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a b s t r a c t

The Nernst–Planck–Poisson (NPP) model is a general approach to the description of the electro-diffusion
processes which lead to the formation of the membrane potential. It takes into consideration several
parameters of ion-selective electrodes (ISEs) which are ignored in simpler models. This paper presents a
critical comparison between the NPP model and simpler models. The influence of different parameters
on the detection limit of ISEs is discussed. This is achieved by comparing direct predictions of the models
and, in contrast to any earlier treatment, by inverse modelling. This makes it possible to simultaneously
eywords:
lectro-diffusion
ernst–Planck–Poisson

on-selective electrodes
otentiometry
embrane potential

find out which set of physical parameters of the system will produce the desired detection limit.
© 2010 Elsevier Ltd. All rights reserved.
ubnanomolar detection limit
ime-dependency

. Introduction

The formation of the membrane potential of ion-selective elec-
rodes (ISEs) depends on the thermodynamic and kinetic properties
f the membrane|solution system, and it is strongly time depen-
ent. Selectivity (KIJ) and detection limit (DL) are constitutive
arameters of all ion-selective electrodes.

There is an ongoing and vigorous debate in the ISE literature
oncerning models describing ISE behaviour in general, and KIJ and
L in particular. There are two main schools of thought. The first
ne opts for simplicity while the other one stresses generality [1].
he argument that simpler is better applies only if the simpler and
he more complicated models are equally general (Ockham’s razor).

Advocates of the simple model stipulate that it should be
estricted in the following ways: (1) the diffusion coefficients in
he membrane should be assumed to be equal for all participating

ons, (2) the migration of ions should be disregarded, (3) only two
or, at the most, three) ions should be considered, (4) frequently
nly ions of the same charge should be taken into account and (5)
he model should be restricted to steady-state conditions.

∗ Corresponding author at: Process Chemistry Centre, c/o Centre for Process
nalytical Chemistry and Sensor Technology (ProSens), Åbo Akademi University,
iskopsgatan 8, 20500 Åbo-Turku, Finland.

E-mail addresses: alewenst@abo.fi, andrzej.lewenstam@gmail.com
A. Lewenstam).

013-4686/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.electacta.2010.05.083
Sometimes proponents of the simple model assume the pres-
ence of only two ions of the same charge and time dependence,
and sometimes of ions of different charges and steady-state (no
time dependence), and from these two cases draw the conclu-
sion that the model (simultaneously) encompasses both different
charges and time dependence. This, however, is not true since the
assumptions, which have to be made when we consider ions of dif-
ferent charges, are made at the cost of time dependence and vice
versa.

The more general (NPP) model takes into account both diffusion
(each ion having its own diffusion coefficient both in water and
in the membrane), migration, an unlimited number of ions of any
charge and time dependence (Table 1).

The ISE models can be roughly divided into three categories:
phase boundary models, diffusion layer models, and models includ-
ing migration. They might also be divided into time-dependent and
time-independent (equilibrium and steady-state) models [1].

The debate about the merits of different models has been mostly
verbal, and a critical comparison between existing models is lacking
so far. In this paper, we compare three models which represent
the three main categories: the time-dependent NPP model (NPP),
the time-dependent diffusion model (TDM) and the steady-state

diffusion model (SDM). We use a dedicated virtual experiment and
experimental data to validate competing models.

We hope that the comparison of different models, used for the
description of the same well known examples, can exemplify and
clarify the basic merits and weaknesses of the different approaches.

dx.doi.org/10.1016/j.electacta.2010.05.083
http://www.sciencedirect.com/science/journal/00134686
http://www.elsevier.com/locate/electacta
mailto:alewenst@abo.fi
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Table 1
Comparison of the dynamic models presented in this paper.

NPP model Diffusion models

Time-dependent models Steady-state models

Diffusion, migration (convection) Diffusion Diffusion
Exchange and coextraction described by heterogeneous rate constants Exchange and coextraction

described by equilibrium
constants

Exchange and coextraction described by
equilibrium constants

Potential calculated from electrical field profile Potential calculated from the
phase boundary equation

Potential calculated from the phase
boundary equation
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Fluxes in all layers are co-dependent (concentrations-potential feedback)

Ions of any charge
Site distribution depends on electrical field distribution

Note: There is a plethora of models describing ISE behaviour.
n this contribution we limit the comparison strictly to models

hich are directly relevant to the description of low detection
imit phenomena. Therefore, some approaches (interesting from
he numerical point of view) are not discussed here, e.g. [2].

. ISE response models

.1. General model

.1.1. The Nernst–Planck–Poisson (NPP) model

.1.1.1. History. The first numerical simulation procedure for the
ime-dependent NPP problem using an explicit method was devel-
ped in 1965 [3]. Later, in 1975, a mixed implicit method (for
lectric field) and an explicit method (for concentration) similar
o [3] was presented [4]. However, due to the explicit nature of the
oncentration calculation, this method suffered from a very small
ime step of integration and therefore was very time-consuming.

.1.1.2. Application of NPP to ISEs. The NPP model offers the most
omplete and universal description of membranes and related sys-
ems (for advanced analysis of the power and limitations of the NPP
ee [1]).

The application of the NPP model to membrane electrochem-
stry was presented in a seminal paper [5]. The authors developed
n efficient finite difference scheme, totally implicit in time. The
esulting set of non-linear algebraic equations was solved using
he Newton–Raphson method.

An approach, based upon this idea and dedicated to the general
escription of ISE behaviour, was later developed [6–9].

The first extension of the NPP model for a two layer system was

resented in [10]. The first NPP model implementation where the
ethod of lines (MOL) [11] was used was presented in [12,13]. Later

n, MOL extensions of the NPP model for an arbitrary number of
ayers were developed and implemented in C++ [14] or in MathCad
9] and Matlab [15] scripts.

Scheme 1. Scheme of the n-layer sy
es in both layers are
pendent

Fluxes are co-dependent (linear
concentration profiles and mass balance)

ovalent ions only Monovalent ions only
s distribution constant Sites distribution constant

2.1.1.3. NPP implementation used in this work. The NPP model
describes a system consisting of n-layers (phases), inside of which
concentration changes of r components (ions or uncharged chem-
ical species) and a change of the electrical field in space and time
take place (Scheme 1). The influence of diffusion and migration
is expressed by the Nernst–Planck equation for the flux of the ith
component inside the jth layer:

Jj
i
(x, t) = −Dj

i

∂cj
i

∂x
(x, t) − F

RT
Dj

i
zi(c

j
i
Ej)(x, t) (1)

The continuity equation describes the change of the ion concen-
trations in time, and the Poisson equation describes the electrical
changes caused by the interaction of the species. For convenience,
the Poisson equation is replaced by the displacement current equa-
tion, as described in [3]. These equations form the following system
of evolutionary non-linear partial differential equations (PDE) for r
components in n phases:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂cj
i

∂t
(x, t) = −∂Jj

i

∂x
(x, t) for i = 1, . . . , r;

∂Ej

∂t
(x, t) = 1

εj
I(t) − F

εj

r∑
i=1

ziJ
j
i
(x, t);

x ∈ [�j−1, �j] for each phase j = 1, . . . , n;
t ∈ [0, tEND]

(2)

where �j is the interface between phases. The above system of PDE
is accompanied by boundary and initial conditions.

The mass balance condition at the boundary is expressed by
the equality of the fluxes in the boundary point in both phases,
J˛j
i

(�j, t) = J˛j+1
i

(�j, t). The heterogeneous first order rate constants

are used to describe the interfacial kinetics at the interface �j
between phases ˛j and ˛j+1: thus the boundary conditions take a
form similar to these described in [16]:

J˛j
i (�j, t) = J˛j+1

i (�j, t) = �ki�j
c˛j

i (�j, t) − �ki�j
c˛j+1

i (�j, t) (3)

stem between two solutions.
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In simulations of the first point of a calibration curve, an
rbitrary initial concentration profile (where the electroneutral-
ty condition is fulfilled) is assumed. For the following calibration
oints, the initial concentration and the field profiles are based on
he final values of the previous steps. This way of setting the initial
alues reflects the experimental procedure of ISE calibration, i.e.
the history of the ISE”.

The method used here is described in detail in Appendix A and
n Ref. [14].

.2. Simplified models

The roots of the diffusion models presented in this paper can
e traced back to the original formulation of the so-called diffusion

ayer model (DLM) [17,18].
All of them share two main assumptions: (a) the poten-

ial is governed by the local equilibria described by the Nernst
Nikolskii–Eisenman) equation, and (b) only the Fickian diffusion
s considered, i.e. the only source of ion fluxes is the concentra-
ion gradient (migration is ignored). This is a rough approximation,
ince ions are charged and therefore both create and interact with
n electrical field.

Diffusion models assume pure diffusion inside both the diffusion
ayer and the membrane. The concentration change of the ith ion
nside the jth layer is given by the continuity equation and Fick’s
aw:

∂cj
i

∂t
(x, t) = −∂Jj

i

∂x
(x, t) = −Dj

i

∂2cj
i

∂x2
(x, t)

x ∈ ]�j−1, �j[for each phase j = 1, . . . , n;
t ∈ [0, tEND]

(4)

The solution of the diffusion problem given by Eq. (4), along
ith suitable initial and boundary conditions, belongs to the canon

f diffusion and materials engineering and can be found else-
here, e.g. in the seminal book by Crank [19] and in other books

20,21].
The original DLM was later developed in a number of papers

22–24].

.2.1. Time-dependent diffusion model (TDM)
The TDM model takes into account only two monovalent ions,

he preferred and the discriminated ion, and assumes that their dif-
usion coefficients in each phase are equal [25]. The authors solved
he diffusion problem inside each of the two phases by using the
nite difference method. They used the explicit Euler time scheme

or two separate uniform grids (in the diffusion layer and mem-
rane) for the space domain, and Euler’s method to solve the set of
btained ODEs.

At the left boundary of the first layer, the Dirichlet boundary
onditions (c1

i
(�0, t) = ciL = const) are assumed.

At each time step, the concentration of the ith ion in the kth
iscretization point of the jth layer (t + �t) is expressed as:

j,k
i

(t + �t) = cj,k
i

(t) + Dj
i

ıj
2

(cj,k−1
i

(t) − 2cj,k
i

(t) + cj,k+1
i

(t))�t (5)

here ıj = (dj/(Nj − 1)) represents the distance between two
eighbouring grid points.

At the membrane boundaries, the ion concentrations are given

y the following equations for equilibrium:

1(t + �t) = RTc′
1(t + �t)

c′
1(t + �t) + Kexchc′

2(t + �t)
,

c2(t + �t) = RT − c1(t + �t) (6)
Acta 55 (2010) 6836–6848

where ci and c′
i
are the concentrations inside and outside the mem-

brane phase, RT is the total concentration of anionic sites in the
membrane and Kexch is the exchange constant.

The potential of the ISE is calculated according to the well known
Nikolskii–Eisenman equation:

ϕ = RT

F
ln

c1,N
1 + Kexchc1,N

2
c1R + Kexchc2R

(7)

2.2.1.1. Diffusion exchange model (TDM-E). The TDM-E model is
analogous to the model described in the previous section but does
not assume that the diffusion coefficients of each component in
each phase are equal.

In the diffusion layer and inside the membrane the concentra-
tion changes are described by Eq. (5).

On the right side of the diffusion layer, the time-dependent con-
centration is calculated using the equation:

c1,N
i

(t + �t) = c1,N
i

(t) + 2D1
i

ı1(ı1 + ı2)
(c1,N−1

i
(t) − c1,N

i
(t))�t

+ 2D2
i

ı2(ı1 + ı2)
(c2,1

i
(t) − c2,0

i
(t))�t (8)

At the boundary points of the membrane, the concentrations of
the preferred and discriminated ions are given by the equations for
equilibrium distribution:

c2,0
1 (t + �t)= RTc1,N

1 (t + �t)

c1,N
1 (t + �t) + Kexchc1,N

2 (t + �t)
, c2,0

2 (t + �t) = RT − c2,0
1 (t+�t)

c2,N
1 (t + �t) = RTc1,R

c1,R + Kexchc2,R
, c2,N

2 (t + �t) = RT − c2,N
1 (t + �t)

(9)

where RT is the total concentration of anionic sites in the membrane
and Kexch is the exchange constant.

The potential of the ISE is calculated according to the
Nikolskii–Eisenman equation:

ϕ(t) = RT

F
ln

c1,N
1 (t) + Kexchc1,N

2 (t)
c1R + Kexchc2R

(10)

In order to check whether our implementation of the TDM
model is correct, all examples in Ref. [25] were recalculated, giving
results which are identical with those in the original publication.

Important note. The authors in [25] assume that the boundary
conditions at the interface are given by the continuity equation:

∂ci

∂t
(x, t) = −∂Ji

∂x
(x, t) (11)

It is true that fluxes at the boundary are continuous (equal-
ity of the fluxes), although they are not necessarily differentiable
functions. Consequently, Eq. (11) (used for the boundary point),
as well as its approximation by finite differences (Eq. (8)), may be
mathematically incorrect.

2.2.1.2. Diffusion exchange coextraction model (TDM-EC). For the
purpose of this work, the extension of the TDM model was devel-
oped with different boundary conditions which consider both
exchange and coextraction processes. In the TDM-EC model the dif-
fusion of three monovalent ions (preferred ion, discriminated ion,

counter-ion) is considered.

Eqs. (5) and (8) are used as for the TDM-E model (as in the case
of the TDM-E model).

At the boundary points of the membrane, the concentrations
of the preferred and discriminated ions are given by the following
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quations (instead of by Eq. (9)):

c2,0
1 (t) =

RT +
√

�1

2 + 2Kexch(c1,N
2 (t)/c1,N

1 (t))
, c2,0

2 (t) = c2,0
1 (t)Kexch

c1,N
2 (t)

c1,N
1 (t)

c2,N
1 (t) =

RT +
√

�2

2 + 2Kexch(c2,R/c1,R)
, c2,N

2 (t) = c2,N
1 (t)Kexch

c2,R

c1,R

(12)

here

�1 = R2
T + 4

(
1 + Kexch

c1,N
2 (t)

c1,N
1 (t)

)
(c1,N

1 (t) + c1,N
2 (t))c1,N

1 (t)Kcoex

�2 = R2
T + 4

(
1 + Kexch

c2,R

c1,R

)
(c1,R + c2,R)c1,RKcoex

(13)

For details see Appendix B.

.2.2. Time-independent model (SDM)

.2.2.1. SDM1. This model was developed only for monovalent,
referred and discriminated ions and 1:1 complexes, in order to
btain an analytical solution to the equation for the membrane
otential [26,27]. The equations and assumptions used in this
odel are: exchange and coextraction processes, mass balance,

harge balance and uniform sites distribution.
The properties of the SDM are identical to those of the TDM

xcept that (a) the SDM is time independent and (b) the fluxes in
he diffusion layer and in the membrane are interdependent, which
an be described by the mass balance condition.

.2.2.2. SDM2. Another steady-state model was presented around
he same time as the SDM1 [28]. This model is claimed to be very
eneral since it considers any number of ions of any charge. How-
ver, a closer inspection shows that only special cases are discussed
n this contribution. The possibility of time dependence is also
inted at, but only as an artificial addition.

Later on, a comparison between theory and results obtained
sing the TDM were presented [24]. It is unclear what the authors
eant by the word “theory”. This contribution is not discussed here,

ince the theoretical equation (Eq. (19) in Ref. [24]), which is a spe-
ial case of the general equation in Ref. [28], does not contain the
oncentration of the main ion in the inner solution.

. Calculations

The SDM1 model was implemented in MathCAD 2001i Profes-
ional, and SDM2, TDM and NPP in C++. The calculations for the
PP model were done on four HP ProLiant DL 140 G3 servers with

wo Intel Xeon 2.33 GHz (4 core) processors, 16 GB RAM each under
inux Fedora 8 × 64. For all other models, calculations were made
n an IBM PC with an Intel Core2 Duo (2.2 GHz) processor and 2 GB
AM under Windows XP SP3.
The basic virtual experiment was computed for two layers. The
rst layer, with a thickness d1 = 100 �m, represents the water diffu-
ion layer, and the second (d2 = 200 �m) represents the membrane.
he dielectric permeabilities were assumed to be ε1 = 7.07 × 10−10

nd ε2 = 2.12 × 10−10 in SI units, respectively. The temperature was

able 2
on properties used for calculations (concentrations in mol/dm3 and all other values in SI

i zi D1
i

[×10−9] D2
i

[×10−11] ciL c1
iM

c2
iM

I+ +1 1.0 1.0 a 10−2 10−4

J+ +1 1.0 1.0 10−7 10−7 0
X− −1 1.0 1.0 c 10−2 0
R− −1 1.0 1.0 0 0 10−4

a Calibration curves made for 0.01–10−12 mol/dm3.
b Varies from 10−2 to 10−13 mol/dm3.
c To provide electroneutrality.
cta 55 (2010) 6836–6848 6839

set to T = 298 K and the measurement time for each point of the
calibration curve was set to 1800 s.

NPP simulations were performed for a system containing four
different ions, using the parameters shown in Table 2. High values of
heterogeneous rate constants correspond to the Dirichlet boundary
conditions. The number of discretization points was set to N1 = 60
and N2 = 200, and the first step of space discretization was set to
10−10.

This system corresponds to the following parameters for
the SDM: RT = 10−4 M, LT = 2 × RT, Kexch = 10−7, Kcoex = 0.1,
DI,aq = DJ,aq = 10−9 and DI,m = DJ,m = 10−11 m2/s, ıaq = 100 �m,
ım = 200 �m, a′′

j
= 0.1 M, aj(bulk) = 10−7 M.

In the TDM model, the system is represented by: d1 = 100 �m,
d2 = 200 �m, t = 1800 s, Kexch = 10−7, RT = 10−4 M. The diffusion coef-
ficients and ion concentrations are given in Table 2. The number of
discretization points was set to N1 = 6 and N2 = 21, and the time step
was set to 0.001 s.

Selected parameters were individually varied relative to these
settings. All curves were normalized to the point {c1L = 10−2 M,
potential = 200 mV}. In Fig. 3, a different set of parameters was used
and will be described later on.

4. Results and discussion

It is well known from the abundant literature data [1,26,29–31]
that a gradual decrease in the concentration of the main ion in the
inner solution of a plastic membrane ISE leads to the improvement
(decrease) of the detection limit. However, when the concentration
of the main ion in the inner solution becomes too low, a super-
Nernstian behaviour, due to the over-compensation of the trans-
membrane fluxes of ions, is observed.

We performed virtual experiments in order to compare the
existing models. The important feature is that we used the same
parameters for all the models. A detailed description of these
parameters is given in the calculation section above and in Table 2.

4.1. Transient response comparison

In this paragraph, the NPP and the TDM-EC models are com-
pared.

If the measuring time is too short (t < 300 s) to allow steady-
state to be achieved, it will affect the potential, i.e. the shape of the
calibration curve. An ISE with a primary ion concentration in the
internal solution equal to 10−6 M (ISE6) was used to illustrate this
phenomenon (Fig. 1a).

The calibration curves calculated according to NPP and TDM-EC
show roughly the same tendencies. At first, with increasing mea-
suring times (t), the detection limit decreases. A further increase
of t causes the appearance of a super-Nernstian section, or jump,

in the calibration curve. The longer the measuring time becomes,
the more this jump moves towards higher concentrations, thus
increasing the detection limit.

A closer look at the calibration curves, however, reveals a dif-
ference between the models. The TDM-EC curves are much more

units).

ciR
�ki�0

�ki�1
�ki�2

�ki�0
�ki�1

�ki�2

b 100 100 100 100 100 100
0.1 100 10−5 100 100 100 10−5

c 100 0.001 100 100 100 0.001
0 0 0 0 0 0 0
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ig. 1. Influence of measuring time for the ISE with preferred ion inner solution co
iffusion coefficients (above), (b) different diffusion coefficients DI = 10·DJ (below).

abrupt”, the NPP curves are “smoother” and more similar to the
xperimental ones.

The cases described above are of the “normal problem” type
What is the value of the detection limit if we have a certain set of
arameters?). Equally, or maybe more, important is the so-called
inverse problem” namely “Which set of parameters produces the
est detection limit?”

The answer to this problem is illustrated in Fig. 2a which shows
ontour plot of the detection limit vs. the measurement time and
he concentration of the primary ion in the inner solution (DL–t–[I]).

The concentration of I is plotted on the x-axis, the measur-
ng time on the y-axis and the resulting value of the detection
imit on the z-axis. The detection limit is depicted with the help
f different colour intensities; the darker the colour, the lower
he detection limit. The local/global minima can be read from the
lot.

In order to obtain such contour plots, the measuring time was
ncreased from 5 to 500 s with an interval of 5 s, and the ion con-

entration in the inner solution was varied over a range of 10
rders of magnitude (10−2 to 10−12 M) with an interval of one
rder of magnitude. For each calibration curve, eleven points were
alculated. Thus, 100 × 11 = 1100 calibration curves and altogether
2 100 points had to be calculated. This is a “brute force” approach
ration 10−10 obtained using the TDM-EC (left) and the NPP (right) model. (a) Equal
-state curves marked with empty circles.

that requires a lot of computational effort, which is exponentially
proportional to the number of investigated parameters. The process
can be substantially speeded up by the use of more sophisticated
techniques such as hierarchical genetic strategy (HGS) [32,33].

A look at the contour plots in Fig. 2a also reveals that while the
models generally show the same tendency their results substan-
tially differ in detail. In practice, TDM-EC displays only one global
minimum (IS5, steady-state). In practice, TDM-EC displays only one
global minimum. The model suggests that the best value of the
detection limit (DL = 10−10.8) can be obtained with ISE5 using very
long measuring times.

Simulations using NPP result in four local minima (of the value
of DL) and one global. In simulations where the measuring time
exceeds 5 min (t > 300 s) – and which are thus comparable to
steady-state measurements – the lowest DL = 10−9.1 is obtained for
ISE5.

In transient-state simulations, an even better DL = 10−10.6 can
be noted for ISE6 (t = 100–200 s). A small, subnanomolar region

−9.9 −9
DL = 10 occurs with ISE7 at 45 s < t < 50 s, and another DL = 10
with ISE11 at t = 25 s. The latter could be very interesting in fast
analysis, for example with automated clinical analyzers.

The results presented in Fig. 1a and b were obtained assuming
that all species in water had the same diffusion coefficient and, sim-
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ig. 2. The time–concentration-detection limit maps obtained using the TDM-EC
iffusion coefficients DI = 10·DJ (below).

larly, that the diffusion coefficients of all species in the membrane
ere equal (see Table 2).

As we indicated above, the influence of different ionic diffusibil-
ty on the membrane potential formation was ignored by all models.
he NPP model is a good tool to visualise this fact. Figs. 1b and 2b
how the results obtained when assuming that the preferred ion
as a 10 times higher diffusion coefficient in the membrane than
he discriminated ion.

Now the difference in the predictions of TDM-EC and NPP is
triking. TEM-EC predicts that the steady-state is reached almost
mmediately for t > 10 s. All curves, except those measured for 10 s,
verlap each other and are the same as the steady-state curve
marked with empty circles). The NPP curves also show the influ-
nce of the faster transport of I, but this influence is considerably
maller. The curves for each measuring time length are still dis-
inctly different from each other and different from the steady-state

urve. This example nicely illustrates the effect of the potential
ormed inside the membrane (diffusion potential) on the evolution
f the ISE signal. The electric field inside the membrane retards the
ransport of the faster moving ion and slows down the process of
eaching steady-state.
and the NPP (right) model. (a) Equal diffusion coefficients (above), (b) different

This phenomenon is also seen very clearly in the contour plot
(Fig. 2b). The map generated using the NPP model still resem-
bles the one obtained for equal diffusion coefficients, although a
faster transport effect is visible. The map obtained using the TDE-
EC model shows that steady-state is reached very quickly for all I
concentrations in the inner solution (vertical stripes on the plot).

4.2. Ions of different charges

In practical applications, ions of different charges are very often
present in the solution. In such cases, the NPP is clearly superior to
other models (see Table 1).

The experimental calibration curves of a calcium electrode, and
the corresponding numerical simulations using the NPP model, are
shown in Fig. 3. The experiment was made and described in Ref.
[31]. The simulations were done using the parameters identical to

that in [31]: two layers, d1 = 100 �m, d2 = 200 �m, ε1 = 7.07 × 10−10,
ε2 = 2.12 × 10−10 (DOS + NPOE), T = 298 K (see Table 3). The time
of each measurement was 1800 s. The NPP simulations were
executed for a system containing six different ions. The inner solu-
tion concentrations for electrode A were: cCa2+ = 10−2 M, cH+ =
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ig. 3. Calcium electrode with a primary ion concentration in the inner solution equa
urves (left) and theoretical curves obtained using the NPP model (right).

0−7 M, cNa+ = 0; electrode B: cCa2+ = 3 × 10−8 M, cH+ = 4.07 ×
0−6 M, cNa+ = 0.073 M; electrode C: cCa2+ = 1.3 × 10−10 M, cH+ =

−7 −12
.2 × 10 M, cNa+ = 0.1 M; electrode D: cCa2+ = 3 × 10 M, cH+ =
.5 × 10−9 M, cNa+ = 0.12 M. The number of discretization points
as set to N1 = 60 and N2 = 200, and the first step of space discretiza-

ion was set to 1 × 10−9.

ig. 4. The influence of the concentration of preferred ion in the inner solution. Calibratio
) 10−2 M, (B) 3 × 10−8 M, (C) 1.3 × 10−10 M, (D) 3 × 10−12 M. Experimental calibration

The resulting detection limits of the four electrodes used in
the experiment were: (A) c1,L = 10−6.8 M, (B) c1,L = 10−8.5 M, (C)
c1,L = 10−8.2 M, (D) c1,L = 10−6.3 M. The detection limits obtained in

the NPP simulations were (A) c1,L = 10−6.9 M, (B) c1,L = 10−7.6 M, (C)
c1,L = 10−7.3 M, (D) c1,L = 10−6.3 M. The differences may be caused by
the fact that the experimental values of the layer thicknesses and
the diffusion coefficients inside the membrane were unknown. The

n curves obtained using the (a) SDM1; (b) TDM-E; (c) TDM-EC; and (d) NPP models.
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ig. 5. Concentration profiles of (a–c) the preferred ion (I) (d) anionic sites (R−) at th
nd in the inner filling solution (1) 10−2 M, (2) 10−5 M, (3) 10−13 M, respectively. Th

resence of additional ions in the solution, the leaching of the ionic
ites, drift or other processes which were not considered in these
articular simulations may also have had some effect. Nevertheless
his case is a very good example of a successful application of the

odel to the complicated real-world example of ISE behaviour at
ow concentrations.

.3. Steady-state comparison

The results obtained using SDM1 and SDM2 models give iden-
ical results so for the sake of brevity only the SDM1 results are
iscussed later.
Fig. 4a shows that by decreasing the concentration of the pre-
erred ion (I) in the internal solution (IS), the detection limit can
e improved by a few orders of magnitude towards the sub-
anomolar range. However, the decrease of [I] below a certain
alue (IS < 10−5 M) induces a strong, apparently super-Nernstian

able 3
on properties used for simulations of a calcium electrode (concentrations in mol/dm3 an

i zi D1
i

[×10−9] D2
i

[×10−11] ciL c1
iM

c2
iM

Ca2+ +2 0.798 0.798 a 10−4 2.52 × 10−3

Cl− −1 2.01 2.01 c 2 × 10−4 0
H+ +1 9.32 0.0932 10−7 10−7 0
Na+ +1 1.35 1.35 0 0 0
TFPB− −1 0.1 0.1 0 0 5.04 × 10−3

a Calibration curves made for 10−3 to 10−12 mol/dm3.
b Different for each electrode.
c To provide electroneutrality.
of a virtual experiment. The concentration of I in the bulk of the solution is 10−13 M
lts were obtained using: (a) SDM1; (b) TDM-EC; (c) NPP and (d) NPP.

response because the sample ions in the diffusion boundary layer
are depleted.

Similar results as for SDM1 were obtained using the TDM-EC
model (Fig. 4c). Also, the TDM-E (Fig. 4b) model shows similar
results for the curves which display super-Nernstian behaviour,
but different ones for the curves which should have a higher
than optimal detection limit. This is understandable, since the
TDM-E model does not take coextraction processes into account,
and therefore cannot model the worsening of the detection limit
caused by the leakage of the preferred ion into the diffusion
layer.

Fig. 5 shows space–concentration plots for different models. All
three models show the same tendencies. The concentration of I at

the membrane surface (a) is higher than in the bulk of the solution
(for high [I] in the internal solution), (b) then decreases gradually
with the decrease of I in the IS, and (c) eventually becomes lower
than in the bulk of the solution (for low [I] in the IS). It should be

d all other values in SI units).

ciR
�ki�0

�ki�1
�ki�2

�ki�0
�ki�1

�ki�2

b 1.0 10−4 10−3 1.0 10−3 10−4

b 1.0 5 × 10−8 10−4 1.0 10−4 5 × 10−8

b 1.0 2.8 × 10−6 10−3 1.0 10−3 2.8 × 10−6

b 1.0 6.85 × 10−8 10−3 1.0 10−3 6.85 × 10−8

c 0 0 0 0 0 0
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oted that although SDM and TDM assume constant concentration
f R inside the membrane, the NPP model shows that the concen-
ration of R changes within the membrane, particularly close to the

embrane boundaries.

These results show the agreement between the models as well

s the agreement between the models and the experimental data.
Although SDM and TDM-EC are simplified models, which do not

pply to complex practical cases (polyvalent ions, more than two

Fig. 6. The influence of the discriminated ion concentration in the sample. Cali

Fig. 7. Influence of the discriminated ion concentration in the internal solution.

Fig. 8. Influence of the exchange constant. Calibration curves
Acta 55 (2010) 6836–6848

ions, time influence), they compare satisfactorily with the general
NPP model. The trends found using the SDM and the TDM-EC are
confirmed by the NPP and are of general validity for the construc-
tion of low detection limit ISEs.
In the rest of this paragraph we will compare only NPP and SDM.
We studied the influence of the following parameters on the

detection limit: the concentration of the discriminated ion [J], (a)
in the sample and (b) in the internal solution, (c) the value of

bration curves obtained using the SDM1 (left) and the NPP model (right).

Calibration curves obtained using the SDM1 (left) and NPP (right) models.

obtained using the SDM1 (left) and NPP models (right).
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Fig. 9. Influence of the coextraction constant. Calibration curves obtained using the SDM1 (left) and NPP model (right).

Fig. 10. Influence of ionic sites concentration. Calibration curves obtained using the SDM1 (left) and NPP model (right).

urves

t
r
s
w
1
t
s
s

Fig. 11. Influence of diffusion coefficients. Calibration c

he exchange reaction constant, (d) the value of the coextraction
eaction constant (e) the total concentrations of ion-exchanger
ites and (f) transport parameters. Below, we focus on electrodes

ith the following concentrations of I in the inner solution: (a)

0−2 M, (denoted later as ISE2), which corresponds to a conven-
ional system; (b) 10−5 M (ISE5), which generates the optimal
teady-state response, and (c) 10−13 M (ISE13) with the strongest
uper-Nernstian response.
obtained using the SDM1 (left) and NPP model (right).

(a) The concentration of the discriminated ion in the sample, J,
(Fig. 6) has the biggest effect on ISE13. The change in [J] by
one order of magnitude induces a shift of the super-Nernstian

plateau by 59 mV. The SDM simulations for ISE5 show, that
the discriminated ion has an indirect influence on preventing
the preferred ion from leaching to the sample. The NPP model
predicts that this influence is negligible for ISE5. For ISE2, the
influence of [J] in the sample is negligible, since the leaching of
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I induces its high and constant concentration at the membrane
surface.

b) For ISE2 and ISE7, both models show that lowering [J] in the
inner solution causes a small improvement of the detection
limit (Fig. 7). For ISE5 NPP shows a similar effect, while SDM
does not. For ISE13, both models predict that a lowering of [J]
does not affect the detection limit.

(c) The exchange constant Kexch can be described as:

Kexch =
�kJ,�1

�kI,�1

·
�kI,�1

�kJ,�1

=
�kJ,�2

�kI,�2

·
�kI,�2

�kJ,�2

(14)

For the NPP simulations, the values of �kI,�1
= �kI,�2

were var-
ied in the range of 10−6 to 10−4. This, according to Eq. (14),
results in values of Kexch in the 10−8 to 10−6 range (Fig. 8). With
both models, a 10-fold increase of Kexch for ISE13 causes the
potential of the super-Nernstian plateau to increase but has no
effect on the detection limit. The effect is different on ISE5, for
which the Nernstian response can change to super-Nernstian.
The influence of Kexch on the detection limit of ISE2 is negligible.

d) The coextraction constant Kcoex can be described as:

Kcoex =
�kX−,�1

· �kI,�1

�kX−,�1
· �kI,�1

· c2
R−,M

=
�kX−,�2

· �kI,�2

�kX−,�2
· �kI,�2

· c2
R−,M

(15)

For the NPP simulations, the values of �kX−,�1
= �kX−,�2

were
varied in the 10−4 to 10−2 range which, according to Eq. (15),
leads to values of Kcoex within the 0.01–1 range. Both models
predict a similar influence of Kcoex on the detection limit (Fig. 9).
The influence of Kcoex on the detection limit of ISE13 is negligi-
ble. The decrease of Kcoex improves the detection limit of ISEs
with a Nernstian type of response (ISE2–ISE5). Decreasing Kcoex

below a certain value causes the Nernstian response of ISE5 to
change into super-Nernstian, resulting in a worsening of the
detection limit.

e) The average anionic site concentration (RT) in the membrane
is equal to its initial concentration in the membrane (c2

R−,M),
because an anionic site cannot enter or leave the membrane.
This concentration was varied in the 10−3 to 10−5 M range
(Fig. 10). When c2

R−,M was increased/decreased in the NPP simu-

lations, the heterogeneous rate constants �kX−,�1
= �kX−,�2

were
decreased/increased in order to keep Kcoex constant (see Eq.
(15)). A 10-fold decrease of RT lowers the detection limit of
ISE13 by one order of magnitude. For ISE5, a decrease of RT
causes the super-Nernstian response to change to Nernstian.
According to the NPP model, the influence of RT on ISE2 is negli-
gible, while SDM predicts a small improvement of the detection
limit with the decrease of RT.

(f) The diffusion parameter (DP), which represents the influence
of diffusion coefficients in water and in the membrane as
well as the thickness of both layers, can be expressed as DP =
D2

i
d1/D1

i
d2. In the SDM and NPP model simulations, all diffusion

coefficients in the membrane (D2
i
) were varied in the 10−10 to

10−12 m2/s range. Both models predict that the increase of DP
causes a lowering of the detection limit of all ISEs (Fig. 11).

. Summary and conclusions

Three models describing the behaviour of ISEs (SDM, TDM-
C, and NPP) were compared both for transient and steady-state

esponse.

Transient-state NPP simulations show the influence of time on
he detection limits. For electrodes in which the outward flux of
he preferred ion is either under-compensated or ideally compen-
ated, the detection limit decreases with the increase of time. For
Acta 55 (2010) 6836–6848

electrodes in which the outward flux of the preferred ion is over-
compensated, the detection limit decreases (improves) with the
increase of time, reaches an optimum and then increases (worsens)
again because of the super-Nernstian response (Fig. 1, NPP (a)). For
transient-state measurements, much lower (subnanomolar) detec-
tion limits can be achieved than for steady-state measurements
(Fig. 2).

The difference between the predictions of TDM-EC and NPP was
demonstrated. It was especially pronounced in the case of unequal
diffusion (Fig. 1, TDM-EC (b) and NPP (b)). TEM-EC predicts that
the steady-state is reached almost immediately. The NPP predicts
that the system will obtain steady-state more slowly. This example
nicely illustrates the role of the potential formed inside the mem-
brane (diffusion potential) on the ISE signal evolution. The electric
field inside the membrane retards the transport of the faster mov-
ing ion thus slowing down the process of reaching steady-state.
Here we have proof that the more general NPP model quantita-
tively reflects the important facts that arbitrary are not considered
by simpler models.

Correspondingly, the use of NPP shows when simplifications are
justified. In the case of steady-state and monovalent ions the ten-
dencies shown by the SDM were confirmed with NPP simulations.
The agreement between these two models is very good. Decreas-
ing the concentration of the preferred ion in the inner solution, as
well as the coextraction constant (anion lipophilicity), improves
the detection limit by several orders of magnitude towards the
subnanomolar range. After reaching an optimal value with a fur-
ther decrease of one of these two parameters, the detection limit
worsens and a super-Nernstian response is observed. When the
parameters – e.g. the concentration of the discriminated ion in
the inner solution, the ionic site concentration, or the diffusion
(DP) parameter – are changed, different types of ISE behaviour is
observed. The decrease of these parameter values leads to a lower
detection limit for all electrodes. To design an electrode with the
lowest possible detection limit, the parameter values should also be
as low as possible. The exchange constant and the concentration of
J in the bulk of the solution have little influence on electrodes with a
nearly optimal concentration of preferred ion in the inner solution.
Neither do they significantly affect the level of the super-Nernstian
plateau for electrodes which show this type of response.

The NPP model is by far the most general of the models discussed
(big number of components, polyvalent ions, transient-state poten-
tial measurements) and can be used for the description of a much
wider range of phenomena concerning ISEs than the SDM or the
TDM-EC models. It is also a tool to justify the use of simpler models
in certain situations.

Acknowledgements

This work is a part of the MASTRA MATERA ERA-NET project
funded under the 6th FP EU. Financial support from the Polish State
Committee for Scientific Research (KBN) R15 005 03, as well as from
Graduate School in Chemical Engineering is gratefully acknowl-
edged.

Appendix A.

These equations have been converted into a set of dimensionless
equations with the following transformations:

x t j cj
i
(xSx̄, tS t̄)

j Ej(xSx̄, tS t̄)

x̄:=

xS
, t̄:=

tS
, c̄

i
(x̄, t̄):=

cS
, Ē (x̄, t̄):=

ES
,

(A.1)

where x, t, cj
i
, Ej and x̄, t̄, c̄j

i
, Ēj are physical and dimension-

less values of distance, time, concentration and electric field,
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ig. A.1. Space grid for the electro-diffusion problem for each phase ˛j , where
j,k
i

(t) = Ji(xj,k, t), cj,k
i

(t) = ci(yj,k, t).

espectively; xS, tS, cS, ES are their constant characteristic val-
es. From this point on we use rescaled variables in equations. To
ase the burden of notation the overbars are dropped.

Now the dimensionless model of electro-diffusion of r species
an be described by the following set of equations:

∂cj
i

∂t
= − ∂

∂x
Jj
i

for i = 1, . . . , r,

∂Ej

∂t
= I(t) − �j

r∑
i=1

ziJ
j
i
,

(A.2)

here the rescaled flux is given as Jj
i
= −Dj

i
(∂cj

i
/∂x) + �ziD

j
i
cj

i
Ej ,

i – rescaled diffusion coefficient, �, � are defined by: �j =
SxSF/(ESεj), � = FESxS/(RT) and F, R, T, εj have their usual
eaning (Faraday constant, gas constant, absolute temperature

nd dielectric permittivity in phase ˛j). The influence of drift is
eglected.

.1. Numerical method

The method of lines [11], which requires space discretiza-
ion only, was employed to numerically solve the problem above.

e use a non-uniform grid denser near boundaries. Because of
rid non-uniformity, the finite differences method with properly
elected weights must be applied [12,34].

Fig. A.1 shows the space grid used in all phases ˛j. The concen-
rations are defined at points yj,k while the fluxes and electric fields
t points xj,k. Each point yj,k is placed in the middle of the interval
xj,k−1, xj,k].

The flux Jj
i

gradient at point yj,k (for k = 1, . . ., N) can be evaluated
sing the expression for the first derivative:

∂Jj
i

∂x

∣∣∣∣∣
yj,k

= Jj,k
i

− Jj,k−1
i

hj,k−1
(A.3)

At the boundary nodes (k = 0, k = N + 1), one-sided expressions
or right- and left-side derivative are used:

∂Jj
i

∂x

∣∣∣∣
yj,0

≈
−hj,1(2hj,0 + hj,1)Jj,0

i
+ (hj,0 + hj,1)2Jj,1

i
− h2

j,0
Jj,2
i

hj,0hj,1(hj,0 + hj,1)
,

∂Jj
i

∂x

∣∣∣∣
yj,N+1

≈
h2

j,N−1
Jj,N−2
i

− (hj,N−1 + hj,N−2)2Jj,N−1
i

+ hj,N−2(hj,N−2 + 2hj,N−1)Jj,N
i

hj,N−1hj,N−2(hj,N−2 + hj,N−1)

.

(A.4)
This leads to the formulation of a set of ordinary differential
quations (ODE) defined by unknown functions cj,k

i
(t), which have

alues in every point yj,k, (where k = 0, . . ., N + 1) and Ej,k(t), which
cta 55 (2010) 6836–6848 6847

have values in every point xj,k (where k = 0, . . ., N):

dcj,0
i

dt
=

−hj,1(2hj,0 + hj,1)Jj,0
i

+ (hj,0 + hj,1)2Jj,1
i

− h2
j,0

Jj,2
i

hj,0hj,1(hj,0 + hj,1)
,

dcj,k
i

dt
= −

Jj,k
i

− Jj,k−1
i

hj,k−1
,

dcj,N+1
i

dt
=

h2
j,N−1

Jj,N−2
i

− (hj,N−1 + hj,N−2)2Jj,N−1
i

+ hj,N−2(hj,N−2 + 2hj,N−1)Jj,N
i

hj,N−1hj,N−2(hj,N−2+hj,N−1)
,

dEj,k
i

∂t
= Ij(t) − 	j

r∑
i=1

ziJ
j,k
i

(A.5)

where Jj,k
i

= −Dj
i
(∂cj,k

i
/∂x) + �ziD

j
i
c

j,k+ 1
2

i
Ej . The space derivative of

the concentration at yk was approximated by a three-point, non-
uniform finite difference:

dcj,k
i

dx
=2

h2
j,k−1cj,k+1

i
−h2

j,k
cj,k

i
+(hj,k − hj,k−1)(hj,kcj,k

i
+ hj,k−1cj,k+1

i
)

hj,k−1hj,k(hj,k−1 + hj,k)
(A.6)

and cj,k+(1/2)
i

is the concentration at xk with a weighted linear com-
bination of the neighbouring concentrations as follows:

cj,k+(1/2)
i

≈ (hj,kcj,k
i

+ hj,k−1cj,k+1
i

)

(hj,k−1 + hj,k)
(A.7)

The boundary conditions take the form:

Jj,N
i

= Jj+1,0
i

= �ki�j
cj,N

i
− �ki�j

cj+1,0
i

(�j, t) (A.8)

The above discretization leads to a system of ODEs in time vari-
able. Due to the stiff nature of these ODEs, a special integrator is
needed. We have used StiffIntegratorT, an implicit integrator based
on the RADAU5 [35] procedure.

The electrical potential, which is an integral from electrical field
over space can be expressed using the method of trapezes:

ϕj,k = −
k∑

g=1

(
1
2

(Ej,g + Ej,g−1)hj,g−1

)
,

�ϕ =
n∑

j=1

ϕj,N = −
n∑

j=1

N∑
g=1

(
1
2

(Ej,g + Ej,g−1)hj,g−1

)
.

(A.9)

The NPP multilayer model (along with rescaling, discretization
and data structures) as well as JEDS (a freeware computer program,
which is a C++ implementation of the presented model and can be
used in a number of applications), was described in details in Ref.
[14].

Appendix B.

Let us denote the concentrations at the boundary as: ci inside
and c′

i
outside the membrane. The set of equations for exchange,

coextraction and electroneutrality

Kexch = c′
1 · c2

c1 · c′
2

Kcoex = c1 · c3

c′
1 · c′

3
c1 + c2 = c3 + RT, c′

1 + c′
2 = c′

3

(B.1)

can then be transformed into the form:( )

1 + Kexch

c2
c′

1
c1

2 + RT · c1 + c′
1(c′

1 + c′
2)Kcoex = 0

c2 = c1 · Kexch
c′

2
c′

1

(B.2)
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here � from the quadratic Eq. (B.2)

= R2
T + 4

(
1 + Kexch

c′
2

c′
1

)
c′

1(c′
1 + c′

2)Kcoex (B.3)

s always higher than R2
T, which means that it has one positive and

ne negative solution. The positive solution takes the form:

1 = RT +
√

�1

2 + 2Kexch(c′
2/c′

1)
(B.4)

Applying the Eqs. (B.2)–(B.4) to the left (ci = c2,0
i

, c′
i
= c1,N

i
) and

ight (ci = c2,N
i

, c′
i
= ci,R) leads to Eqs. (12) and (13).
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