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Increased dopamine release 
after working-memory updating 
training: Neurochemical correlates 
of transfer
Lars Bäckman1, Otto Waris2, Jarkko Johansson3, Micael Andersson6, Juha O. Rinne3,4, Kati 
Alakurtti3, Anna Soveri2, Matti Laine2 & Lars Nyberg5,6

Previous work demonstrates that working-memory (WM) updating training results in improved 
performance on a letter-memory criterion task, transfers to an untrained n-back task, and increases 
striatal dopamine (DA) activity during the criterion task. Here, we sought to replicate and extend these 
findings by also examining neurochemical correlates of transfer. Four positron emission tomography 
(PET) scans using the radioligand raclopride were performed. Two of these assessed DAD2 binding 
(letter memory; n-back) before 5 weeks of updating training, and the same two scans were performed 
post training. Key findings were (a) pronounced training-related behavioral gains in the letter-
memory criterion task, (b) altered striatal DAD2 binding potential after training during letter-memory 
performance, suggesting training-induced increases in DA release, and (c) increased striatal DA activity 
also during the n-back transfer task after the intervention, but no concomitant behavioral transfer. 
The fact that the training-related DA alterations during the transfer task were not accompanied by 
behavioral transfer suggests that increased DA release may be a necessary, but not sufficient, condition 
for behavioral transfer to occur.

The last 10–15 years have witnessed an explosion of studies examining whether working memory (WM) perfor-
mance can be enhanced through various training procedures. Different approaches have been employed in this 
work, ranging from training of specific components of WM such as updating1–3, shifting3, 4, and inhibition5 to 
composite programs that involve practicing several WM functions6, 7. Typically, the training runs for 4–5 weeks, 
with 3 sessions per week, each lasting for 45–60 min. Several recent reviews8–11 give rise to the following conclu-
sions: (a) WM training results in gains on the trained tasks; (b) transfer effects to tasks tapping untrained cogni-
tive domains (e.g., reasoning, intelligence, multitasking) are small or non-existent; and (c) although transfer to 
untrained WM tasks that share constituent processes with the trained WM tasks may be seen, generalizability to 
other WM tasks is also quite limited.

Several fMRI studies examining neural correlates of training-related WM gains report increased 
blood-oxygen-level dependent (BOLD) activity in striatum1–3, 12. This is an interesting observation in view of the 
fact that striatal neurons are thought to serve a gating function in letting new information enter into WM13–15. The 
functional relevance of increased striatal BOLD activity following WM training was demonstrated by Brehmer 
and colleagues16, who reported a strong relationship between the magnitude of training-related increases in stri-
atal BOLD activity and the size of WM improvement post training.

Animal17, 18 and human19, 20 data reveal a link between BOLD activity and measures of dopamine (DA) release. 
These associations open up for the possibility that increased striatal BOLD activity after WM training is related to 
an increased release of DA. To infer DA release during task performance, typically quantified using positron emis-
sion tomography (PET) and specific radioligands, two conditions that vary in cognitive demands are contrasted. 
The idea is that binding of the radioligand to DA receptors should be reduced during the more challenging 
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condition relative to the control condition. This is so because, in the former case, binding of the ligand to recep-
tors competes with binding of endogenous DA to the same receptors to a greater extent than in the control con-
dition. Thus, reduced binding is assumed to reflect an increased release of DA. This displacement principle was 
initially formulated in the context of pharmacological DA challenges21, and evidence for displacement has been 
observed in both striatal and extrastriatal regions during verbal22 and spatial23, 24 WM tasks.

Using the same updating training procedure as Dahlin et al.1, Bäckman et al.19 conducted a PET study that 
investigated whether 5 weeks of WM training was associated with increased striatal DA release. In that study, 
the radioligand raclopride was used to measure DAD2 receptor binding. There were two main PET findings: 
(a) increased DA release was observed during a trained updating task relative to a low-level control task before 
training, and (b) WM training resulted in a further increase of DA release. The locus of the DA effects was 
in left caudate, close by the training-related BOLD changes reported by Dahlin et al.1 However, as this is the 
only study documenting increased DA release following WM training, replication of this finding is warranted. 
Replication of intriguing data is a rare happening in many fields, including cognitive neuroscience. When rep-
lication is attempted, a considerable number of findings reported in journals like Science and Nature cannot be 
reproduced25, 26. In the current work, a major goal was therefore to seek to replicate the Bäckman et al.19 findings. 
The training procedure, the criterion task, as well as the PET assessment of DA release were identical to those 
employed by Bäckman et al.19.

As noted, transfer effects from this type of WM training to untrained tasks are small or non-existent. However, 
we observed transfer from WM updating training to an untrained n-back task that shares a similar demand on 
updating operations1, 19. An interesting finding in Dahlin et al.1 was that transfer effects were also observed in 
terms of neural activation patterns, as measured by BOLD fMRI. Specifically, increased BOLD activity was seen 
for both the letter-memory and n-back tasks in an overlapping part of the caudate. That said, the magnitude of 
the increases in the n-back task was considerably smaller compared to the letter-memory criterion task, both 
behaviorally and neurally. An additional objective of the present research was to investigate whether updating 
training would result in increased DA release also in an untrained n-back task, thus providing evidence for a 
neurochemical correlate of transfer of learning.

Results
Letter-memory criterion task.  Two participants in the updating training group and one participant in 
the control group were not included in the letter-memory analysis due to technical problems leading to loss of 
post-training behavioral data. The main analysis of the letter-memory criterion task revealed a significant group x 
time interaction (F(1, 23) = 24.579, p < 0.001, η2partial = 0.52; d = 2.07), reflecting the fact that the training group 
showed larger performance gains after training than the control group (Fig. 1A). An identical analysis involving 
only those participants who were included in the PET analyses yielded the same significant interaction (one 
participant could not be included in this analysis due to a technical error). Thus, the present behavioral findings 
replicated exactly those from our two previous studies1, 19.

In all analyses of the PET data, we only report effects that exceed 5 voxels to reduce the risk of spurious find-
ings. We first examined a task effect on D2DR BP comparing the letter-memory and baseline tasks before training 
across all participants with a paired t test. We observed decreased D2DR binding during letter memory in bilat-
eral striatum (x,y,z = 14,−3,18; 30,−3,−2, p < 0.01; Fig. 1B; x,y,z = −17,21,0; −23,2,11, p < 0.05). Critically, an 
ANOVA on the D2DR BP data yielded a significant group x time interaction in bilateral striatum (x,y,z = 26,−5,8; 
−18,6,−12, p < 0.05). Figures 1C and D highlight this effect for left striatum. This interaction reflected the fact 
that the trained persons, but not the controls, showed decreased BP after training. In a peak-voxel analysis of a 
potential training-related change in the exact same region as originally observed (x,y,z = −17,−7,22;18), a similar 
trend of greater reduction of BP in the trained group compared to the control group was observed, although this 
effect did not reach conventional significance (Fig. 1E; p > 0.05).

Transfer tasks.  For several transfer tasks (in-scanner digit n-back and the offline tasks spatial n-back, 
letter-number sequencing, digit symbol, word recall, and number-letter RT), there were main effects of time 
(ps < 0.05), reflecting general retest effects. However, for the in-scanner 3-back task (Fig. 2A) as well as for all 
off-line transfer tasks (Table 1), there were no disproportionate time effects as a function of group (p > 0.05; 
d = 0.00). Thus, no behavioral transfer effects were observed.

However, as with letter-memory, comparing the 3-back and 1-back tasks before training across all partic-
ipants with a paired t test, we observed decreased D2DR binding during 3-back in bilateral striatum (Fig. 2B; 
x,y,z = 27,0,0; 11,18,6; −23,0,8; −12,15,11, p < 0.01). Importantly, a group x time ANOVA on the D2DR BP 
n-back data yielded a significant interaction in bilateral striatum (Fig. 2C; x,y,z = 11,14, −9; 9,14,8; −17,15,14, 
p < 0.05). The interaction in right striatum reflected the fact that the training group showed decreased BP after 
training, whereas the control group’s level was stable (Fig. 2D).

Discussion
The main goal of this study was to replicate the Bäckman et al.19 finding of increased DA release following WM 
updating training. First, replicating and extending prior work19, 22–24, DAD2 BP was lower during both letter 
memory and n-back than in the control conditions before training. This pattern indicates increased DA release as 
a function of the cognitive challenge. A key observation was reduced striatal DAD2 BP during letter memory in 
the training group at post test, suggesting increased DA release after training. The intervention effect on neuro-
transmission was accompanied by pronounced training-related behavioral gains in the letter-memory criterion 
task1, 19. Although the DA effect did not overlap with the peak effect obtained in our previous study, both were 
located in left striatum. Also, a similar trend was seen in the same peak voxel as originally reported19.
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A unique feature of this study was the use of four PET examinations, allowing us to assess neurochemical 
effects during an untrained n-back task. Interestingly, our training was associated with increased striatal DA 
release at the post-training assessment also during the 3-back transfer task. To the best of our knowledge, this is 
the first demonstration of changes in neurotransmission in relation to transfer of learning. For n-back the peak 
response was in right striatum, whereas the corresponding effect for letter memory was in left striatum. The 
reason for the difference in laterality remains unclear, and was not expected from our previous observation of a 
training-related overlap in left caudate BOLD signal change for letter memory and n-back1.

In agreement with several recent meta-analyses and qualitative reviews8–11, we found no evidence that updat-
ing training transferred to performance on the tasks included in the off-line battery tapping verbal and spatial 

Figure 1.  Behavioral and dopamine effects for the letter-memory criterion task. (A) Percent pre-post changes 
in letter memory. (B) Lower raclopride binding to striatal D2 receptors during letter memory compared to the 
control task before training in right striatum, reflecting greater DA release in response to the cognitive challenge 
(x,y,z = 14,−3,18; 30,−3,−2). (C,D) A training-induced decrease of raclopride binding to D2 receptors was 
found in left striatum (−18, 6, −12). (E) Training-related changes in raclopride binding to striatal D2 receptors 
in the peak region observed by Bäckman et al.18. Error bars are standard errors.
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working memory, motor speed, episodic memory, set shifting, and inhibitory control. Moreover, unlike the find-
ings reported by Dahlin et al.1 and Bäckman et al.19, we did not observe behavioral generalization to the 3-back 
transfer task. The reason thereof may be that the present participants performed at a very high level for 3-back 
already at the pre-training assessment. The high level may reflect the length (more room for task practice) and the 
nature of the task (performed during scanning, which likely increases the perceived performance demands com-
pared to an off-line testing situation). Note also that recent meta-analyses indicate that effect sizes for this form 
of near-transfer are quite small9–11. Thus, it is unsurprising that such transfer effects may or may not be observed 
in a specific study. This is especially true in PET research with relatively small sample sizes and limited statistical 
power. In view of this concern and even though the measurement scale might not have been sensitive enough to 
capture behavioral transfer effects, the PET data nevertheless demonstrated DA alterations during the untrained 
n-back task. The present pattern of results raises the possibility that increased DA release may be a necessary, but 
not sufficient, condition for behavioral transfer to occur.

The present research extends previous observations that the DA system is plastic. Such plasticity has been 
observed during both pharmacological and cognitive challenges18, 20, 21, 27–31. The current replication of increased 
striatal DA release during letter memory after WM updating training, and the novel result of a corresponding 
increase during an untrained 3-back task, provide additional evidence that the DA system is malleable.

Methods
Participants.  The effective sample included 28 right-handed healthy, non-smoking, and non-medicated 
Finnish male university students (19–26 years). The participants underwent structural MRI and medical screen-
ing. They were randomized into training and control groups (n = 14 for each). The two groups were comparable 
regarding years of education, age, and BDI-II scores, and on all pre-training neuropsychological measures, except 
for TMT B, t(25) = 2.35, p < 0.05, where the control group showed significantly worse performance (Table 2).

The study was approved by the Ethics Review Board of the Turku University Hospital District, the meth-
ods were carried out in accordance with relevant guidelines and regulations, and written informed consent was 
obtained from all participants.

Figure 2.  Behavioral and dopamine effects for the n-back transfer task. (A) Percent pre-post changes in 3-back. 
(B) Lower raclopride binding to striatal D2 receptors during 3-back compared to 1-back before training in 
bilateral striatum, reflecting greater DA release in response to the cognitive challenge (x,y,z = 27,0,0; 11,18,6; 
−23,0,8; −12,15,11). (C) Effects in bilateral striatum (x,y,z = 11,14,−9; −17,15,14) showing a training-induced 
decrease of raclopride binding to D2 receptors during 3-back. (D) Bar graph showing a selective training-
related reduction in right striatum for trained subjects. Error bars are standard errors.
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Procedure.  We employed a pre-training–intervention–post-training control group design. All participants 
took part in the pre- and post-training assessments, whereas only participants in the training group received 
training between these assessments. The training group practiced three times per week (45 min/session) for five 
weeks. The pre-training assessments included a structural MRI scan, neuropsychological testing, and two con-
secutive PET scans performed during the same day. The post-training assessments included neuropsychological 
testing and two PET scans, but no MRI. Time in-between the pre- and post-training assessments was 6–9 weeks.

The training program was a computerized in-house developed Visual Basic program and consisted of the 
letter memory criterion task and five other updating tasks1, 19. Four of the additional training tasks were similar 

WM training group Control group

Pre-training Post-training Pre-training Post-training

Letter-memory accuracy % n = 12 n = 13

51.54 (11.63) 83.33 (31.67) 47.57 (12.87) 56.28 (17.01)

Digit n-back n = 10 n = 12

 1-back target accuracy % 91.23 (7.78) 91.58 (7.71) 93.62 (3.05) 89.14 (8.42)

 3-back target accuracy % 74.53 (18.24) 86.12 (14.51) 79.44 (20.66) 91.10 (7.30)

Letter-number sequencing n = 14 n = 14

13.50 (2.79) 14.79 (2.61) 14.00 (3.21) 14.64 (3.84)

Digit span forward n = 13 n = 14

7.00 (1.23) 7.38 (0.87) 6.43 (1.22) 6.36 (1.15)

Digit span backward n = 14 n = 14

6.15 (1.21) 6.08 (1.50) 6.36 (1.50) 6.36 (1.28)

Digit symbol n = 14 n = 14

71.00 (12.27) 77.29 (13.98) 68.07 (11.53) 75.43 (11.65)

Word recall accuracy % n = 14 n = 14

75.13 (10.54) 80.69 (11.84) 80.16 (15.70) 82.14 (13.33)

Simon task n = 14 n = 13

 Congruent RT 413 (45) 381 (49) 430 (58) 400 (42)

 Incongruent RT 434 (38) 398 (43) 460 (48) 420 (35)

 Congruent accuracy % 99.00 (1.52) 98.86 (1.51) 98.62 (1.89) 98.31 (1.97)

 Incongruent accuracy % 96.71 (2.16) 97.71 (2.33) 96.92 (2.78) 97.69 (2.29)

Number-letter task n = 14 n = 14

 Mixed task: no-switch RT 680 (104) 599 (78) 767 (116) 642 (97)

 Mixed task: switch RT 955 (288) 816 (234) 1115 (310) 866 (193)

 Mixed task: no-switch accuracy % 98.94 (2.00) 99.70 (1.14) 98.48 (2.27) 98.78 (1.37)

 Mixed task: switch Accuracy % 97.99 (3.15) 97.99 (3.15) 96.21 (3.51) 96.21 (3.50)

Spatial n-back n = 14 n = 13

 1-back accuracy in % 96.80 (2.81) 98.31 (2.09) 96.96 (2.91) 98.08 (1.67)

 2-back accuracy in % 94.84 (5.15) 97.82 (2.97) 93.27 (5.67) 98.40 (2.53)

Table 1.  Group means (SD) on the pre- and post-training cognitive measures.

WM training 
group (n = 14)

Control group 
(n = 14/13)

Age 22.21 (1.72) 22.79 (1.48)

Years of education 14.21 (1.19) 15.15 (1.45)

BDI-II 2.64 (3.13) 1.79 (1.85)

WAIS-III Vocabulary 52.50 (6.97) 49.86 (7.82)

TMT A 21.64 (5.23) 22.93 (4.57)

TMT B 42.64 (6.79) 50.69 (10.74)

Pattern Comparison 19.61 (3.70) 20.04 (3.20)

Number Copying 51.46 (5.76) 51.04 (6.25)

Table 2.  Descriptive data on the study groups (means and SD). Note. BDI = Beck Depression Inventory, 
WAIS = Wechsler Adult Intelligence Scale, TMT = Trail Making Test. Age in years, BDI-II scores, WAIS-III 
Vocabulary raw scores, TMT completion time in sec, Pattern Comparison and Number Copying raw scores 
(SDs in parentheses). One participant in the control group had missing data on years of education, one 
participant in the control group had unreliable performance data on the Pattern- Comparison task, and one 
participant in the control group was an extreme outlier in TMT B (hence, n = 13 in the control group for these 
variables).
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to the letter memory task and involved updating of single items, but to foster generality different kinds of stim-
uli (i.e. numbers, letters, colors, and spatial locations) were used. In these training tasks, five lists of items were 
randomly presented and the task was to recall the four last presented items. Across the 5-week training period, 
list length varied to manipulate level of difficulty and thereby ensure that the training was sufficiently demanding 
(low level = 4–7 items; medium level = 6–11 items; high level = 5–15 items). Performance was monitored and 
at the end of each training week, level of difficulty was raised when the participant scored 80% or higher in the 
letter memory task. All subjects reached the most difficult level by the end of training. The final training task 
was a keep-track task. This task, too, taxes updating, but is structurally different from the other updating tasks 
in the training battery. The inclusion of the keep-track task should contribute toward strengthening of a general 
updating skill. In each trial, 15 words from different semantic categories were presented serially in random order 
(2.0 s per word) and participants were instructed to place the words into categories (animals, articles of clothing, 
countries, relatives, sports, professions), indicated by boxes at the bottom of the screen. They had to continuously 
update their working memory content and remember the last presented word in each category at the end of the 
presentation. Participants responded by typing the last presented word under each category box when the trial 
ended.

PET scanning.  The pre- and post-training PET scans were identical: both involved two scans of which one 
was performed in the morning and the other in the afternoon. The letter-memory task was administered during 
the morning scan, whereas the digit n-back task was administered during the afternoon scan. The two assess-
ments were separated by a 90-min lunch break.

During the first PET scan, we administered a computerized letter-memory task that taps verbal WM updating. 
Participants were shown 7–15 letters in a sequence; when a sequence suddenly ended, they were asked to report 
the last four letters in correct order by pressing buttons corresponding to A, B, C, and D. This task was preceded 
by a structurally equivalent control task not taxing updating (all letters in a sequence were identical and partic-
ipants reported that letter). Prior to PET scanning, participants acquainted themselves with the task during a 
practice session. The PET session started with the control task (5–10 min prior to bolus injection continuing for 
55 min post-injection), followed by the letter-memory task (25 min). The sequence began with instructions shown 
for 7000 ms. Stimulus duration was 2000 ms with a fixation cross in-between for 1000 ms. The participants were 
allowed 7000 ms to respond.

During the second PET scan, the participants performed a digit n-back task that measures verbal WM updat-
ing. In this task, they were to determine if a currently visible digit was the same as the previous digit (1-back) 
or the digit that was presented three steps back (3-back). The dependent measure was target accuracy on the 
3-back vs. 1-back condition. After participants had read the task instructions and completed one 1-back and one 
3-back practice task, the PET session was initiated. During scanning, they completed about 55 min of the 1-back 
(baseline) task, after which they immediately continued with a period of 25 min performing the 3-back task. Task 
instructions, informing the participant of which n-back version to perform, were shown at the beginning of each 
task version for 5000 ms, after which a digit was shown for 1500 ms. The digit was replaced by a fixation point that 
was visible for 450 ms, and after this the fixation point was once again replaced by a digit. The alternation of fixa-
tion points and digits continued until the end of the task. Targets encompassed 45% of the trials (i.e., the current 
digit and the digit n steps back matched), whereas 55% comprised non-targets. The participants responded by 
pressing a match button for targets and a non-match button for non-targets.

The study protocol and procedure was virtually identical to those employed by Bäckman et al.19. The only dif-
ferences between the studies concerned the duration of the letter- memory and digit n-back tasks performed dur-
ing the PET scans. Unlike Bäckman et al.19, the current letter-memory task included a 55-minute baseline phase 
and a 25-minute test phase, with no return to baseline. In other respects, the letter-memory tasks were identical. 
The digit n-back task was included in the neuropsychological off-line battery in Bäckman et al.19, whereas here 
it was altered (i.e., much longer) and performed during PET scanning to mirror the design of the letter-memory 
task.

Imaging methods.  We used HRRT-PET (High Resolution Research Tomograph; Siemens Medical 
Solutions, Knoxville, TN, USA) and [11C]raclopride with bolus-plus-infusion32 to measure striatal dopamine 
D2 receptor availability during WM vs. control task performance. Raclopride was prepared from [11C]methyl 
triflate following an established procedure33. Its radiochemical purity and specific radioactivity were determined 
using high-performance liquid chromatography and ultraviolet detection at 214 nm. The aimed magnitude of 
the bolus was 50% of the total tracer volume34, and constant infusion continued until 80 min after bolus injection 
(Kbol = 80 min). At scan start, the actual bolus injection and infused doses did not differ between groups or 
scans (Table 3). Emission list-mode data were histogrammed into 3D sinograms in 20 time frames of variable 
length (8 × 2 min, 4 × 3 min, 2 × 4 min, 1 × 5 min, 1 × 6 min, 1 × 8 min, 3 × 8.3 min), taking declining radioac-
tivity and task timing into account. Before each emission scan, a transmission scan was performed using a 137Cs 
point source. Tissue-attenuation maps were reconstructed using the maximum a posteriori transmission data 
(MAP-TR) algorithm with segmentation. Scattered events were estimated using the single-scatter simulation 
algorithm, and randoms were estimated from the block singles with a variance-reduction algorithm. All correc-
tions were applied within the statistical image-reconstruction algorithm35.

Special attention was paid to minimization of head-motion artifacts based on earlier observations of its 
detrimental effects on the PET signal and its interpretation36. Specifically, head motion was minimized using 
an individually molded thermoplastic mask, and image reconstructions were made using an in-house version 
of the multiple-acquisition frame (MAF)36 based motion-compensated image reconstruction algorithm. The 
algorithm employs external motion tracking (MT) as given by Vicra (Northern Digital) infrared detection, to 
define motion-free (amplitude less than 2.5 mm) framing of list-mode PET data. This procedure compensates 
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for attenuation map misalignments using mutual information- based image registration and finally combines the 
motion-free subframes into original, desired framing. In a phantom study by Johansson et al. [in preparation], we 
showed good performance of the MAF-based algorithm, but a residual bias was seen in the presence of rapidly 
oscillating motion. Rapidly oscillating, high amplitude motion is not often observed in human PET scans but, if 
present, may introduce erroneous perturbations in the PET signal, which in turn could be incorrectly interpreted 
as activation effects36, 37.

Movements that are beyond the capabilities of the motion-compensation algorithm were sought through 
analysis of the number of subframes, which was identified as an important factor in our previous phantom 
experiment with regard to the algorithm’s performance [Johansson et al., in preparation]. Analysis showed that 
in 84% (89/106) of the sessions, no additional acquisition frames were generated, indicating subthreshold (2.5 
mm) amplitude of motion in all frames. The remaining cases were investigated further through detailed assess-
ment of the time-motion graphs representing three translations and three rotations of the motion-recording 
target at the forehead at 1 Hz frequency. On the basis of visual inspection of the motion data, five letter-memory 
scans from four individuals, and three n-back scans from two individuals were deemed unrecoverable using the 
motion-compensation algorithm, and were thus excluded from analysis. In addition to those excluded due to 
extensive motion, the letter-memory PET variables of four subjects were missing due to other technical reasons. 
In one case, the 11C-raclopride infusion was started approximately 20 min overdue, in one case the PET data 
acquisition failed, and two participants were not PET scanned post training. Thus, a total of eight participants 
were missing from the PET letter-memory analysis, resulting in an n of 20. In turn, the n-back PET variables were 
missing from three subjects, two of whom were not scanned after training, and in one case the data acquisition 
failed. Hence, altogether five participants were missing from the n-back analysis, resulting in an n of 23.

Structural MR imaging was performed for excluding anatomical abnormalities and for anatomical reference 
of the PET data. T1-weighted MRI data were acquired using a 3T scanner (Philips Ingenuity TF PET/MR) with 
a 1 mm × 1 mm × 1 mm voxel size covering the whole brain. The T1-weighted MRI data were pre-processed 
using FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 
Charlestown, US) to obtain automated region-of-interest (ROI) definitions38. Subsequently, a PET sum image was 
registered to the skull-stripped MR image, using the mutual-information optimization algorithm in Statistical 
Parametric Mapping (version 8, SPM8; Wellcome Institute, London, UK). Spatial normalization parameters to 
the Montreal Neurological Institute (MNI) space coordinates were determined on the basis of MRI data using 
the unified-segmentation algorithm in SPM839 yielding a mapping for registered PET data normalization. The 
PET-image analysis was restricted to striatum, which serves as a central hub of dopaminergic activation. Striatal 
subvolumes were defined on the basis of FreeSurfer segmentations, combining segments of caudate, putamen, 
and nucleus accumbens into one composite striatal structure in each subject’s individual space. Striatal masks 
were used in edge-preserving spatial smoothing of the PET data; outside-mask voxels were omitted in the 
Gaussian filter kernel (10 mm FWHM) calculation, attenuating the impact of partial-volume effects near the 
edges. Extensive spatial smoothing was deemed necessary for successful calculation of binding potential (BP) 
from the PET activation data.

Modeling of the dynamic PET data was based on an extension of the conventional simplified reference tissue 
model (SRTM)40, including the effect of activation as an additional parameter. A similar approach as described by 
Alpert and colleagues41 was adopted, where the activation effect on the 11C-raclopride signal was modeled by the 
time-dependent activation function h(t), and the relevant linear equations are:
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where the weighting factor γ is depicted as the activation effect, C t( )T i  and C t( )R i  are the instantaneously meas-
ured radioactivity concentrations in target and reference tissue, respectively, and R1, k2, k a2  are the conventional 
SRTM rate constants. Compared to our previous work19, we now employed an explicit BP calculation algorithm 

Bolus Infusion Bolus Infusion Bolus Infusion

Control group Training group t-test (groups)

Letter memory

Pre Training 262 ± 18 
(n = 9) 252 ± 14 272 ± 31 

(n = 13) 255 ± 28 0.43 0.77

Post training 267 ± 19 
(n = 10) 253 ± 15 280 ± 25 

(n = 11) 265 ± 25 0.52 0.22

t test (scans) 0.76 0.72 0.88 0.43

n-back

Pre training 267 ± 36 
(n = 10) 249 ± 32 262 ± 29 

(n = 13) 264 ± 25 0.74 0.22

Post training 265 ± 24 
(n = 10) 260 ± 17 269 ± 17 

(n = 13) 264 ± 16 0.44 0.51

t test (scans) 0.93 0.43 0.48 0.96

Table 3.  Administered radioactivities (MBq; mean ± SD) in fast bolus and constant infusion formulations, and 
p-values in t-tests across groups and scans.
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for the activation phase, to quantitatively assess the magnitude of this effect relative to baseline. First, baseline BP 
(BP0) was determined from the fit parameters k2, and k a2 , which in turn were estimated using a linear 
least-squared solver in Matlab (version R2011b, Mathworks, US). Second, the activation BP (BP1) was determined 
from the fit parameters k2, k a2 , and γ, using an integral of γh t( ) and averaged over the activation period. As the 
activation function, we employed a simplified gamma-variate function42, with a fixed peak time of 8 min and 
20 sec from active task initiation, λ = 3, and onset of activation at 55 min from the injection. Model calculation 
was restricted to the aforementioned striatal volume, and the resulting parametric images were normalized using 
the MRI-based deformation into MNI space coordinates. Voxel-wise statistical analysis was performed in SPM8 
within a striatal search volume (2934 voxels, ~10 cm3), determined as the intersection of individual striatal sub-
volumes warped in MNI space. Because the images could not be assumed to be normally distributed, 
non-parametric analyses were conducted using SnPM (version SnPM12, http://www2.warwick.ac.uk/fac/sci/
statistics/staff/academic-research/nichols/software/snpm.

A 2 (group) × 2 (time) ANOVA was conducted on BP = BP1−BP0. Variance smoothing was used with an 
FWHM of 10 mm. Five thousand permutations were used to determine a p < 0.05 threshold within the striatal 
search space. Paired t-tests with a p < 0.01 threshold were used to assess main effects of task (letter memory and 
n-back) on BP, combining both groups.

Off-line transfer tasks.  The pre- and post-training neuropsychological assessments included three 
WAIS-III subtests (digit span, letter-number sequencing, and digit symbol), a number-letter task, a Simon task, 
a visuospatial n-back task, and an episodic recall task. A pattern-comparison task, a number-copying task, Trail 
Making parts A and B, and the WAIS-III vocabulary subtest were only included before training. The pre-training 
assessment also included a background questionnaire, the Edinburgh Handedness Inventory, and the BDI-II.

Digit span.  The digit span test was used to assess auditory attention as well as passive (forward span) and active 
(backward span) WM. Participants were asked to recall sequences of digits in the same or reversed order in which 
they were presented. Test administration, items, and scoring followed standard WAIS-III procedures43. Maximum 
forward and backward spans were used as dependent measures.

Letter-number sequencing.  The letter-number sequencing test was also used to assess auditory attention as well 
as passive and active working memory. Participants were instructed to recall and sort number-letter sequences. 
Test administration, items, and scoring followed standard WAIS-III procedures43. The total score was used as the 
dependent measure.

Visuospatial n-back.  The visuospatial n-back task was used to assess visuospatial WM updating44. In this task, 
participants were asked to determine if a currently visible box was in the same location as the previous box 
(1-back) or the box that was presented two steps back (2-back). A matrix with eight stimulus locations was used 
(a 3 × 3 matrix without the middle square). Accuracy was used as the dependent measure.

Digit-symbol coding.  The digit-symbol coding test was used to assess perceptual speed. Participants were asked 
to draw, as quickly as possible, different symbols in empty spaces on the basis of digits that were located above 
each empty space. A time limit of 90 sec was used here, but in all other respects test administration, items, and 
scoring followed standard WAIS-III procedures43. The total score was used as the dependent measure.

Number-letter task.  The number-letter task was used to assess set shifting. Here, participants were asked to 
categorize either the number or the letter in a number-letter pair depending on in which of two vertically aligned 
boxes the number-letter pair appeared. The task included both switch and no-switch trials, from which mixing 
and switching costs were calculated44. The switching cost reflects the temporary cognitive load that is related to a 
task shift, whereas the mixing cost reflects the cost of maintaining attentional control in a situation where two task 
sets are active. The mixing and switching costs for RTs and accuracy were used as dependent measures.

Simon task.  The Simon task was used to assess inhibitory control. In this task, participants were to determine 
the color of a square while disregarding where the square appeared45. On congruent trials, the color and location 
of the square matched the positioning of the appropriate response key, whereas the stimulus and correct response 
key were crossed on incongruent trials. The Simon effect was calculated by comparing the performance on con-
gruent and incongruent trials. Simon effects for accuracy and RT were used as dependent measures.

Episodic word recall.  The word recall task was used to assess verbal episodic memory46. Participants were 
instructed to read and remember 18 concrete nouns presented on a computer screen. They were instructed to 
recall as many words as possible, and the test leader recited any words that had been omitted. After hearing the 
omitted words, participants again attempted to recall as many words as possible, and once again the test leader 
recited any omissions. Finally, participants were again asked to recall as many words as possible. The total number 
of correctly recalled words was used as the dependent measure.

Pattern comparison.  The pattern-comparison task was used to assess motor speed47. In this task, participants 
were to determine, as quickly as possible, if two symbols were identical. The total number of correctly evaluated 
symbol-pairs was used as the dependent measure.

http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm
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Number copying.  The number-copying task was also used to assess motor speed47. Here, participants were asked 
to copy, as quickly as possible, a set of numbers. The total number of correctly copied numbers was used as the 
dependent measure.

Trail Making.  This task was used to assess visual search, hand-eye coordination, and set shifting48. In part A, 
participants were to connect, as quickly as possible, a set of numbers in ascending order. In part B, they were to 
connect numbers and letters in both ascending and alphabetical order, constantly switching between the two 
types of stimuli (1-A-2-B, etc.). The dependent variable was the difference score obtained by subtracting the com-
pletion time of part A from part B.

Vocabulary.  The vocabulary test was used to assess word comprehension. Participants were asked to explain the 
meaning of words of increasing complexity. Test administration, items, and scoring followed standard WAIS-III 
procedures43. The total raw score was used as the dependent measure.

Statistical analyses.  Those participants who were extreme outliers (i.e., showing a deviation of at least three 
times the interquartile range) before training were removed from the specific statistical analyses on which they 
deviated. Training effects were analyzed by mixed-model ANOVAs.
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