
Illustrating Software Modifiability - Capturing
Cohesion and Coupling in a Force-Optimized Graph

Johannes Holvitie, Ville Leppänen
TUCS - Turku Centre for Computer Science &

Department of Information Technology, University of Turku
Turku, Finland

{jjholv,ville.leppanen}@utu.fi

Abstract—Software visualization aims to provide a more
human-readable interface for the various software system aspects
and characteristics. As majority of the time spent on modifying
software is spent on gaining an understanding of an intangible
and virtual system, the area of software visualization is widely
researched as a solution to this. The paper in question presents
a program visualization approach that focuses on illustrating
the two software modifiability characteristics of cohesion and
coupling. Unlike other approaches, which provide a visual repre-
sentation for precalculated values, it uses the underlying cohesion
and coupling mechanics to derive the actual layout. This allows
the user to perceive the entire structure that has resulted to
the cohesion and coupling values present in viewed nodes. There
are three distinct steps to our approach. 1) Semantic analysis
is used to record the static program structure into a directed
and weighted graph. 2) The graph is then laid out using force-
optimization to highlight important implementation structures.
Finally, 3) sub-graph separation and further visual aids are
provided to aid the user in observing cohesion and coupling
for specific areas. Discussed benefits for this approach include
information production efficiency, the ability to quickly analyze
even large software implementations and intuitiveness of the
visual delivery method.

I. INTRODUCTION

Increasingly complex hardware has implicitly allowed
more complicated software to be ran on it. This, in addition
to the popularity of modern document-light, iterative and
incremental software development methods, has created a
challenging ground for software development tasks that depend
on information regarding the software implementation’s state.
The likes of iteration planning and software maintenance are
forced to deal with high levels of inaccuracy as they manage
large, self-emergent, and intangible software systems.

Software visualization aims to increase tangibility by way
of utilizing graphical illustrations to depict varying structures
within the software [1]. The aim is to facilitate both human
understanding as well as effective use of the illustrated parts
[2]. Program visualization is a sub-method of the former. It
works with static and dynamic data to provide views into
software implementations’ structural and functional properties
respectively. Program visualization is fundamentally an infor-
mation retrieval method.

Software process components that allocate resources either
for reparative or function additive actions are interested in
how the current implementation is capable of accommodating
modifications. Cohesion and coupling are statically assessable

measures of modifiability [3]. A number of metrics, e.g. [4]–
[8], capture them but they predominantly produce results which
require combination and prolonged analysis in order to reach
their full potential. Hectic software development environments
can find this discouraging.

This paper introduces a novel program visualization ap-
proach that captures information regarding software imple-
mentation’s state through utilizing the cohesion and coupling
mechanisms. The main goal of the presented approach is to
serve software projects with an efficient, intuitive and easily
attainable medium that allows communicating about the state
of software and especially its capability to accommodate
modifications.

There are three steps to our approach: semantic code anal-
ysis, graph layout, and sub-graph separation. In the semantic
analysis we traverse the source code of a program and form
a set of Abstract Syntax Trees (AST). These ASTs capture
program element interaction at the lowest abstraction level.
Through filtering the ASTs we produce data on which of the el-
ements call one another and how many times. As cohesion and
coupling are indicators of program element interdependency
measured through their relations, we transform the filtered call
information to a sparse matrix—a basic form for a graph.

The second step, the graph layout, takes the sparse matrix
graph and applies a force-directed layout algorithm to it.
In the graph, program elements are represented by nodes
and directed weighted edges connecting them represent the
elements’ call directions and frequencies respectively. In force-
directed layout, the edges are perceived to be forces which
influence the nodes. The layout is complete when a minimum
energy state has been found for the graph. As the forces in
this graph represent cohesion and coupling meta-information,
the produced layout consists from structures that capture and
highlight modifiability characteristics.

In the sub-graph separation part the user may query the
large system-wide graph with program elements to produce
sub-graphs that highlight the cohesion and coupling structures
to which these elements belong. The sub-graphs are built by
identifying the shortest non-weighted path for each element
pair in the query set. The final sub-graph consists from all
encountered shortest paths and the nodes immediately adjacent
to these. We call these adjacent nodes context nodes as they
deliver information on the query’s neighborhood. The user can
toggle displaying them.

Rest of the paper is structured as follows. Section II

reviews background literature introducing cohesion and cou-
pling, program visualization and applicable graph processing
algorithms as well as our previous work. Section III introduces
the approach by defining used graph components, formation
of the graph and its layout, and querying for sub-graphs.
Section IV demonstrates the approach by applying it for a large
open-source software product. Received graphs are analyzed,
discussed and evaluated in Sections V, VI and VII respectively.
Finally, Section VIII concludes this paper and makes some
sights into future.

II. RELATED WORK AND BACKGROUND

In this paper we introduce a program visualization ap-
proach that applies force-directed layouting to a graph contain-
ing cohesion and coupling details for a software system. The
first subsection here defines cohesion and coupling to provide
a reference point for the approach’s graph formation (see
Section III-A). The second subsection derives requirements
for the visualization in discussing related work on program
visualization. The third subsection describes the chosen graph
processing algorithms and other considered options. Finally,
the last subsection presents our previous work to which the
approach herein is an extension.

A. Cohesion and Coupling

The concepts of software cohesion and coupling were
introduced by Stevens et al. in [3]. Coupling is defined as
the measure of module interdependence. A high degree of
coupling for a module indicates that its functionality is heavily
dependent on the existence of other modules. A modification
in these can be expected to cause a modification in the
dependent. Reducing coupling minimizes the propagation of
modifications. If modules are built from elements, then we
need to minimize the relations between elements not in the
same module. Cohesion captures this in measuring the interde-
pendence of elements within the same module. High cohesion
for a module indicates that elements forming it are together
well capable of implementing its functional requirements—
without outside assistance.

The rather abstract definition of cohesion and coupling has
lead to the emergence of several capturing metrics for them.
Many of them are not exclusive as they capture cohesion and
coupling with slightly different characteristics. For capturing
cohesion, the most well known metrics are the six versions
of LCOM (Lack of Cohesion in Methods). Versions zero
through three, presented in [4], [5], [6] and [7] respectively,
capture lack of cohesion as the volume of those member
functions that do not share a common variable. In LCOM4
member classification is ignored and cohesion is measured
as the number of inter-function calls and the variables they
share [7]. Finally, LCOM5 measures cohesion as the number
of functions assessing variables [5].

Two notable coupling metrics are components to the In-
stability metric defined by Martin in [8]. Instability measures
change resistance for a software component by calculating its
Efferent (Ec) and Afferent Coupling (Ac)—the component’s
independence and responsibility respectively. Afferent cou-
pling captures the number of outside components that depend
upon modules within the component. Efferent coupling does

the opposite in measuring the number of foreign modules
required by the target component.

B. Program Visualization

Caserta and Zendra argue in their survey of static program
visualization approaches [9] that graphs have the most suitable
visualization characteristics for architecture-level illustrations
of source code snapshots. They add that for large systems
graph occlusion and edge congestion are possible challenges.
From the surveyd approaches the CodeCity [10] is the only one
utilizing cohesion or coupling for layout placement. While this
is seen to be intuitive and effective, drastic changes caused by
snapshot updates are source of confusion.

Langelier et al. [11] discuss a visualization approach for
software development and maintenance. While also acknowl-
edging the role of cohesion and coupling in the process, they
conclude by claiming that for target analysis a hybrid approach
of efficient automated visualization and human interaction for
context limiting is a good compromise. In [12] Koschke lists
problems relating to maintenance and re-engineering related
software visualization. Most notable ones from this list are
large graph size, possibility of filtering, software evolution
driven visualization updates and taking node and edge seman-
tics into account for automatic layouts.

C. Graph Processing

Finding global minima for a force-directed graph is an ex-
tremely difficult process with no proven solutions [13]. There
however exist methods with the ability to produce ”good”
results. These approaches generally use a multi-algorithm or
-level approach. An example of a multi-algorithm approach
is presented in [14]. While, the multi-algorithm ones produce
exemplar results, they suffer from high time and space com-
plexities. Yifan Hu’s multilevel algorithm [13] is an example
of the latter. Using graph coarsening, initial layouting and
then refinement, the algorithm produces quality results with
acceptable complexity.

For our layout, we use the continuous force-directed lay-
out algorithm ForceAtlas2 [15]. It has adapted its energy
model from the energy models proposed by Fruchterman and
Reingold [16] as well as Noack [17]. The complexity is
decreased from O(n2) to O(n ∗ ln(n)) by applying Barnes
Hut [18] approach for force approximation. According to tests
conducted by the algorithm’s author, ForceAtlas2 fares well
against the notable multilevel layout algorithm by Yifan Hu
[13]. Yifan Hu’s multi-level algorithm would have been used
in this work, if not for its inability to consider edge weights.

As stated, after converting the implementation structure
into a graph, we may utilize link structure analysis in order to
calculate global importance ranking for its nodes. We don’t
consider query specific ranking algorithms here as similar
information is already produced by our approach through the
query based sub-graphs. One of the most used and studied non-
query ranking algorithm is the PageRank by Page and Brin
[19] and there exist several adaptations of it for the software
context. Many of these have found applying PageRank to
being especially useful in change impact analysis for indicating
globally and locally important elements. Calculating PageRank
values for nodes in our graphs allows us to carry similar

information to the queried sub-graphs—in addition to the
visual information.

D. Previous Work

In our previous work we have introduced a mechanism for
capturing notions about technical debt and displaying them at
both the software implementation level as well as the project
management level [20]. The tool that we have implemented for
this mechanism is an Eclipse development environment plug-in
called DebtFlag. The plug-in allows the use of different propa-
gation models in order to support technical debt accumulation
for implementations where the accumulation process differs
due to e.g. the used implementation technique. We have also
conducted a case study on a refactorization project in order to
explore the various capabilities of technical debt accumulation
and the role of dependency propagation in realizing them [21].
In this, we noted that the number of incoming dependencies
for a module correlates with the number of modifications it
invokes thus indicating that dependency propagation is a driver
in technical debt accumulation, technical debt diminished due
to dependency propagation and that the role of a system com-
ponent explains, to a certain extent, the size and distribution
of technical debt. In addition to this, we have also studied
cohesion metrics in [22].

III. APPROACH

In this section we give an abstract description for our
program visualization approach. We start by defining the graph
components that present program elements and their relations.
This is followed by a description for the semantic analysis
procedure used to capture relations from the target program
and to populate the graph. The complete graph is then laid out
using force-optimization to visualize the information carried
in its directed and weighted edges. Finally, queries can be
made to the complete graph in order to separate sub-graphs to
examine areas of interest.

A. Graph Components

Section II-A introduced cohesion and coupling as indica-
tors of program complexity that base on information regarding
the interdependence of individual program elements. In the first
step of our approach this information is captured in a graph.
The graph nodes represent the program elements and edges
represent their interactions. Regarding the graph’s input into
force-optimization, actual information is carried as node and
edge weights. As per the definitions of cohesion and coupling,
this information constitutes only the degree of dependence
between each program element pair. This leads to the following
definitions for the graph components.

A node is a representation of a program element at an
abstraction level in which explicit dependencies are formed.
The abstraction level is dependent on the source implementa-
tion’s paradigm and technique. For example, the class member
level is considered for the object-oriented paradigm. In object-
oriented implementations dependencies are formed against
interfaces, interfaces are defined as classes, and classes consist
from methods and variables. Hence, the program elements cap-
tured for an object-oriented implementation are the interface-
forming methods and variables (applied in Section IV). Fur-
ther, we note that the definitions of cohesion and coupling do

not differentiate between types of software elements. From the
perspective of force-optimized layout this means that all the
nodes capturing the program elements should exert a uniform
force. Hence, the nodes are left with equal weights and they
only carry the program element’s name as a unique identifier.

Edges capture relationships for all nodes in the graph.
Cohesion and coupling are proportional to the number of
dependencies between program elements. Interpreting this as a
force-optimization problem means that for all program element
pairs, the edge weights between nodes representing them is
equal to the number of references between the elements. As
both elements in a pair may invoke the other, the edges are
directional to capture the two-way connection. When input
to force-optimization, the total force between a node pair is
the sum of directional weights for edges that directly connect
them.

As a special case, a program element may refer to itself.
Here the modeled edge has the same node in both ends.
From the perspective of cohesion and coupling this type of
reference has no value as it does not affect how the element
connects to the surrounding system. Our approach takes this
into account by default. Since the node weights are uniform
and the edge capturing the self-reference is a loop, there is no
observable force outside the node. Hence it can not be taken
into account by force-optimization. This does however become
an issue when applying link structure analysis. For example,
the PageRank algorithm distributes node rank according to
outbound edges. This values the rank of a self-referencing
node a bit higher. As a remedy, loops with length one can
be ignored when calculating these rankings.

B. Software Implementation Graph and Layout

Forming the software implementation graph considers lim-
iting off the implementation area, setting up a semantic pro-
gram code analyzer and laying out the complete graph. These
matters are overgone in the following. To facilitate efficient
application we have provided a solution to automate these steps
after initial user input (see Section IV).

A software implementation graph is a static call graph
where the directed and weighted edges record call directions
and frequencies for the uniform nodes that represent program
elements (as defined in Section III-A). Before forming the
graph, we must dictate which parts of the system will be
considered. Usually this is a trivial matter of drawing the
line between modifiable and unmodifiable components. The
division has a drastic effect on the graph composition as
unmodifiable components usually consist of static libraries
towards which most relationships are introduced. Leaving the
unmanageable assets out focuses the visualization but provides
a less realistic overall picture. Abstract description of the
delimitation allows automatic classification of encountered
components.

After the limitation we are left with a number of source
code files encompassing the target implementation. Large size
calls for automated approaches to determine relationships. A
number of semantic analyzers exist for different programming
languages to overcome this. The expected analysis output is
an Abstract Syntax Tree (AST). The AST captures program
element names and their types. This information can be used

A
+a()
+b()

B
+a()
+b()

C
+a()
+b()
+c()

BG1
+a()
+b()
+c()
+d()

BG2
+a()
+b()

BG3
+a()

BG4
+a()
+b()
+c()
+d()
+e()

BG5
+a()
+b()
+c()

BG6
+a()
+b()

(a) UML class diagram


A.a A.b B.a B.b C.a C.b C.c BGn

A.a ...
A.b 3 ...
B.a 4 ...
B.b 5 ...
C.a 1 ...
C.b 1 2 1 ...
C.c 1 ...
BGn


(b) Relations captured in a sparse matrix

(c) Complete graph laid out with ForceAtlas2
and displaying a context query B.a, B.b

Fig. 1: Example program

to determine relations between them. Consulting the language’s
semantic specification [23] allows to distinguish the abstraction
level discussed in Section III-A and to derive a library of
possible element types. This library can then be used to
transform the AST to a sparse matrix where column and row
headers represent valid program elements and cells capture the
number of directed relations between them.

The sparse matrix (see Figure 1b) is a complete graph
lacking visual representation. To layout the graph, we use the
ForceAtlas2 layout algorithm (see Section II-C). No user input
is required for this step if the chosen default values for running
the layout algorithm are accepted. In our approach we utilize
the Gephi visualization engine and toolkit [24]. It allows us
to convert the sparse matrix in to an in-memory graph and to
automate its layout.

Finally, we may calculate a global importance ranking for
the nodes in the graph in order to highlight interesting areas
prior to context specific querying. PageRank is well supported
by several static analysis tools as well as graph visualization
tools. Figure 1c presents the final layout for the program in
Figure 1a with corresponding PageRank values indicated for
its nodes.

C. Context Querying for Sub-Graph Extraction

The graph formed in Section III-B can be used to make
general observations but observing cohesion and coupling for
a specific program element subset, a context, requires that it is
separated from the system graph. Queries for the discussed
element-level are supported as a default, since the graph
nodes contain the element identifiers. Support for higher level
queries requires that the approach is provided with semantic
knowledge that can be utilized to convert the query back to the
element level. After receiving the context query the separation
is visualized by identifying relationships between the query’s
elements.

Relationships within a context are recorded as shortest
paths between all possible component combinations that form
the context. Use of the shortest paths approach is justified in
that the graph formed in Section III-B is fundamentally a static
call graph. The shortest found path between two elements is

the least interfered demonstration of a relationship for them.
In the case of several shortest paths existing for a pair they are
all are considered. The weights and directions are considered
irrelevant during this process firstly because the information
is already present in the graph layout and secondly because
reference frequency above zero is enough evidence to indicate
existence of a relationship.

Figure 1c represents the complete graph with a query spe-
cific sub-graph extracted from it. The separated and highlighted
graph is the result of applying the shortest path approach
presented in the previous paragraph. The input to this approach
encompasses a context containing two program elements B.a
and B.b. In addition to the query itself, the highlight records
all directly related elements for all paths. The related ele-
ments can be left undisplayed leading to a less obfuscated
visualization but this leaves out the often interesting immediate
neighborhood for this context. Carrying the neighboring nodes
is always done at the cost of clarity.

For displaying the nodes’ immediate neighborhood we
use the following colors. For edges, shortest found paths are
marked with black so as to clearly indicate relations within the
queried context, those representing dependencies to context
nodes are marked red and those representing dependencies
originating from context nodes are marked green.

Now, the red edges capture the ‘change group’ for the query
context. That is, if changes were made to nodes in the query
context and the changes would not be contained within the
nodes themselves, additional changes would propagate through
the relationships indicate by the ‘change group’.

Similarly, the green edges capture the possible ‘root cause
set’. This is the set to which the context nodes are directly
dependent on to. For example, if a query is utilized to discover
a cause for a problem within a certain context, then the
‘root cause set’ should also be considered as the functionality
implemented in the query context is directly dependent on to
and affected by this set. Further coloring, such as gradient
coloring, for the nodes can be used to indicate superimposed
rankings (like PageRank in Figure 1c).

Alpha blending (in Figure 1c) is used to fade out non-
considered parts and to enable comparison between the sub-

graph and the host graph. Allowing relative distances to be
observed for the sub-graph constitutes a major contribution for
this paper. For a force-optimized graph that captures cohesion
and coupling, observing small distances between its nodes
conveys information about high cohesion for it. Similarly, at
a higher level, if a sub-graph forms a hub that is clearly
distinguishable from the host graph then the sub-graph has
captured a context which should be loosely coupled.

IV. APPLICATION

We wanted to trial our approach on a large open source
software project with a well documented development history.
Due to previous experience with the Eclipse project it was
selected. Eclipse Foundation develops an open-source inte-
grated development environment (IDE) that supports editing
and building a multitude of languages. In the following, we
discuss composition of data, building a system wide and
project specific implementation graphs, using bug reports as
query contexts, and the extraction of context specific graphs.

A. Eclipse

The Eclipse platform architecture is built on the concept of
plug-ins. Functionality is provided through them and they can
be extended to introduce user-defined additions. The Eclipse
foundation manages development of core plug-ins and divides
them into sets called products. The core release of Eclipse
with Java-language support encompasses two products: JDT
and Platform. We consider the Eclipse release version 3.0
for our trials.

We capture cohesion and coupling in the Eclipse system by
building a single large graph to encompass the entire system
as well as smaller, more focused graphs. In building the graphs
we follow the process described in Section III-B.

We utilize the services of our DebtFlag plug-in (Section
II-D) to first discover all source components at the valid
abstraction level. The plug-in uses Eclipse’s AST processor to
accomplish the task. Since Eclipse is implemented using the
object-oriented Java language, we identify that all functionality
is implemented in classes. Classes are described by their
interfaces which are constructed from members of varying
visibility. Java Language Specification [23] dictates that these
can be either variables or methods. This corresponds to the
sought after abstraction level and we capture it by generating
a node in the graph for all such occurrences. The DebtFlag is
utilized again to discover all direct use relations between any
two discovered interface parts. All such occurrences are mod-
eled as edges where the weight carries information regarding
invocation frequency for this pair and this direction.

Applying this process for the entire Eclipse’s version 3.0,
yields us with a graph containing 121K nodes and 1.50M
weighted directed edges between them. Iterative construction
of this graph took 36 minutes when running 4 threads on
an Intel Core i5-2410M @ 2.3GHz and 8GB RAM machine.
After completion, the PageRank values can be calculated for
each node to change their coloring to reflect this. Figure 2
presents this graph after 1421 iterations of the ForceAtlas2
algorithm (see Section III-B). The continuous algorithm was
stopped after no movement was perceived between graph
layout iterations. The layout took 17 minutes with the Gephi

#3 Java
 Compiler

#4 Eclipse AST
 Grammar

#6 Eclipse Byte-Code
 Interpreter

#1 Eclipse Event
 System

#2 Eclipse Shell
 Configuration

#5 Eclipse AST

Fig. 2: Complete cohesion and coupling graph for the Eclipse
system. Distinguishable hubs are highlighted

toolkit [24] when running 8 threads on an Intel Core i7-2600K
@ 4.7GHz and 16GB RAM machine.

Since the system wide graph (Figure 2) is very large, we
extract a smaller, more focused, graph encompassing a single
project. For our example, we chose the Debug project, which
is responsible for the JDT.Debug and Platform.Debug
components. This graph is formed by extracting their elements
from the system wide graph. Figure 3 contrasts the extraction
against the system wide graph.

B. Extracting Sub-Graphs

Bugs represent an area for which resolving context cohe-
sion and coupling is of especial interest as this communicates
about the ease of chance for it. Constructing the graphs for
Eclipse’s version 3.0 allowed us to survey the Eclipse bug
database in order to identify candidate bugs. In the following,
we present an example bug, derive a context of interest from
it and finally extract a sub-graph to present cohesion and
coupling for this context.

In Section IV-A we formed a graph for the
Eclipse Debug project. We query the Eclipse bug
tracker for a bug declared for this project and for
version 3.0. Bug number 148965 was chosen for this
example. Initial documentation for this bug declares two
problem elements CompositeSourceContainer.
findSourceElements(..) and PackageFragment
RootSourceContainer.findSourceElements(..).
To identify cohesion and coupling for this context we proceed
as described in Section III-C to form a sub-graph.

In this case, a direct connection exists between the two
context elements resulting in finding a single shortest path with
length one. Figure 4 displays the extraction with context nodes
highlighted against the Debug project’s graph in Figure 3.

Fig. 3: Cohesion and coupling graph for the Debug project

V. ANALYSIS

In Section III we introduced a process to form and layout a
cohesion and coupling aware software implementation graph.
In Section IV we applied this process for the Eclipse imple-
mentation to derive three graphs with increasing accuracy. In
this section, we provide an analysis of the graphs in order to
distinguish advantages and challenges related to the presented
approach.

A. System Wide Graph

The system wide graph was formed in Section IV-A
and depicted in Figure 2. Due to the vastness of Eclipse’s
implementation, we needed to combat against obfuscation (see
Section II-B) when displaying it. This is done via applying a
preview ratio: the layout is derived, as described previously,
for all components but only a fifth of them are displayed. For
dense graphs, this procedure retains global size and measure
information while making the graph more approachable. When
displaying query contexts in smaller graphs, this ratio may
not be applied as position of every node carries valuable
information.

Inspecting the received layout (in Figure 2), we first note
that the graph consists from a number of hubs. Going over
the nodes in the hubs, we note that single hubs capture
program elements that are closely related: program elements
are either from the same class or from a combination of
classes responsible for implementing a shared functionality.
This behavior is expected from a graph capturing cohesion
and coupling.

There is high hub density in the main body of the system
wide graph. Taking into account that the graph captures the
core implementation for the Eclipse system we can expect a
volume of nodes to be close to one another. The high density
does however make the centre of the graph rather obfuscated
and without dynamic highlighting or further node reduction it
is very difficult to observe singular hubs in this area. We do

Fig. 4: Bug #148965 highlighted from the Debug project graph

however observe a number of hubs protruding from the centre
mass.

Figure 2 has six of these outer hubs marked with numbers.
Number one contains elements that form the Eclipse user
interface and resource control event system. Second contains
elements responsible for Eclipse’s shell configuration. Third
contains elements interacting with Java compilers. Fifth and
fourth contain the Eclipse AST and its grammar respectively.
Finally, sixth contains the Eclipse Java byte-code interpreter.
All these hubs share a common trait in implementing a very
specific functionality and we further argue that the hubs
distance from the graphs centre correlates with the level
of independence—that is high cohesion and low coupling—
perceived for each hub.

B. Sub-Graphs

We extracted the Debug project from the system wide
graph and presented the results in Figure 3. As men-
tioned, this project consists from two parts JDT.Debug
and Platform.Debug. The former implements a language
independent debugging model, where as the latter extends on
this to provide Java debugging.

Form of the Debug project’s graph can be explained as
follows. The centre mass consist mainly from implementing
the debugging tools in the user interface. Longer reaching
edges capture queries to the AST, the process and memory
controllers as well as configuration of the debugging shell. All
these interface parts rely on Eclipse’s interface event system
to function and thus a large distinct hub exists at the top of the
graph (see Section V-A). The project graph leads us to argue
that the Debug project does not make unexpected references,
it is tightly coupled with Eclipse’s core implementation and
this results in a low level of intra-project cohesion.

The context specific graph for Eclipse’s bug no. 148965
is presented in Figure 4. The underlying graph is a scaled up
version of the Debug project graph and the query can be seen

highlighted at the bottom. Surveying this graph, we note that
the separated context is at the edge of the project graph. We
would not automatically interpret this as the context being a
less cohesive part of the project but it does lead to another
observation.

Since the context is at the edge we can observe that some
of the green edges could be coming from outside the project
graph. Since the green edges indicate possible root cause
elements (see Section III-C), this can mean that the actual
reason for the bug in question is in another project and it
is just first observed for an element in the Debug project.
Fortunately, similar behavior can not be observed for the red
edges. This means, that when the bug’s elements are modified,
further spawned direct changes in dependents are constrained
within the project.

Lastly, a notion about the context’s cohesion
measures. Our example query consisted from two
program elements CompositeSourceContainer.
findSourceElements(..) and PackageFragment
RootSourceContainer.findSourceElements(..).
While their signatures as well as the found shortest path
of length one indicate close relation, the geometric distance
between the elements—relative to the project graph—remains
large. Observing the geometric distance makes it evident that
these two components, despite their similarities, are actually
coming from two different plug-ins Platform.Debug and
JDT.Debug and as such may require divergent context
knowledge when modified.

VI. DISCUSSION

The previous Section V made a number of observations
based on visual analysis. Here we discuss their implications in
more detail. Regarding the analysis of the system wide graph,
we observed that the approach is capable of separating hubs
that had distinct functional goals. This is an important initial
indication of the approach’s autonomous capability to highlight
structures that are of interest from the perspective of cohesion
and coupling. We demonstrate metric results for this in the
next section.

Further, we were able to make observations regarding
the Debug project’s integration into rest of the system in
addition to deriving additional information for a bug in the
Debug project. These observations show that the single visual
presentation used was capable of letting the user explore
structures ranging from thousands to just singular program
elements. However, use of the ’preview ratio’ for the system
wide graph indicates that, in case of a very large system, the
presentation is prone to edge congestion which obfuscates the
visualization. Improvements to this are currently pursued and
some possibilities are discussed in future work.

Regarding the context queries, the resulting sub-graph for
bug 148965 could be used to argue that 1) the possible root
cause for this problem maybe coming from outside the hosting
Debug project, 2) all modifications spawned from fixing the
bug would be limited to the hosting project and 3) the geomet-
rical distances between the context elements indicated that the
bug encompassed elements that were not very closely related.
All these observations were made based on visually available
information. We interpret lower implementation technique and

context knowledge requirements for the made observations as
an indication of the approach’s intuitiveness.

VII. EVALUATION

We discussed our observations about the approach’s ability
to distinguish structures of interest from the perspective of
cohesion and coupling. In Section V-A we presented the
entire Eclipse system (in Figure 2) and we discussed our
expectations of cohesion and coupling correlating with the
six distinguished hubs. To provide initial evaluation for our
approach, we calculate well established measures of cohesion
and coupling for these hubs.

Table I records cohesion and coupling measures for each
distinguished hub (see Figure 2) as LCOM4 and total couplings
values. In addition to specific hub values there are the values
for all resources in Eclipse. All versions of LCOM (introduced
in Section II-A) produce inversed results: lower ones indicate
higher cohesion. The value range of LCOM4 is [1.0,∞]. The
total couplings measure is the sum of afferent Ac and efferent
couplings Ec.

TABLE I: Cohesion and coupling measures for hubs

Hub # LCOM4 Couplings
Eclipse Event System 1 1,0583333333 41
Eclipse Shell Integration 2 1,0 39
Java Compiler 3 1,0 259
Eclipse AST Grammar 4 1,0333333333 47
Eclipse AST 5 1,35 49
Eclipse Byte-Code Intrp. 6 1,0230769231 44
Mean for all resources 1,0606837607 36,3646723647
St.dev. for all resources 0,171359571 49,7891359905

Inspecting the LCOM4 values for hubs in Table I we
first note that most of them are below the average and very
close to the bottom value of 1.0. This would seem to indicate
that these hubs indeed capture element sets that display high
cohesion and represent the more cohesive areas of the entire
implementation. The fifth hub is an exception to this in being
much less cohesive than its counterparts. On visual inspection,
we can see that the hub in question is closer to the center
mass than the rest of the hubs. We interpret this as Eclipse
AST being more coupled to the core system functionalities
and thus being a less cohesive part on its own account.

We explain this phenomenon as follows. The average
values are calculated for all resources required by the Eclipse
system. The LCOM4 metrics indicate that the average resource
is generally less cohesive than a distinguished hub. This
indicates that the average resource implements more partial
functionalities, while a distinguished hub implements a more
complete and independent functionality. Thus, the system’s
coupling to a hub can be expected to be larger since all
communication to access a functionality is mainly between the
hub and the system. While in the case of an average resource,
the communication extends to all resources that implement
the complete functionality. This is apparent for hub number
three. The Java Compiler is a very independent unit and
its communication consists only from a handful of library
objects (e.g. ASTs) to receive source code and to deliver the
compilation results. While the libraries are very distinctive
and unique dependencies, they are composed from several
hundreds of definitions (e.g. language syntax). Since the hub

has captured the compilers functionality rather well, this is
highlighted in the large coupling value.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated an approach to cap-
turing information for software implementation contexts by
way of utilizing cohesion and coupling aware graphs laid out
using force-optimization. We applied the approach introduced
in Section III to the Eclipse platform in Section IV. The
received graphs were analyzed, discussed, and evaluated in
Sections V, VI, and VII respectively. This section concludes
the paper by discussing challenges, advantages and future work
related to the presented approach.

Program visualization and the mechanics utilized in it still
prove to be challenging and our approach is no exception
from this. Especially, the initial setup for it remains somewhat
cumbersome. The production of graphs requires access to
source code, a preset AST parser, a layout engine and a
visualization library. However, after the initial setup, further
context queries can be served automatically. Another challenge
lies in defining the query contexts. Results produced by the
approach are directly dependent on the provided contexts and
as such the level of expertise in defining them correlates with
attained sub-graph quality.

The advantages do however outweigh the remaining chal-
lenges. Use of force-optimization gives the ability to present
cohesion and coupling in a very intuitive manner. The found
natural layout provides visual emphasis for structures of
importance. This allows even inexperienced users to make
observations regarding software modifiability. Context queries
to such graphs produce a medium in which it is efficient and
easy to communicate about matters that would otherwise call
for rigorous analysis of program dependency structures.

Ability to visualize and explore the system should prove
useful when large and obfuscated systems are explored. The
approach is being integrated into our DebtFlag tool [20] in
order to introduce it as part of daily development activities.
This also allows us to introduce interaction capabilities like
dynamic highlighting, direct source code access and metrics
driven partitioning to reduce edge congestion and increase
clarity. Regarding research use, we are very interested in
conducting studies to see if the highlighted structures can be
associated with well known architectural patterns (e.g. Model-
View-Controller) and problems related to them. This could also
allow their identification even from fully obfuscated sources.

REFERENCES

[1] T. Ball and S. G. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 33–43, 1996.

[2] B. Price, R. Baecker, and I. Small, “An introduction to software
visualization,” in Software Visualization, J. Stasko, J. Domingue, M. H.
Brown, and B. A. Price, Eds. Cambridge MA, MIT Press, 1998, pp.
4–26.

[3] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[4] S. R. Chidamber and C. F. Kemerer, Towards a metrics suite for object
oriented design. ACM, 1991, vol. 26, no. 11.

[5] A. Henderson-Sellers, Z. Yang, and R. Dickinson, “The project for
intercomparison of land-surface parameterization schemes,” Bulletin of
the American Meteorological Society, vol. 74, no. 7, pp. 1335–1349,
1993.

[6] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, 1994.

[7] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-
oriented systems,” in Proceedings of the International Symposium on
Applied Corporate Computing, vol. 50, 1995, pp. 75–76.

[8] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[9] P. Caserta and O. Zendra, “Visualization of the static aspects of
software: a survey,” Visualization and Computer Graphics, IEEE Trans-
actions on, vol. 17, no. 7, pp. 913–933, 2011.

[10] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007. 4th IEEE International Workshop on. IEEE, 2007, pp. 92–99.

[11] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing. ACM, 2005, pp. 214–223.

[12] R. Koschke, “Software visualization for reverse engineering,” in Soft-
ware Visualization. Springer, 2002, pp. 138–150.

[13] Y. Hu, “Efficient, high-quality force-directed graph drawing,” Mathe-
matica Journal, vol. 10, no. 1, pp. 37–71, 2005.

[14] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,” in
Proceedings of the 2003 ACM symposium on Software visualization.
ACM, 2003, pp. 77–ff.

[15] M. Jacomy, S. Heymann, T. Venturini, and M. Bastian, “Forceatlas2,
a continuous graph layout algorithm for handy network visualization,”
Medialab Center of Research 560, 2011.

[16] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software: Practice and experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[17] A. Noack, “Energy models for graph clustering.” J. Graph Algorithms
Appl., vol. 11, no. 2, pp. 453–480, 2007.

[18] J. Barnes and P. Hut, “A hierarchical o (n log n) force-calculation
algorithm,” Nature, vol. 324, pp. 446–449, 1986.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Tech. Rep. 66, 1999.

[20] J. Holvitie and V. Leppänen, “DebtFlag: Technical Debt Management
with a Development Environment Integrated Tool,” in Managing Tech-
nical Debt (MTD), 2013 Fourth International Workshop on. IEEE,
2013.

[21] J. Holvitie, M.-J. Laakso, T. Rajala, E. Kaila, and V. Leppänen, “The
role of dependency propagation in the accumulation of technical debt
for software implementations,” in 13th Symposium on Programming
Languages and Software Tools, k. Kiss, Ed. University of Szeged,
2013, p. 6175.

[22] S. Mäkelä and V. Leppänen, “Client-based cohesion metrics for java
programs,” Science of Computer Programming, vol. 74, no. 5, pp. 355–
378, 2009.

[23] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java (TM) Language Spec-
ification, The (Java (Addison-Wesley)). Addison-Wesley Professional,
2005.

[24] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source soft-
ware for exploring and manipulating networks,” 2009. [Online]. Avail-
able: http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

