psychosis. Future
work may look at the broader relationship between proteome
and lipidome beyond those specific compounds that we
described as discriminant for PEs prediction in this study. A
number of limitations should also be acknowledged. First, the
lack of validation in a similar cohort of subjects with PEs is a
limitation. Second, while depletion of high-abundance proteins
did not impact PLG, three of the 22 proteins had been
depleted, so they were interpreted with caution. We did not
covary for depression, as depression can be considered a
transdiagnostic comorbidity, and thus our findings are not
necessarily specific to PEs. This is reasonable, as PEs are
accepted to represent a vulnerability to a broad range of
psychiatric illnesses (2).
Conclusions

Our study provides evidence for protein and lipid signatures at
12 years of age in subjects who are apparently well but
who report PEs at 18 years of age. These changes are not
necessarily specific to PEs, as overlapping changes have been
observed previously at 12 years of age in subjects who later
develop PD (22) and are also observed in association with
prediabetes and obesity, and before other cardiometabolic
disorders (61,63,70), suggesting that these disorders share
aspects of their developmental origins. Although there are
inconsistences in the literature in terms of metabolic disorders
and schizophrenia (24,87), the present study strongly suggests
that there is early vulnerability to the development of PEs and
that this involves molecular interconnections between the
lipidome and the proteome.
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