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a b s t r a c t

A numerical procedure based on the method of lines for time-dependent electrodiffusion transport has
been developed. Two types of boundary conditions (Neumann and Dirichlet) are considered. Finite differ-
ence space discretization with suitably selected weights based on a non-uniform grid is applied. Consis-
tency of this method and the method put forward by Brumleve and Buck are analysed and compared. The
resulting stiff system of ordinary differential equations is effectively solved using the RADAU5, RODAS
and SEULEX integrators. The applications to selected electrochemical systems: liquid junction, bi-ionic
case, ion selective electrodes and electrochemical impedance spectroscopy have been demonstrated. In
the paper we promote the use of the full form of the Nernst–Planck and Poisson (NPP) equations, that
is including explicitly the electric field as an unknown variable with no simplifications like electroneu-
trality or constant field assumptions. An effective method of the numerical solution of the NPP problem
for arbitrary number of ionic species and valence numbers either for a steady state or a transient state is
shown. The presented formulae – numerical solutions to the NPP problem – are ready to be implemented
by anyone. Moreover, we make the resulting software freely available to anybody interested in using it.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Mass and charge transport processes play an important role in
different areas of science. In electrochemistry they are extensively
used for the description of membrane potentials and concentration
profiles. Particular application of this description is the field of ion
selective electrodes (ISEs) and molten salts. In engineering prob-
lems the behaviour of porous materials is affected by the transport
of ions due to concentration gradients. These mechanisms of ionic
diffusion in porous media which appear, for example in the filtra-
tion by ion exchange membranes and the transport of pollutants in
soils, have received a great deal of attention from chemical and
geological engineers. The process of ionic diffusion remains of pri-
mary importance in many civil engineering problems since the
long-term durability of many building materials, such as concrete,
is directly effected by the transport of chemical species [1]. In
semiconductor field the transport of charged species was consid-
ered from the very beginnings of this discipline. Workers in this
ll rights reserved.

: +48 12 617 24 93.
field developed many powerful techniques but usually directed
to solve its specific problems (two species and steady-state). The
membrane processes involving charge transport are also of vital
importance in cell biology since they support homeostasis of living
organisms.

All these processes (ionic diffusion in porous media, electro-
chemical and biological membranes as well as electrons and holes
transport in semiconductors) can be described using Nernst–
Planck and Poisson (NPP) system of partial differential equations
with suitable initial and boundary conditions. Although, tools for
modelling individual applications are described in literature yet,
they are not easy to get. Some of them are commercial (e.g., COM-
SOL), some use commercial computation environments (e.g., Math-
ematica, Mathcad, MATLAB), and others require to buy the
commercial specialised numerical libraries (like DiffPack, NAG,
IMSL, etc.).

In this paper we will promote the use of full form of NPP equa-
tions, i.e., including explicitly the electric field as an unknown var-
iable. We will present an effective method of numerical solution of
NPP problem for arbitrary number of ionic species and valence
numbers, both for steady and transient states. A new discretization

http://dx.doi.org/10.1016/j.commatsci.2012.05.054
mailto:rof@agh.edu.pl
http://dx.doi.org/10.1016/j.commatsci.2012.05.054
http://www.sciencedirect.com/science/journal/09270256
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scheme is presented and its consistency is analysed. Two types of
boundary conditions are considered: (1) Neumann-like boundary
conditions for fluxes–known in electrochemistry as Chang–Jaffé
boundary conditions and (2) Dirichlet boundary condition for con-
centrations. Obtained formulae – expressions for numerical solu-
tion to NPP problem – can be used by anyone interested to
implement them on their own. Moreover we make the resulting
software available to anybody interested in using it.

The plan of this paper is as follows. We start from the short
introduction to NPP equations with Dirichlet and Neumann-like
boundary conditions. A method of lines using new space discreti-
zation scheme is described and used for obtaining numerical solu-
tion of initial-boundary value problem for the NPP system. This
method is tested for a binary electrolyte case, where an analytical
solution for transient state is available. The use of the software for
solving liquid junction and bi-ionic cases is also demonstrated.
Application to ion-selective electrodes are shown and compared
with experimental results. Generation of impedance spectra based
on the time dependent solution of NPP problem is also presented.

2. Mathematical model

The multi-layer NPP model describes a system consisting of a
layers, each corresponding to a different phase Fig. 1. This transient
model of electrodiffusion allows a description of the evolution of
ionic concentrations and electric potential profiles in time, and is
often used in modelling of transport in liquid and solid electrolytes,
melted salts, oxide scales, etc. In this model, diffusion and migra-
tion of ions are governed according to the Nernst–Planck (NP) flux
expression, while the Poisson (P) equation describes the electrical
interaction of the species. However, it is convenient to replace the
Poisson equation by the displacement current equation as
described by Cohen and Cooley [2]. All these equations form the
following system of evolutionary nonlinear partial differential
equations (PDEs) for r components and a layers:
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where the expression for the Nernst–Planck flux (constitutive rela-
tion) is
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In the above equations cj
i – the molar concentration of i-th com-

ponent in j-th layer, Ej – the electric field in j-th layer, IðtÞ – the
electrical current density, ej – dielectric constant of j-th layer,
kj�1; kj – the boundaries of j-th layer, zi – the valence number of
Fig. 1. Schematic representation of the sys
i-th component, tEND – duration of the process, and F;R; T have their
usual meanings (the Faraday constant, gas constant and absolute
temperature).

For completeness, the above system of PDE must be accompa-
nied by boundary and initial conditions. The initial conditions
consist of given concentration profiles and electric field:

cj
iðx;0Þ ¼ cj

0;iðxÞ; Ejðx;0Þ ¼ E0ðxÞ; for x 2 ½kj�1; kj�;
i ¼ 1; . . . ; r; j ¼ 1; . . . ;a: ð3Þ

E0ðxÞ is assumed to be zero for all x except in the case of imped-
ance spectra simulations. In simulations we used electroneutral
initial profiles, although it is not necessary.

The boundary conditions may be of various types. In this paper
we use two types of boundary conditions. The first are the
Neumann-like boundary conditions for fluxes [3], known in elec-
trochemistry as Chang–Jaffé boundary conditions. The first order
heterogeneous rate constants~kj

i; k
 

j
i are used to describe the kinetics

at the interface x ¼ kj between the layers j and jþ 1:
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The above equation is a special case of Butler–Volmer equation,
when the overpotential equals zero [4].

The second possibility (basically for single-layer problems,
a ¼ 1) is the standard Dirichlet boundary conditions for
concentrations

c1
i ðk0; tÞ ¼ ci;L ¼ const;

c1
i ðk1; tÞ ¼ ci;R ¼ const for i ¼ 1; . . . ; r;

ð5Þ

where ci;L; ci;R are the left and right bulk concentrations [5,6]. The
use of both types of boundary conditions will be presented for li-
quid junction case.

Scaling and dimensionless variables The presented problem
contains many physical parameters. By introducing dimensionless
variables, the number of these parameters can be reduced. More-
over, by finding the proper scaling factors it is possible to identify
the relative contribution of the various terms in the equations. This
may be used to obtain better accuracy in numerical procedures.
Thus, the Eqs. (1)–(5) may now be converted into a dimensionless
form [7] through the following transformations:

�x :¼ x=xs; �t :¼ t=ts; �cj
ið�x;�tÞ :¼ cj

iðxs�x; ts�tÞ=cs;
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i; E
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i; E

j
i are physical and dimensionless values

of distance, time, concentration and electric field respectively;
xs; ts; cs; Es are their characteristic values (scaling factors). Dimen-
sionless parameters take the form: Dj
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From this point on, we use the rescaled variables in all equa-

tions and the overbars are dropped to ease the burden of notation.
tem for NPP model of electrodiffusion.
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The following set of equations express the dimensionless model of
electrodiffusion:
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where the rescaled flux is given as Jj
i ¼ �Dj
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rescaled diffusion coefficient, Kj is defined by: Kj ¼ csxsF=
ðEsejÞ; Es ¼ RT=ðFxsÞ and F; R; T; ej have their usual meaning.

Rescaled initial and boundary conditions take the form given by
Eqs. (3)–(5).

2.1. Numerical method

Some numerical treatments of the Nernst–Planck and Poisson
equations (NPP) lead to the problem of solving a system of ordinary
differential equations (ODEs) dy

dt ¼ f ðt; yÞ, where f : Rn ! Rn;

y ¼ yðtÞ 2 Rn. The numerical procedures for ODEs can be broadly
divided into two categories: explicit and implicit [7–9]. In explicit
methods the passage from time tk to tkþ1 ¼ tk þ Dt is carried out
simply by one-step evaluation of expression which is defined by
the method. This can be exemplified by the explicit Euler
method where advancement tk ! tkþ1 is performed as follows:
ykþ1 ¼ yk þ Dt � f ðtk; ykÞ. We see that this is just equivalent to
evaluation of f ðt; yÞ for t ¼ tk and y ¼ yk. On the other hand, in
the implicit methods, obtaining the approximation of the solution
for tkþ1 ¼ tk þ Dt requires solving a system of (usually) nonlinear
equations. For example, to obtain ykþ1 in the implicit Euler method,
the following equation: ykþ1 ¼ yk þ Dt � f ðtkþ1; ykþ1Þ must be solved
with respect to ykþ1.

In 1965 Cohen and Cooley [2] were the first who developed a
numerical procedure for the time dependent NPP using explicit
method. In 1975 Sandifer and Buck [10] introduced a mixed impli-
cit (for electric field) and explicit (for concentration) method sim-
ilar to that of Cohen and Cooley [2]. However, due to explicit
nature of concentration calculation their method suffered from
very small time step of integration and consequently was time-
consuming. The same equations as NPP are used to describe trans-
port processes in semiconductor devices. Of particular interest in
that area is the procedure put forward by Scharfetter and Gummel
[11]. These authors used an improved flux equation obtained by
integration with respect to the concentration of the Nernst–Planck
equation while holding the flux and electric field constant in each
volume element. The time step integration was performed using
Crank–Nicolson method [12]. A substantial contribution to numer-
ical treatment of NPP with applications to membrane electrochem-
istry is a seminal paper by Brumleve and Buck (1977) [5]. These
authors developed an efficient finite difference simulation proce-
dure for multi-component NPP equations using fully implicit time
scheme that was subsequently solved by the Newton–Raphson
technique [8]. Their approach has been used by many authors since
[6,13–15]. However the question of convergence of Brumleve and
Buck method was not analysed. As the authors wrote ‘‘(. . .) deriva-
tion of the truncation error for the complete non-linear system is
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Fig. 2. Space grid for electrodiffusion problem, where Jj;k
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beyond the scope of this treatment’’. It means that the authors as-
sumed the procedure is consistent and the simulations they per-
formed just confirm that assumption. In this paper a new
discretization scheme is presented, its consistency is analysed
and compared to that of Brumleve and Buck.

The method of lines [16] will be employed to solve numerically
the ODEs system resulting from the space discretization of the NPP
equations. Generally, non-uniform grids are used. This allows a
better approximations in areas where larger gradients of profiles
are expected. For example in a typical ISE modelling a denser grid
near boundaries is used – see details in Appendix B. The grid non-
uniformity requires the use of finite differences with properly se-
lected weights [7], Chap. 3, [17,18]. The concentrations are defined
at points yj;k while the electric field and fluxes at points xj;k (Fig. 2).
Each point yj;k is placed in the middle of the interval ½xj;k�1; xj;k�,
hence yj;k ¼ 1

2 ðxj;k�1 þ xj;kÞ. Some authors use different notations,
namely xj;k�1=2 ¼ 1

2 ðxj;k�1 þ xj;kÞ.
The finite difference approximation of continuity equation

which corresponds to the above grid for internal nodes reads

dcj;k
i

dt
ðtÞ :¼ @cj

i

@t
ðyj;k; tÞ ¼ �

@Jj
i

@x
ðyj;k; tÞ � �

Jj
iðxj;k; tÞ � Jj

iðxj;k�1; tÞ
hk�1

;

Jj;k
i ðtÞ ¼ Jj

iðxj;k; tÞ ¼ �Dj
i

@cj
i

@x
ðxj;k; tÞ � zic

j
iðxj;k; tÞEjðxj;k; tÞ

 !

� �Dj
i 2

h2
j;k�1cj;kþ1

i � h2
j;kcj;k

i þ ðh
2
j;k � h2

j;k�1Þc
j;k
i

hj;k�1hj;kðhj;k�1 þ hj;kÞ
� zic

j
iðxj;k; tÞEj;k

 !

� �Dj
i 2

h2
j;k�1cj;kþ1

i � h2
j;kcj;k

i þ ðhj;k � hj;k�1Þðhj;kcj;k
i þ hj;k�1cj;kþ1

i Þ
hj;k�1hj;kðhj;k�1 þ hj;kÞ

 

�zi
hj;kcj;k

i þ hj;k�1cj;kþ1
i

hj;k�1 þ hj;k
Ej;k

!
for i ¼ 1; . . . ; r; j ¼ 1; . . . ;a and

k ¼ 1; . . . ; Nj � 1: ð8Þ

and for boundary nodes the one-sided non-uniform finite differ-
ences (Appendix A) are used
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where cj;k
i ¼ cj

iðyj;k; tÞ; E
j;k ¼ Ejðxj;k; tÞ and Jj;k

i ¼ Jj
iðxj;k; tÞ. The space

derivative of the concentration at xj;k was approximated by a
three-point non-uniform finite difference (Appendix A) and the con-
centration at xj;k by a weighted linear combination of the neigh-

bouring concentrations as follows cj
iðxk; tÞ � hj;kcj;k

i þ hj;k�1cj;kþ1
i

� �
=

ðhj;k�1 þ hj;kÞ (Fig. 2). This type of discretization ensures that space
local truncation error is of second order (cf. Britz 7, Sec. 3.8).

The finite difference approximation of displacement current
equation corresponding to the grid (Fig. 2) reads
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Case 1: Neumann-like boundary conditions
The flux at the boundary is given by the Chang–Jaffé formula
J0
i � �
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i ¼ Jjþ1;0

i ¼~kj
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j;N
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i ðkj; tÞ: ð11Þ
The Chang–Jaffé boundary conditions are the special case of Butler–
Volmer boundary conditions with zero overpotential.

Case 2: Dirichlet boundary conditions
These conditions considers constant concentrations at the
boundaries, therefore can be used for one layer system only,
otherwise we would obtain independent system for each layer.
In order to ease the burden of notation, from now on and for all
cases where only one layer is considered, index j ¼ 1 is omitted
(e.g. ck

i ¼ c1;k
i ;hk ¼ h1;k). For boundary nodes concentrations are

given
c0
i ¼ ci;L; cN

i ¼ ci;R for i ¼ 1; . . . ; r ð12Þ
and the fluxes at the boundary are discretized as follows
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The above discretization leads to the system of ordinary differen-
tial equations (ODEs) in time variable. Due to stiffness nature of this
ODEs special integrators are needed (e.g., RADAU5 (Radau IIA) [19],
Gear [20], Rosenbrock [21]).

2.2. Local truncation error

A fundamental issue of any numerical procedure is the question
of convergence. While we cannot claim that convergence was
proved here it is expected that one of the factors that may have
impact on the quality of such procedure is the order of local trun-
cation error (LTE). This is due to the fact that for the finite differ-
ence approximation of the linear parabolic PDEs one can use the
fundamental Lax theorem [22], which states that for such equa-
tions the convergence of the discretisation scheme is equivalent
to its consistency and stability. The NPP system is of course nonlin-
ear, hence this theorem does not apply to it. Nevertheless it is rea-
sonable to assume that the higher the order of LTE the better
convergence is to be expected. The local truncation error LTE is a
grid function defined as follows: if (c, E) is the true solution of
the NPP problem (7), then we can calculate the value of the finite
difference expression (e.g. (8)) after substituting into it the values
taken from this true solution (i.e. cj;k

i ðtÞ ¼ cj
iðyk; tÞ and so on). Now

the LTE defined as the difference between such calculated value
and the value of the right-hand side of the Eq. (7) evaluated using
ðc; EÞ (the true solution). In other words the LTE measures the error
introduced by the evaluating the finite difference expression in-
stead of evaluating the right-hand side of the equations (which
contains derivatives). Derivation of the LTE both for Brumleve–
Buck [5] and our approach was carried out revealing the following
estimates.

Brumleve Buck : LTE ¼ O
2ðhj;k�1 þ hj;kÞ

hj;k�2 þ 2hj;k�1 þ hj;k
� 1

� �
þ OðdÞ;

Our method : LTE ¼ Oðhj;k � hj;k�1Þ þ Oðd2Þ;
ð14Þ
where d ¼ maxfhj;kg. Thus, for our method limd!0LTE ¼ 0; which
means consistency. In the case of Brumleve–Buck limd!0LTE ¼ 0
but only if additional conditions are imposed (e.g., hj;k=hj;k�1 ! 1Þ.
Moreover the LTE approximation is one order higher for our meth-
od. (Notation gðxÞ ¼ Oðf ðxÞÞmeans that there exists M > 0 such that
jgðxÞj 6 M � f ðxÞ).
2.3. Computer implementations

Discretization formulae shown in (8)–(13) are sufficiently de-
tailed to allow anyone interested to implement the computations.
However, due to the stiffness nature of this ODEs a special integra-
tor is needed. The source of the stiffness is connected with the
method of lines which tends to produce this phenomena for diffu-
sion terms [23]. In this paper three different integrators have been
used: RADAU5 [9], RODAS [21], and SOULEX [9]. The first two are
based on the special types of implicit Runge–Kutta methods and
the third is based on the extrapolation applied to linearly implicit
Euler method.

Their time performance for typical electrodiffusion problems
has been presented in [24]. It can be noted that none of them is
suitable for all cases. For the cases of ISE and bi-ionic systems
the best performance was exhibited by the SEULEX solver, while
for the liquid junction it was the RODAS solver. Comparisons of
the integrators’ performance show that in many cases the most
efficient one is the SEULEX algorithm. However, the performance
may strongly depend on the specific values of physical parameters,
e.g. boundary concentrations or heterogeneous rate constants.

Following our idea of taking into account the electric field in
electrochemical simulations we make a C++ implementation avail-
able free of charge for anyone interested in this field. For a single-
layer system a computer software (including full source code)
being a part of CADA environment (Computer Aided Diffusion
Analysis) may be downloaded from http://www.cada.agh.edu.pl
3. Applications

In this section the presented method of the numerical solution
to the NPP problem is tested for various cases: liquid junction,
bi-ionic case, and ion selective electrode. Two types of boundary
conditions are used: Dirichlet and Neumann-like. The results of
calculation obtained from our method are compared with an
analytical solution, the results of other authors (different
methods), and with experimental data.

3.1. Liquid junction potential

The numerical method was tested for historically important re-
sults, that is the junction potentials formed over a ‘‘watery contact
zone’’. The concept of the liquid junction was developed by Nernst
[25] and Planck [26]. Recent review of work concerned with anal-
ysis and simulation of liquid junction potentials can be found in
[27].

A watery contact zone may be described as an imaginary bar-
rier, of limited width, separating two different bathing solutions
possessing the same physical characteristics as water. This ap-
proach, used by Planck [26,28], has been widely used ever since.
Dickinson et al. [27] in their recent work presented alternative

http://www.cada.agh.edu.pl


Table 1
Liquid junction potentials for different sample solutions at 298 K. Values calculated
according to Henderson, Planck, the evolutional method described by Sokalski and
Lewenstam [29], as well as our method.

Right bulk solution – 3.5 M KCl

Left bulk
solution (M)

Liquid junction potential (mV)

Henderson
method

Planck
method

Method 1
[29]

This
method

KCl 1 0.220 0.220 0.2 0.220
0.1 0.624 0.624 0.6 0.626
0.01 1.028 1.028 0.9 1.032
0.001 1.432 1.432 0.9 1.431

NaCl 1 �1.927 �1.893 �1.9 �1.895
0.1 0.211 0.204 0.2 0.205
0.01 0.987 0.962 0.8 0.966
0.001 1.452 1.423 1.4 1.422

CaCl2 0.5 �3.748 �3.5 �3.547
0.05 �0.178 0.2 �0.163
0.005 0.915 0.9 0.850
0.0005 1.431 1.4 1.350

HCl 1 15.091 16.206 16.2 16.176
0.1 4.154 4.900 4.9 4.913
0.01 1.504 1.776 1.5 1.783
0.001 1.345 1.536 1.0 1.536

NaX 1 6.829 5.839 5.8 5.846
0.1 1.976 1.633 1.6 1.638
0.01 1.389 1.187 1.2 1.192
0.001 1.643 1.454 1.4 1.454

Where X� is a large anion having low diffusion coefficient – ‘‘protein’’.
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approach. Instead of the unphysical barrier [15], they used a
dynamically moving junction of two liquids in linear semi-infinite
space.

In this paper, the steady state values obtained by our method at
‘‘infinite time’’ are compared with the published values according
to Planck, Henderson, and the evolutional method described by
Sokalski and Lewenstam [29].

Planck method [26,28]. Planck considered single charged
ions, zi ¼ �1 and assumed electroneutrality,

P
ic
þ
i ðxÞ ¼

P
ic
�
i ðxÞ

for 0 6 x 6 d. Using the Dirichlet boundary conditions,
cið0Þ ¼ ci;L; ciðdÞ ¼ ci;R; he derived the formula for a steady-state
diffusion potential1:

U ¼ RT
F

ln n; ð15Þ

where n is a solution of the following non-linear transcendental
equation:

nuþR � uþL
u�R � nu�L

¼ ln c � ln n
ln c þ ln n

nc � 1
c � n

; ð16Þ

with uþL ¼
P

ic
þ
i;LDþi ;u

�
L ¼

P
i c�i;LD�i ;u

þ
R ¼

P
ic
þ
i;RDþi ;u

�
R ¼

P
ic
�
i;RD�i ;cL ¼Pr

i¼1ci;L;cR ¼
Pr

i¼1ci;R;c¼ cR=cL.
The Henderson method [30,31] gives an expression for a mem-

brane potential [4], based on the assumption that concentrations
at a steady state in the membrane are linear in space

ciðxÞ ¼ cið0Þ þ ðciðdÞ � cið0ÞÞx=d; ð17Þ

and that the electric current is null (‘‘zero-current’’) at such state:P
iziJi ¼ 0. This equation combined with (2) and (17) gives the

well-known formula:

U¼�
Z d

0
EðxÞdx¼�RT

F

Pr
i¼1ziDiðciðdÞ� cið0ÞÞPr
i¼1z2

i DiðciðdÞ� cið0ÞÞ
ln

Pr
i¼1z2

i DiciðdÞPr
i¼1z2

i Dicið0Þ

 !
:

ð18Þ

The Planck equation reduces to the form equivalent to the
Henderson equation in two following cases: (1) a junction of two
Aþ X� solutions of different concentrations and (2) a junction of
two solutions Aþ X� and Bþ X� with common concentration. This
corresponds to liquid junction type 1 and 2 in Lingane’s classifica-
tion [32].

The Sokalski–Lewenstam method [6,29]. Liquid junction potential
is calculated as an asymptotic steady-state solution of the time-
dependent NPP problem assuming ‘‘infinite’’ heterogeneous rate
constants. They used an implicit Euler time discretization scheme
and conditionally consistent space discretization (first applied by
Brumleve and Buck [5]). In this method an arbitrary time step is
chosen. The resulting system of non-linear algebraic equations is
solved using Newton–Raphson method [8]. Software has been
written in C++ using DiffPack numerical library [33].

Our method. Liquid junction potential is obtained as an asymp-
totic steady-state solution of time-dependent NPP problem for
‘‘infinite’’ heterogeneous rate constants. We use method of lines
with new unconditionally consistent space discretization which
is one order of approximation higher than used by Brumleve and
Buck [5]. The resulting system of non-linear ordinary differential
equations (Cauchy problem) was solved using RADAU5 subroutine
[9,19] with adaptive time step. The details of the method are pre-
sented in the section ‘‘Numerical method’’. The corresponding soft-
ware has been written in C++ and linked with FORTRAN code for
RADAU5 subroutine.
1 Planck’s original deriviation is quite complicated. Morf (in Anal. Chem., 1977,
49(6), pp 810–813) presented a much simpler derivation and without restriction to
monovalent ions.
Calculated diffusion potential for different solutions and concen-
trations are compared in Table 1. The diffusion potential was calcu-
lated using the following data: one layer, temperature T = 298.16 K,
junction thickness d = 200 lm, dielectric permittivity e=7.08� 10-10

J-1 C2 m�1 ðer ¼ 80 for H2OÞ and diffusion coefficients (in m2 s�1):
DKþ ¼ 1:98� 10�9; DNaþ ¼ 1:35� 10�9; DCa2þ ¼ 7:98� 10�9;DHþ

¼ 7:98� 10�9; DCl� ¼ 2:01� 10�9; and DX� ¼ 10�11 m2 s�1. For
every ion all the rate constants were equal ~ki ¼ k

 
i ¼ 100 m� s�1;

value big enough so that the process is controlled by diffusion. Uniform
initial concentration profiles and electric field distribution in the
junction were assumed as follows: ciðx;0Þ ¼ 0 for i ¼ 1; . . . ; r and
Eðx;0Þ ¼ 0 for x 2 ½0; d�.

One can notice that in the KCl/KCl case (Table 1), which is Ling-
ane’s type 1 liquid junction, Planck and Henderson equations give
the same values. NPP results agree with these values. Furthermore
calculated concentration profiles show the linearity – Fig. 3a. For
the KCl/HCl case (Lingane’s type 3) the calculated results of diffu-
sion potentials are closer to the Planck solution. This results from
the fact that for ions having appreciably different diffusion coeffi-
cients the resulting steady-state concentration profiles are not
linear, and this is contrary to the Henderson assumption – Fig. 3b.

The time-dependent potential response of liquid junction was
investigated, using the 10�6 M KCl=3:5 MKCl system. The same
data as above, but with Heaviside type initial concentration
profiles:

ciðx;0Þ ¼
ci;L for 0 6 x < 1

2 d;

ci;R for 1
2 d < x 6 1

2 d:

(
ð19Þ

with ci;L ¼ 10�6 and ci;R ¼ 3:5M were used for calculations.
Evolution of the electric potential in this case was shown in

Fig. 4 in the logarithmic and linear scales. The time-dependent
response can be systematically divided into four stages. First the
deviation from electroneutrality (Fig. 5a) and the consequent
change of the electric field profiles (Fig. 5b) occurs close to the con-
tact of the solutions, until the value of the electric field reaches the



1000

2000

3000

4000
 This method
 Henderson

c K+
, m

ol
/m

3

x, μm
0 50 100 150 200 0 50 100 150 200

0

500

1000

 This method
 Henderson

c H
+,

 m
ol

/m
3

x, μm

(a) (b)

Fig. 3. Liquid junction. (a) Calculated potassium ions concentration profiles for 1 M KCl/3.5 M KCl (left) and (b) protons concentration profiles at steady state for 1 M HCl/
3.5 M KCl (right). Calculations using NPP (at steady state) and Henderson models.

0

1

2

3

t1
t2

t3
t4

t5 t6t7

t8
t9
t10 t11 t12

Φ
, m

V

t, s
1E-13 1E-10 1E-7 1E-4 0,1 100 100000 0,00 0,02 0,04 0,06 1 2 3

0

1

2

3
t6 t7 t8 t9

t10

Φ
, m

V

t, s

Fig. 4. Liquid junction potential as a function of time in (a) logarithmic and (b) linear scale.

80 J.J. Jasielec et al. / Computational Materials Science 63 (2012) 75–90
maximum. Secondly the deviation from electroneutrality and con-
sequently the change of the electric field propagate through the
system, while their maximum values decrease and the position
of maxima moves away from the centre of the junction – Fig. 5b
and d. In this stage the potential is convergent to a certain value,
as can be clearly seen in Fig. 4b. This value corresponds to the value
of the steady state potential in the approach of Dickinson et al.
[27], who described the liquid junction in the infinite space (no
boundaries). After the deviation from electroneutrality and con-
senquently the change of electric field reach the boundary
(Fig. 5c and d), the third stage begins and the values of maximum
deviation from electroneutrality close to the boundary and the
electric field at the boundary Eð0; tÞ increases (Fig. 5e and f). When
they reach their maximum values, the steady state occurs and the
fluxes are constant across the system (in the presented case
JKþðx;tÞ¼ JCl�ðx;tÞ¼3:49�10�2 mol�m�2 s�1 for t P t11 and x2½0;d�).

The NPP model does not differentiate between the boundary
and diffusion potential. In Fig. 6, we present the contribution of
these two types of potential to the whole steady-state potential
of the membrane in the case of 1 M NaCl=3:5 M KCl: As can be
seen, the diffusion potential accounts significantly to the overall
potential and cannot be ignored even at the steady state.
3.2. Test of the numerical method in time domain

Binary electrolyte can be useful for testing any numerical meth-
od because in this case an analytical approximate solution can be
derived and compared with numerical one. This case deals with
one phase, monovalent binary system, with no external current
applied IðtÞ ¼ 0, and equal values of concentrations at the bound-
aries c1ð0; tÞ ¼ c2ð0; tÞ ¼ cL; c1ðd; tÞ ¼ c2ðd; tÞ ¼ cR. In this case, the
dimensionless system of the NPP equations is as follows:
@c1
@t ¼ D1

@2c1
@x2 � D1

@ðc1EÞ
@x ;

@c2
@t ¼ D2

@2c2
@x2 þ D2

@ðc2EÞ
@x ;

e @E
@x ¼ c1 � c2 for x 2 ½0;d�; t > 0;

8>><
>>: ð20Þ

with the boundary conditions

c1ð0; tÞ ¼ c2ð0; tÞ ¼ cL; c1ðd; tÞ ¼ c2ðd; tÞ ¼ cR;

e @E
@t � D1

@c1
@x þ D2

@c2
@x þ ðD1c1 þ D2c2ÞE

� �
x¼d ¼ 0:

(
ð21Þ

This initial-boundary value problem after inserting e = 0 results in
the system (23)–(26). But, is this procedure meaningful in some
way? Yes, because it gives the leading term approximation in the
perturbation theory [34] applied to the NPP problem (20) and
(21). Namely, it may be proved that for times t � e the solution
can be expressed as an asymptotic expansion

c1ðx; tÞ ¼
X1
n¼0

c1;nðx; tÞen; c2ðx; tÞ ¼
X1
n¼0

c2;nðx; tÞen;

Eðx; tÞ ¼
X1
n¼0

Enðx; tÞen: ð22Þ

The substitution of (22) into (20) and (21) yields the sequence of
boundary-initial value problems for each order of e. The term of
order e0 (which is just the same as the system obtained by inserting
e ¼ 0Þ reads:

@c
@t ¼ D1

@2c
@x2 � D1

@ðcEÞ
@x ;

@c
@t ¼ D2

@2c
@x2 þ D2

@ðcEÞ
@x ; for x 2 ½0; d�; t > 0;

(
ð23Þ

where c ¼ c1;0 ¼ c2;0 and E ¼ E0. Because dimensionless e is small
(usually on the order of 10�8Þ we see that the leading term in
(22) gives a good approximation to the solution of the original prob-
lem (20). The above system may be easily solved as follows.
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Multiplying the first equation by D2, second by D1 and then
adding both gives
@c
@t
¼ D

@2c
@x2 ; ð24Þ

where D ¼ 2D1D2=ðD1 þ D2Þ. On the other hand if we subtract both
equations in (23) we get

@

@x
D1

@c
@x
� cE

� �
� D2

@c
@x
þ cE

� �� �
¼ 0;

for x 2 ½0; d�; t > 0:
ð25Þ

Boundary conditions become

cð0; tÞ ¼ cL; cðd; tÞ ¼ cR;

ðD2 � D1Þ @c
@xþ ðD1 þ D2ÞcE

� �
x¼d ¼ 0;

(
ð26Þ

and the typical initial condition for liquid junction potential simula-
tion is described with Heaviside type function (19). Eqs. (25) and
(26) imply

ðD1 � D2Þ
@c
@x
� ðD1 þ D2ÞcE ¼ 0;

which may be rewritten as
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Eðx; tÞ ¼ D1 � D2

D1 þ D2

@ ln cðx; tÞ
@x

: ð27Þ

Using the electrical potential definition uð~rÞ ¼ �
R~r

O
~E 	 d~‘,

where O is some arbitrarily selected reference point, we have

Duðx; tÞ ¼ �
Z x

0
Eðs; tÞds ¼ �D1 � D2

D1 þ D2

Z x

0

@ ln cðs; tÞ
@s

ds

¼ �D1 � D2

D1 þ D2
ln

cðx; tÞ
cL

: ð28Þ

Thus, the liquid junction potential across the length of the
membrane is given by:

U ¼ DuðdÞ ¼ �D1 � D2

D1 þ D2
ln

cR

cL
: ð29Þ
The solution to the problem (24)–(29) may be found in most
textbooks [35] and is expressed with the help of the Fourier’s
series:

cðx; tÞ ¼ cL þ ðcR � cLÞ
x
d
þ cR � cL

p
X1
n¼1

ð�1Þn

n

� exp � 2np
d

� �2

Dt

 !
sin

2npx
d

� �
: ð30Þ

Using this concentration profile we can obtain the electric potential
by inserting (30) into (28).

Calculations for the system were made using the following
data: one phase, temperature T ¼ 298:16 K, membrane thickness
d ¼ 200 lm, dielectric permittivity e ¼ 8:86� 10�12 J�1 C2 m�1



J.J. Jasielec et al. / Computational Materials Science 63 (2012) 75–90 83
and diffusion coefficients: DKþ ¼ 1:98� 10�9 and DCl� ¼ 2:01�
10�9 m2 s�1 . For both ions all the rate constants were equal
~ki ¼ k

 
i ¼ 100 ms�1, value big enough so the process is controlled

by diffusion. Heaviside type initial concentration profiles (19), with
cL ¼ 10�3 M and cR ¼ 10�3 M were used.

In Fig. 7 we compare the concentration and electric potential
profiles at several times obtained from analytical (28) and (30)
and numerical (our method) solutions. The agreement is excellent
and validates the numerical method.
3.3. The Neumann and Dirichlet boundary conditions

One layer system with the interfaces k0 ¼ 0 and k1 ¼ d is con-
sidered. In this section time evolution of concentrations and elec-
tric field are modelled using two different types of boundary
conditions: Neumann-like boundary conditions (11) and the
Dirichlet boundary conditions (12).

The 0 M KC1=3:5 M KC1 system was chosen to present the
influence of boundary conditions. Calculations were performed
using the following data: temperature T ¼ 298� 16 K, junction
thickness d ¼ 200 lm, dielectric permittivity e ¼ 8:91� 10�9 J�1

C2 m�1 and diffusion coefficients: DKþ ¼ 1:98� 10�9 m2 s�1 DCl� ¼
2:01� 10�9 m2 s�1. Heaviside type initial concentration profiles
(19), with cL ¼ 0 and cR ¼ 3:5 M were used. Heterogeneous rate
constants for the Neumann-like boundary conditions (11) in the
range 0:01—100:0 m� s�1 were used in calculations and compared
with the results obtained using the Dirichlet boundary conditions.

In Fig. 8, the liquid junction potentials as a function of time for
the Neumann-like boundary conditions calculated with different
heterogeneous rate constants and for the Dirichlet boundary con-
ditions are compared. The first stages of the potential evolution
are independent of the used boundary conditions, as the deviation
from electroneutrality and consequent changes of the electric field
profile occur far from the boundaries. The larger heterogeneous
rate constants the better agreement with results obtained for the
Dirichlet boundary conditions is observed. Concentration profiles
of the potassium ion in the liquid junction for the time 10 s are pre-
sented in Fig. 9a and b. Profiles of the electric field in the junction,
calculated for the Neumann-like and Dirichlet boundary conditions
for the same time are shown in Fig. 9c. Constant fluxes inside the
junction (Fig. 9d), confirm that the steady state is reached. Concen-
tration profiles, electric potential profiles and fluxes, calculated
using the Neumann-like boundary conditions for large heteroge-
neous rate constants ðP 10 m� s�1Þ, also correspond very well
to those obtained using the Dirichlet boundary conditions.

All these results confirm, as in the earlier conclusion [6,36], that
calculations using the Neumann-like boundary conditions with
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Fig. 8. Comparison of liquid junction potentials as a function of time for the
Neumann boundary conditions with different heterogeneous rate constants and for
the Dirichlet boundary conditions.
large heterogeneous rate constants may be substituted by the
Dirichlet boundary conditions.
3.4. Bi-ionic case

In this part, the following classical bi-ionic system solution
(MX)/membrane/solution (NX) is considered. Simulations were
performed for one layer with the interfaces k0 ¼ 0 and
k1 ¼ d ¼ 200 lm, temperature T ¼ 298:16 K and dielectric permit-
tivity e ¼ 5:34� 10�10 J�1 C2 m�1. Concentrations of cations in both
bathing solutions (MX and NX) were equal ci;L ¼ ci;R ¼ 10�3 M.

It is assumed that the membrane is permeable only for cations
Mþ and Nþ which can move inside the membrane with the diffusion
coefficients DMþ ¼ 10�10 m2 s�1 and DNþ ¼ 10�11 m2 s�1. Membrane
is also loaded with anion R�, which is mobile with diffusion coeffi-
cient DR� ¼ 10�11 m2 s�1. All heterogeneous rate constants for
cations are equal ~kMþ ¼ k

 

Mþ ¼~kNþ ¼ k
 

Nþ ¼ 100 ms�1 and the
membrane is not permeable for the anion, that is~kR� ¼ k

 
R� ¼ 0.

Calculated concentration profiles of ions Mþ;Nþ and R� for the
selected times are presented in Fig. 10. These results are in good
agreement with those obtained by Sokalski and Lewenstam [29].
3.5. Ion Selective Electrodes

One of the most important practical applications of the NPP
model is the area of ion selective electrodes (ISE). The first ISE, a
glass electrode, was invented in 1909 [37]. The first theory for glass
electrode potential was developed by Dole [38] and later reformu-
lated by Nikolskii [39]. In the 1960s, both Nikolskii [40,41] and
Eisenman [42,43] independently expressed the overall membrane
potential as the sum of the boundary and diffusion potentials under
steady state conditions – known today as the Nikolskii–Eisenman
(NE) equation [44,45]:

Du ¼ Du0 þ RT
zMF

ln aM þ
X

N

Kpot
M;NazM=zN

N

 !
; ð31Þ

where subscript M corresponds to main (primary) ion and N is an
interfering one.

This equation in the majority of cases is sufficient for practical
analytical chemistry purposes but cannot be used for general the-
oretical analysis. It is due to the fact that the derivation of the NE
equation is based on several assumptions like: (1) the potential
at steady state only is considered, thus it does not cover time-
dependent cases, (2) the arbitrary split into a boundary and
diffusion potential is used, and (3) electroneutrality is assumed.

The electroneutrality condition is often used to simplify the
solution of electrodiffusion problems. While in some cases it is jus-
tified, there are many others where this assumption is overused.
The reason is that this assumption produces a problem, which is
much easier to solve. Historically it is understood that such simpli-
fication was almost necessary due to lack of high performing com-
puters. But this attitude cannot be defended now, when the access
to high computing power is ubiquitous.

Consequently the NE equation is an approximation which fails
in many situations [6]. On the other hand modelling may be per-
formed by adopting the NPP equations system, which is general
and rich enough in a physical sense to encompass the generation
of the membrane potential. The NPP system allows finding the
electric potential and concentrations as functions of space and
time. These remarks are also valid in the field of ISEs, even though
they are generally used in the steady state. Of course the NE equa-
tion is derived under the steady state assumption, but its deriva-
tion is based on further simplifications. On the other hand the
NPP system, integrated up to the time when the steady state is
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reached, gives better results for the modelling of ISE potential
response [46,47].

The first example of the application of the model to ISE is dem-
onstrated in Fig. 11. The calibration curve obtained from one-layer
NPP simulation is compared with experimental one [48] showing
good agreement. Calculations were carried out using the following
data: temperature T ¼ 298:16 K, thickness d ¼ 200 lm, dielectric
permittivity e ¼ 2:12� 10�10 J�1 C2 m�1. Diffusion coefficients in
the PCV DOS membrane were defined to be equal as in water:
DKþ1:98� 10�9 m2 s�1;DLiþ ¼ 1:03� 10�9 m2 s�1 and DCl� ¼ 2:01�
10�9 m2 s�1. The heterogeneous rate constants were (all in
m� s�1Þ : ~kKþ ¼ k

 

Kþ ¼ 100 (at both boundaries), k
 

L
Liþ
¼ 100;

~kL
Liþ
¼ 25; k

 
R
Liþ
¼ 100;~kR

Liþ
¼ 25; all kCl� ¼ 0;(superscript R stands

for the right and L for the left boundary). The steady state ISE
potential was found as an asymptotic value of the time-dependent
evolving potential based on NPP model.

In certain cases, processes outside the membrane strongly influ-
ence the potential of ISEs. This may result in an overshoot time
dependent potentiometric response (first observed by Lindner
et al. [49] for solid state ISEs). The fact that this transient-state re-
sponse is the effect of the presence of the diffusion layer is shown
in works of Lindner et al. [50], Lewenstam et al. [51,52] and Bakker
et al. [53]. This obviously calls for multi-layer NPP model – Eqs.
(1)–(4).

The time-dependent response with the overshoot for ISE was
calculated using our method with two layers ða ¼ 2Þ and compared
with experimental results of Grätzl and Lindner et al. [50]. Compu-
tations were made using the following data: temperature
T ¼ 298:16 K , layers thicknesses d1 ¼ 29 lm and d2 ¼ 100 lm,
dielectric permittivities e1 ¼ 7:08� 10�10 J�1 C2 m�1 and e2 ¼
2:12� 10�10 J�1 C2 m�1. Diffusion coefficients in watery diffusion
layer were set to: D1

Kþ ¼ 1:98� 10�9 m2 s�1;D1
Naþ ¼ 1:34�

10�9 m2 s�1 and DCl� ¼ 2:01� 10�9 m2 s�1. Diffusion coeffi-
cients in the membrane were assumed to be 6 orders of

magnitude lower than in water D2
i ¼ 10�6 � D1

i

� �
. Fast ionic

transfer between bulk and diffusion layer is considered
~kKþ ¼ k
 

Kþ ¼~kNaþ ¼ k
 

Naþ ¼~kCl� ¼ k
 

Cl� ¼ 100 ms�1

� �
. Membrane is

not permeable for the anion:~k2
Cl� ¼ k

 
2
Cl� ¼~k3

Cl� ¼ k
 

3
Cl� . Cations leave

the membrane with the heterogeneous rate constants
k
 

2
Kþ ¼

~k3
Kþ ¼ k

 
2
Naþ ¼

~k3
Naþ ¼ 10�4 ms�1 and enter it with the rates:

~k2
Kþ ¼ k

 
3
Kþ ¼ 5� 10�5 ms�1 and ~k2

Naþ ¼ k
 

3
Naþ ¼ 8� 10�7 ms�1.

The potential responses as functions of time for the theoretical
and the experimental ISE (Fig. 12) show qualitative agreement. The
quantitative agreement can be achieved provided that we know
real physical and chemical parameters (i.e., diffusion coefficients,
rate constants, etc.). This may be obtained by solving the suitable
inverse problem for experimentally measured responses. The idea
of this approach based on electrochemical impedance spectra has
been recently published [54].

The occurrence of the low detection limit of [55] is the effect of
the presence of the diffusion layer, therefore calls for a multi-layer
approach as well. In [56], a detailed comparison of our method
with other models, sufficient for the description of the considered
case, was made. The influence of various parameters, such as con-
centrations in inner solution, layers thicknesses, diffusion coeffi-
cients, heterogeneous rate constants and time of measurement
was discussed. Finding optimal values of these parameters can
have a crucial impact on the design of new electrodes. Inverse
problem, estimating these NPP parameters in order to obtain the
lowest detection limit was presented in [57].

3.6. Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a technique
for the versatile characterisation of interfacial processes and
structures, based on their electrochemical responses. It is a very
powerful tool for the analysis of complex electrochemical systems
[58]. From the more general perspective it can be viewed as a
particular implementation of Fourier transform to Linear Systems.
Mathematically speaking, such a system can be regarded as a linear
operator L : i # u that exhibits also time-invariance property
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Lðiðt � sÞÞ ¼ uðt � sÞ. This is a way of saying that parameters of the
system are independent of time. The importance of the Fourier
transform in the analysis of linear systems is due to the fact that
if the input is an exponential periodic eixt , then the output is pro-
portional to the input LðeixtÞ ¼ HðxÞeixt where HðxÞ is generally a
complex number and is called the system (or the transfer) func-
tion. In the field of electrochemistry and electrical engineering it
is referred to as the impedance and denoted by ZðxÞ.

Electrochemical impedance is usually measured by applying a
time dependent potential to an electrochemical cell and measuring
the current through the cell. Conversely, a small current perturba-
tion can be applied and the resulting potential response analyzed.
Suppose that we apply a sinusoidal or step current excitation. The
response to this current is a time evolving electric potential,
containing the excitation frequency and its harmonics. This excita-
tion-response characteristic can be compactly and clearly pre-
sented in the graphical form of the so called impedance
spectrum on the complex plane C.

EIS is normally performed using a small excitation signal so that
the cell’s response is linear, making the use of the Fourier transfor-
mation possible. In EIS we measure an electrochemical cell’s
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complex impedance over a wide range of AC frequencies or use the
fundamental contribution of the Brumleve and Buck paper [5] by
applying only one step-like perturbation to the system. Typically,
several cell elements and cell characteristics contribute to the sys-
tem’s impedance spectrum. A partial list of possible elements can
include: (1) electrode double layer capacitance, (2) electrode kinet-
ics, (3) diffusion layer and (4) solution resistance.

One commonly used technique in EIS is building an equivalent
circuit model which corresponds to the electrochemical system
[58]. Such a circuit allows to obtain the EIS spectrum relatively eas-
ily. However there are several problems in this approach: (1) the
equivalent circuits may not be unique, (2) it is not always possible
to describe complex electrochemical behaviour with such circuit
elements. In this paper we follow the idea of calculating the EIS spec-
tra put forward by Brumleve and Buck [5]. This approach is more
fundamental and universal and it refers directly to the physical pro-
cesses in the system. Namely, it is based on the NPP model in which
the current perturbation is treated as an input parameter and the
time-dependent electric potential profile is calculated as an output.

In this section we present the same technical details pertaining
to this approach.

3.6.1. Computation of electrochemical cell impedance
If a small current perturbation IðtÞ is applied to the system, the

Fourier transformation of the time response of the electric poten-
tial VðtÞ allows us to obtain the complex impedance. The usual for-
mula for the Fourier transform f 
ðxÞ of a function t # f ðtÞ is
f 
ðxÞ ¼

R1
�1 f ðtÞe�ixtdt, where i ¼ ð0;1Þ 2 C is the imaginary unit.2

The well-known definitions are as follows:

Z
ðxÞ ¼ �V
ðxÞ=I
ðxÞ;
Z
ðxÞ ¼ Z0ðxÞ þ iZ00ðxÞ;
V
ðxÞ ¼ V 0ðxÞ þ iV 00ðxÞ;
I
ðxÞ ¼ I0ðxÞ þ iI00ðxÞ;

ð32Þ
2 Different conventions are used for the Fourier integral. Some authors use the
formula with factor that is

FðxÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z 1

�1
f ðtÞe�ixtdt

or

FðvÞ ¼
Z 1

�1
f ðtÞe�i2pvtdt

Basically, all are equivalent except for multiplicative factors appearing in the Fourier
integral and the inverse formula.
where the real part of a complex value is denoted by prime ð0Þ and
the imaginary part by double prime ð00Þ. The real and imaginary
components of the Fourier transformation of the potential as func-
tion of time are given by

V 0ðxÞ ¼
Z 1

0
ðVðtÞ � V1Þ cosðxtÞdt;

V 00ðxÞ ¼
Z 1

0
ðVðtÞ � V1Þ sinðxtÞdt þ V1=x;

ð33Þ

where V1 ¼ limt!1VðtÞ. Analogous formulae are used to calculate
I0ðxÞ and I00ðxÞ.

If the current step of magnitude DI is applied, which means the
following current profile

IðtÞ ¼
DI t > 0;
0 t 6 0;

�
ð34Þ

then the components of the transformation of IðtÞ are:
I0ðxÞ ¼ 0; I00ðxÞ ¼ �DI=x hence the resulting real and imaginary
parts of the impedance are given by

Z0ðxÞ ¼ �V 00ðxÞ �x=DI;

Z00ðxÞ ¼ V 0ðxÞ �x=DI:
ð35Þ

From the simulations of the time dependant NPP system we ob-
tain the values of V ¼ VðtÞ at some discrete times ftkg These values
may be used to calculate approximately the integrals appearing in
the definition of the Fourier transformations (33). There are many
possible quadratures in numerical textbooks but here we adopt the
idea proposed in [4]. Namely, on each interval ½tk; tkþ1� the value
VðtÞ is interpolated by a linear function

VðtÞ ¼ t � tk

tkþ1 � tk
ðVðtkþ1Þ � VðtkÞÞ þ VðtkÞ for tk 6 t 6 tkþ1: ð36Þ

This approximated potential is inserted into the integrals lead-
ing to expressions of the typeZ tkþ1

tk

t cosðxtÞdt;
Z tkþ1

tk

t sinðxtÞdt;
Z tkþ1

tk

cosðxtÞdt;

Z tkþ1

tk

sinðxtÞdt; ð37Þ

which can be easily calculated analytically, that ultimately leads to
the following expressions:

V 0ðxÞ ¼
X

k

DV 0k;V
00ðxÞ ¼

X
k

DV 00k þ V1=x; ð38Þ

where

DV 0k ¼ ðVðtkþ1Þ � VðtkÞÞðcos xtkþ1 � cos xtkÞ=x2ðtkþ1 � tkÞ
þ ðVðtkþ1Þ � V1Þ sin xtkþ1 � ðVðtkÞ � V1Þ sin xtkÞ=x: ð39Þ

DV 00k ¼ ðVðtkþ1Þ � VðtkÞÞðsinxtkþ1 � sin xtkÞ=x2ðtkþ1 � tkÞ
þ ðVðtkþ1Þ � V1Þ cos xtkþ1 � ðVðtkÞ � V1Þ
� cos xtkÞ=x: ð40Þ

In fact these expressions are nothing more than just applying
the composite trapezoidal formula on the interval with grid points
0 ¼ t0 < t1 < � � � < t1, where t1 denotes the time at which the sys-
tem attains a stationary state. Using these expressions one can cal-
culate Z0ðxÞ and Z00ðxÞ from Eq. (35) for a range of frequencies x.
Plotting points ðZ0ðxÞ; Z00ðxÞÞ on the complex plane C for different
x treated as parameter gives the conventional graphical presenta-
tion of the complex impedance spectrum.

The above considerations are detailed enough for computer
implementation to obtain the impedance spectra based on the
NPP model. Suitable computer code using formulae (38)–(40) is a
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Fig. 13. Complex impedances for ISE, with the concentration of the primary ion in the sample cI2þ ;L varied in the range 10�11—10�3mol�m�3; calculated using our method.
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part of the software. Calculations using this method are in good
agreement with the results of methods presented in [5,13].

Fig. 13 shows the impedance spectra obtained for ISE, using the
presented method for the following data: one layer, temperature
T ¼ 298:16 K, membrane thickness d ¼ 200 lm and dielectric
permittivity e ¼ 8:91� 10�11 J�1 C2 m�1. Diffusion coefficients are
assumed to be equal: DI2þ ¼ DJþ ¼ DX� ¼ 10�11 m2 s�1. The concen-
tration of the primary ion in the inner solution is
cI2þ ;R ¼ 10�2 mol�m�3 and in the sample varies in the range
cI2þ ;L ¼ 10�11—10�3 mol�m�3. Constant concentrations of the
interfering ion in the sample cJþ ;L ¼ 0:15 mol�m�3 and inner solu-
tion cJþ ;R ¼ 0. The membrane is not permeable for the counter
ion:~kCl� ¼ k

 
Cl� ¼ 0. For the primary ion, all rate constants were the

same~kI2þ ¼ k
 

I2þ ¼ 10�4 m� s�1. The interfering ion leaves the mem-
brane at the same rate as the primary ion k

 

Jþ ¼ 10�4 m� s�1, but
enters it with a heterogeneous rate constant ~kJþ ¼ 10�10 m� s�1

which corresponds to the ISE selectivity K ¼ 10�6 [56].
The arcs obtained for cI2þ ;L P 10�3 mol�m�3, as well as the

ones obtained for cI2þ ;L 6 10�11 mol�m�3; overlap. With the
change of concentration between these values, the arcs shift from
one shape to another (Fig. 13a). This intermediate region of con-
centrations is the region where the electric potential is the effect
of both ions (for cI2þ ;L P 10�4 mol�m�3 it depends on the primary
ion and for cI2þ ;L 6 10�11 mol�m�3 on the interfering one), there-
fore it is non-linear with the change of concentration. This shift
in the intermediate region has been already observed, both in the-
ory [13,54] and in the experiment [59].

For high concentrations of primary ion cI2þ ;L P 10�4 mol�m�3,
interfacial kinetics is sufficiently fast so only two arcs are predicted
[60,61]. For cI2þ ;L ¼ 10�5 mol�m�3, the third arc at middle fre-
quencies appears (Fig. 13d). This arc is attributed to the interface
impedance [13] and has been already shown, but for the bi-ionic
case, in [5,13,54]. With further lowering of the concentration, the
interfacial kinetics becomes sufficiently fast, so the intermediate
frequency arc grows.

The decrease of concentration of the primary ion cI2þ ;L causes
also the low-frequency arc to grow. The middle-frequency arc for
low primary ion concentrations grows faster than the low-fre-
quency one for the concentrations in the range cI2þ ;L ¼ 10�8—10�5

mol�m�3 (Fig. 13c and d) and even dominates in the range
cI2þ ;L ¼ 10�9—10�7 mol�m�3 (Fig. 13b). Further decrease of the
primary ion concentration (i.e. cI2þ ;L 6 10�10 mol�m�3Þ causes
the low-frequency arc to start dominating in the plot.

The electrochemical impedance spectra can be used to establish
various parameters of the system, such as diffusion coefficients or
heterogeneous rate constants. The formulation of the inverse prob-
lem, based on our method combined with the Hierarchical Genetic
Strategy [62], has been recently published [63].
4. Discussion and conclusions

The numerical procedure based on the method of lines for time-
dependent electrodiffusion transport was developed and imple-
mented in C++ language. Two types of boundary conditions were
considered, namely, the Neumann boundary conditions for fluxes
and standard Dirichlet conditions for concentrations values. The fi-
nite difference space discretization with suitably selected weights
based on a non-uniform grid was applied. This allowed a higher or-
der of consistency rather than the one put forward by Brumleve
and Buck. After using the method of lines the original NPP problem
being an initial-boundary value problem for partial differential
equations (PDEs) was transformed to the initial (Cauchy) problem
for the system of ordinary differential equations (ODEs). The
resulting system of ODEs exhibits stiffness behaviour which re-
quires special numerical treatment. It was effectively solved using
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the RADAU5 (Radau IIA), RODAS (Rosenbrock) and SEULEX (semi-
implicit Euler) ODEs integrators.

The applications to selected electrochemical systems: liquid
junction, bi-ionic case and ion selective electrodes were demon-
strated. Steady state solutions of the NPP problem for ‘‘infinite’’
heterogeneous rate constants (corresponding to diffusion poten-
tial) using our method were compared with the Sokalski-Lewen-
stam method and the classical Planck and Henderson methods.
Good agreement in this case was observed. Some deviations were
noticed for the HCl/KCl system between approximate solutions of
Planck and Henderson. The solution of the NPP problem, (indepen-
dent on the chosen method – see Table 1) is closer to the Planck
solution. This can be explained by the large difference of diffusion
coefficients which leads to non-linear concentration profiles con-
trary to the assumed linearity of concentration in the Henderson
derivation.

In a general case, no analytical solution of the NPP problem is
available. But for some special cases it is possible to obtain such
a solution. We used such a special case for a transient NPP problem
– binary electrolyte with the Dirichlet boundary conditions and
initial concentration profiles given by a step-function – for testing
the numerical solution. Very good agreement between analytical
and numerical (our method) solutions was observed.

Two types of boundary conditions were tested for a liquid junc-
tion case. As it was expected [36], the results show that for large
heterogeneous rate constants (appearing in the Neumann bound-
ary conditions) solutions of the NPP problem are consistent with
the Dirichlet boundary conditions for concentrations (assumed
also in the Planck and Henderson models).

This method was also tested for other systems. The first was the
textbook example of a bi-ionic case. The obtained results (concen-
tration profiles for different times) showed good agreement with
those obtained by Sokalski and Lewenstam [29]. The second were
ion selective electrodes which have a great practical importance.
Calculations of a calibration curve membrane potential using our
method corresponded well to experimental data. Calculated and
experimental time-dependent responses of ISE showed the same
tendencies, though the exact agreement between our method
and the experimental data is not achieved.

The simulations of the NPP model were also used for electro-
chemical impedance spectroscopy. An effective algorithm for
obtaining the impedance spectra [5] was implemented and tested.
This gives an alternative freely available tool for EIS analysis other
than a commonly used circuit building approach.

The above examples demonstrate some capabilities of the pre-
sented numerical method and software that can be effectively used
for simulations of electrodiffusion problems. Ubiquitous access to
modern personal computers (with high performing processors)
make it possible for almost everyone to simulate more advanced
electrodiffusion models than commonly used simple formulae,
such as Planck, Henderson, Goldman and Nikolskii-Eisenman.
Thus, we promote the use of the full form of the Nernst–Planck
and Poisson (NPP) problem, that is including explicitly the electric
field as an unknown variable with no simplifications like electro-
neutrality or constant field assumptions. An effective method of a
numerical solution of the NPP problem for an arbitrary number
of ionic species with different valence numbers either for a steady
state or transient state was shown. The presented formulae – the
numerical solution to the NPP problem – can be taken up and
implemented by anyone. Moreover we make the resulting software
freely available to anybody interested in using it.

At this stage the model (and consequently the software) has
several limitations. Among them we mention: (1) the dielectric
permittivity and diffusion coefficients have no dependence on con-
centrations, (2) activities are equal concentrations (ideal solu-
tions), (3) no reaction terms and (4) one dimensional geometry.
In further developments we are going to address those shortcom-
ings. While the first three constraints can be relatively easy to
overcome the last (which means a transition to higher dimensional
models) raises a real challenge.
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Appendix A. Space discretization on an uneven grid

The discretization formulae for derivatives on an uneven grid
are fairly standard [7]. In general case the formulae for approxi-
mation of any derivative by the finite differences on any mesh
can be obtained from the Hermit interpolation polynomial [8].
But for simple cases (e.g. three or five points schemes) it is pref-
erable to use directly the Taylor expansion. The formulae for the
three-point approximation are included here because they are
not very common in the electrochemical literature. We also
wanted to underline the differences with the approximation ap-
plied in the Brumleve and Buck paper [5]. They used the follow-
ing finite differences

f 0ðxkÞ �
f ðxkþ1Þ � f ðxk�1Þ

1
2 ðhk�1 þ hkÞ

;

while we used the following

f 0ðxkÞ �
h2

k�1f ðxkþ1Þ þ ðh2
k � h2

k�1Þf ðxkÞ � h2
k f ðxk�1Þ

hk�1hkðhk�1 þ hkÞ
:

In addition, to approximate the value of a function at x 2 ½a; b�
by the values of it on the boundaries we used a more accurate
expression

f ðxÞ � ðx� aÞf ðbÞ þ ðb� xÞf ðaÞ
b� a

;

instead of their approximation

f ðxÞ � f ðbÞ þ f ðaÞ
2

:

The arrangement of the points on a real line to present discretiza-
tion formulae are given below.

x0 x1 x2

h0 h1

The discretization formulae shown here can be also found in
[64,65,7].

A.1. The first derivative

Let f 2 C3ð½a; b�; RÞ. Then we have

f 0ðx1Þ ¼
h2

0f ðx2Þ þ h2
1 � h2

0

� �
f ðx1Þ � h2

1f ðx0Þ
h0h1ðh0 þ h1Þ

þ rðh0;h1Þ;

where rðh0;h1Þ ¼ � 1
6 ðf 000ðn0Þh0 þ f 000ðn1Þh1Þ h0h1

h0þh1
for some

n0 2�x0; x1½; n1 2�x1; x2½:
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This means that jrðh0;h1Þj 6 Ch0h1. The constant C is bounded
by the maximum of the derivative f 000 over the interval
½x0; x1�; i:e: C 6 1

6 maxfjf 000ðnÞj : x0 6 n 6 x1g.
In a special case when h0 ¼ h1 ¼ h; we get the familiar

expression

f 0ðx1Þ ¼
f ðx2Þ � f ðx0Þ

2h
þ rðhÞ;

where rðhÞ ¼ � 1
12 ðf 000ðn0Þ þ f 000ðn1ÞÞh2 for some

n0 2�x0; x1½; n1 2�x1; x2½:

A.2. The first derivative at the left boundary

We may use the set of points as above, but this time we want to
approximate a derivative f 0ðx0Þ at x0 by the values of f at the points
x1; x2; which lie to the right of x0. Using two Taylor expansions at
x0 we can easily calculate

f 0ðx0Þ ¼
�h1ð2h0 þ h1Þf ðx0Þ þ ðh0 þ h1Þ2f ðx1Þ � h2

0f ðx2Þ
h0h1ðh0 þ h1Þ

þ rðh0; h1Þ;

where rðh0;h1Þ ¼ 1
6 ðf 000ðn1Þðh0 þ h1Þ � f 000ðn0Þh0Þ h0ðh0þh1Þ

h1
for some

n0 2�x0; x1½; n1 2�x0; x2½.
This means that the remainder may be bounded as follows:

jrðh0;h1Þj 6 C h0
h1
ðh0 þ h1Þ2.

In a special case, when h0 ¼ h1 ¼ h; we have

f 0ðx0Þ ¼
�3f ðx0Þ þ 4f ðx1Þ � f ðx2Þ

2h
þ rðhÞ;

where rðhÞ ¼ 1
3 ð2f 000ðn1Þ � f 000ðn0ÞÞh

2 for some n0 2�x0; x1½; n1 2�x1; x2½:
Now the reminder is bounded as follows: jrðhÞj 6 Ch2.

A.3. The first derivative at the right boundary

Now we want to approximate a derivative f 0ðx2Þ at x2 by the
values of f at the points x0; x1; which lie to the left of x2. Using
two Taylor expansions at x2 we can easily derive

f 0ðx2Þ ¼
h2

1f ðx0Þ � ðh0 þ h1Þ2f ðx1Þ þ h0ðh0 þ 2h1Þf ðx2Þ
h0h1ðh0 þ h1Þ

þ rðh0;h1Þ;

where rðh0;h1Þ ¼ 1
6 ðf 000ðn0Þðh0 þ h1Þ � f 000ðn1Þh1Þ h1

h0
ðh0 þ h1Þ for some

n0 2�x0; x2½; n1 2�x1; x2½.
Appendix B. Generating of an uneven space grid

The arrangements for the grid points in the membrane are ex-
plained here. The grid is exponentially expanding (similar method
was used e.g. in [5,66,7]). The case for the denser spacing near the
boundaries is explained below. The case for the denser spacing
near the centre or both (centre and boundaries) is obtained by sim-
ple mirroring.
The parameters that are used for generating mesh points are the
following: n + 1 – total number of nodes (including the bound-
aries), DL – the Debye length, m – number of equal intervals in
the Debye length region, q – the expansion factor of the geometric
sequence of the non-uniform intervals.

The expression for q is derived from the equality

DL þ
DL

m
1þ qþ q2 þ � � � þ q

n
2�1�m

� �
¼ d

2
;

where d is the width of the membrane. This gives the equation

q
n
2�m � 1 ¼ m

d
2DL
� 1

� �
ðq� 1Þ; ð41Þ

which is solved for q > 1 numerically (the simple iteration method
is sufficient for this purpose although the bisection method was also
used to check the results). Eq. (41) has an obvious solution q ¼ 1
which of course does not give an expanding sequence. On the other
hand it may be easily verified the condition

DL=d < m=n;

guarantees the existence of the solution q > 1. This condition is read-
ily satisfied in typical simulations because DL � 10�8; d � 10�4 m,
thus DL=d � 10�4 and m=n is in the range 10�1—10�3.
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