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1Dipartimento di Fisica “Aldo Pontremoli,” Università degli Studi di Milano, and Istituto Nazionale di Fisica Nucleare,
Sezione di Milano, via Celoria 16, I-20133 Milan, Italy

2Institute of Theoretical Physics, Universität Ulm, Albert-Einstein-Allee 11D-89069 Ulm, Germany
3SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom

4QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy,
University of Turku, FI-20014, Turun Yliopisto, Finland

5Laboratory of Quantum Optics, Department of Physics and Astronomy, University of Turku, FI-20014, Turun yliopisto, Finland

(Received 10 September 2019; accepted 20 April 2020; published 15 May 2020)

Stochastic methods with quantum jumps are often used to solve open quantum system dynamics.
Moreover, they provide insight into fundamental topics, such as the role of measurements in quantum
mechanics and the description of non-Markovian memory effects. However, there is no unified framework
to use quantum jumps to describe open-system dynamics in any regime. We solve this issue by developing
the rate operator quantum jump (ROQJ) approach. The method not only applies to both Markovian and
non-Markovian evolutions, but also allows us to unravel master equations for which previous methods do
not work. In addition, ROQJ yields a rigorous measurement-scheme interpretation for a wide class of
dynamics, including a set of master equations with negative decay rates, and sheds light on different types
of memory effects which arise when using stochastic quantum jump methods.
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Introduction.—Any realistic description of a quantum
system should take into account its interaction with the
surrounding environment [1,2]. Many different approaches
have thus been developed to characterize the evolution of
open quantum systems, ideally covering different models
and regimes, yet keeping the degree of complexity man-
ageable [3–16].
Quantum unravelings yield a practically and concep-

tually useful tool, mapping a given master equation to one
(of the infinitely many possible) pure-state stochastic
evolution, which reproduces the given master equation
on average [17,18]. On the one hand, this leads to a linear
scaling of the simulation cost with the Hilbert space
dimension of the open system, instead of the quadratic
scaling which would affect the direct integration of the
master equation. On the other hand, unravelings might
provide us with a clear physical picture of the environ-
mental influence on the open-system evolution. In particu-
lar, the stochastic pure-state evolution can be seen as the
result of a continuous measurement operated on the open
system, so that the master equation would correspond to the
continuous action of a nonselective observer (the environ-
ment). This is the case, for example, in the well-known
Monte Carlo wave function (MCWF) method [19,20],
where the open-system pure state is subjected to a deter-
ministic evolution interrupted by random and discontinu-
ous jumps. Such piecewise deterministic evolutions under
continuous monitoring have been observed in several
experimental platforms [21–26].

Memory effects pose some relevant challenges to unrav-
eling methods, so that novel strategies need to be developed
to deal with non-Markovian dynamics [27–33]. Many
nonequivalent definitions have been introduced [34–36],
but broadly speaking we can say that non-Markovian
dynamics are characterized by a twofold exchange of
information between the open system and the environment,
which leads to memory effects and, from the mathematical
point of view, breaks relevant divisibility properties of the
dynamical maps fixing the open-system evolution. The
non-Markovian quantum jump (NMQJ) approach [29,37]
accounts for the information flowing back to the open
system by means of reversed jumps, which generalize the
quantum jumps of the MCWF. However, it is not clear to
what extent, if at all, the continuous-measurement inter-
pretation can be extended to this and the other non-
Markovian unravelings [38,39]. The basic intuition is that
the (continuous) measurements would affect in a nontrivial
way the backflow of information to the open system and
hence the subsequent dynamics, thus generating an evo-
lution which is not the same as the one given by the master
equation to be unraveled [36,38].
Here, first we show that a fully consistent continuous-

measurement interpretation [40] can be formulated for
any positive- (P) divisible dynamics [41–43], via a jump
unraveling approach which relies on the diagonalization of
a proper rate operator, and is named rate operator quantum
jump (ROQJ). The class of P-divisible dynamics includes
master equations with negative rates and is larger than the
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one where MCWF applies, thus highlighting the subtle
border between Markovianity and non-Markovianity
within the context of quantum unravelings. Furthermore,
we extend ROQJ to deal with any open-system dynamics,
including those where at least one master-equation coef-
ficient is negative from the very beginning of the evolution
[44–48], so that other non-Markovian techniques, such as
NMQJ, cannot be used.
Quantum jumps for P-divisible dynamics.—As usual

within the unraveling methods, we start from the master
equation describing the dynamics of the open quantum
system of interest. Any trace and Hermiticity preserving
(time-local) master equation dρðtÞ=dt ¼ Lt½ρðtÞ� for the
open-system state ρðtÞ can be written as [49]

Lt½ρðtÞ� ¼ −
i
ℏ
½HSðtÞ; ρðtÞ�

þ
Xn2−1

α¼1

cαðtÞ
�
LαðtÞρðtÞLαðtÞ†

−
1

2
fL†

αðtÞLαðtÞ; ρðtÞg
�
; ð1Þ

where n is the finite dimension of the open system,HSðtÞ ¼
H†

SðtÞ and LðtÞ are possibly time-dependent operators on
Cn, and cαðtÞ are real functions of time.
For now we restrict to P-divisible evolutions [41–43,46],

i.e., the dynamical maps Λt ¼ T exp½R t
0 LsdsÞ� (T is the

time ordering operator) can be decomposed as Λt ¼
Φt;s ∘ Λs, where Φt;s is positive (P), for any t ≥ s. Let
us stress that P divisibility is a weaker requirement
than cαðtÞ ≥ 0 for any α, which is precisely the condition
guaranteeing that MCWF can be applied. In fact, the
positivity of the coefficients coincides, under some
regularity conditions, with the property of completely
positive (CP) divisibility, i.e., that Φt;s in the decomposi-
tion above is CP [35,50]. The map Φt;s is CP when
ðΦt;s ⊗ 1nÞρsa ≥ 0, where 1n is the identity map on the
ancillary Hilbert space Cn and ρsa is any combined open
system and ancilla state [1]. The basic observation, which
we need to define the rate operator quantum jump unrav-
eling, is that the evolution is P divisible if and only if the
rate operator

WJ
ψðtÞ ¼

Xn2−1

α¼1

cαðtÞ(LαðtÞ − lψðtÞ;α)jψðtÞihψðtÞj

× (LαðtÞ − lψðtÞ;α)†; ð2Þ

where lψðtÞ;α ¼ hψðtÞjLαðtÞjψðtÞi is a positive semidefinite
operator for any fixed jψðtÞi [51]. Then, the eigenvalues of
WJ are non-negative and we define the jump operators

VψðtÞ;j ¼
ffiffiffiffiffiffiffiffiffiffiffi
λψðtÞ;j

q
jφψðtÞ;jihψðtÞj; ð3Þ

with λψðtÞ;j and jφψðtÞ;ji eigenvalues and (orthonormal)
eigenvectors of WJ

ψðtÞ.
Now, consider the trajectories on the set of the open-

system pure states, which are given by the deterministic
evolution fixed by the non-Hermitian and nonlinear
Hamiltonian,

HψðtÞ ¼ HSðtÞ −
iℏ
2

Xn2−1

α¼1

cαðtÞ

× (L†
αðtÞLαðtÞ − 2l�

ψðtÞ;αLαðtÞ þ jlψðtÞ;αj2) ð4Þ

according to

jψðtÞi ↦ jψðtþ dtÞi ¼ ð1 − i
ℏHψðtÞdtÞjψðtÞi

kð1 − i
ℏHψðtÞdtÞjψðtÞik

; ð5Þ

interrupted by sudden jumps in the form

jψðtÞi → VψðtÞ;jjψðtÞi
kVψðtÞ;jjψðtÞik

¼ jφψðtÞ;ji; ð6Þ

where the probability to have a jump j between t and tþ dt
is

pjðtÞ ¼ kVψðtÞ;jjψðtÞik2dt ¼ λψðtÞ;jdt: ð7Þ

As shown in Sec. I of Ref. [52], this defines a legitimate
unraveling; i.e., the state averaged over the different
trajectories satisfies the master equation (1).
Such construction resembles the standard MCWF. But

now, crucially, the different jump operators and their
occurrence probabilities are fixed by the eigenvectors
jφψðtÞ;ji and eigenvalues λψðtÞ;j of the operator WJ

ψðtÞ, rather
than by the operators LαðtÞ and coefficients cαðtÞ as in
MCWF. This is why we can have positive probabilities in
Eq. (7) also for some dynamics with at least one negative
rate cαðtÞ, where MCWF cannot be applied. Let us stress
that jumplike unravelings for P semigroups (i.e., under the
further assumption that Φt;s ¼ Λt−s) have been introduced
in Refs. [53,54], while diffusive unravelings were defined
in Refs. [54,55] and, for the more general case of
P-divisible dynamics, in Ref. [51].
Continuous-measurement interpretation.—To introduce

a proper continuous-measurement interpretation [40], let us
consider the following setup. The open system of interest is
surrounded by nmeasurement apparatuses, say, n counters,
which monitor it continuously and are parametrized by the
index j. In the current case, the n apparatuses correspond to
the eigenstates of the rate operator in Eq. (2). If a given
detector “clicks,” this means that the state of the system
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jumps to the corresponding eigenstate; i.e., the detectors
count the jumps to the eigenstates of the rate operator. In the
case of no detection at a given moment of time, the
evolution continues deterministically.
The type and instant of the counts up to time t define

different sequences ωt ¼ ðt1; j1; t2; j2;…tm; jmÞ, with
t1 ≤ � � � ≤ tm ≤ t. So let O ¼ f∅; jgj¼1;…;n be the set of
measurement outcomes, where j indicates that the counter j
clicked, while∅ that no counter clicked. For any time t and
sequence ωt, we define the instrument [56] which maps any
element of O to an open-system operation, i.e., CP trace
nonincreasing map, fIωt;∅;Iωt;jgj¼1;…;n. The latter fixes
the state transformation ρ ↦ Iωt;jð∅Þρ=TrfIωt;jð∅Þρg and
probability pjð∅ÞðtÞ ¼ TrfIωt;jð∅Þρg associated with the
outcome j (∅); we restrict to purity-preserving trans-
formations. As a result of the continuous measurement,
the open system, initially in a pure state jψðt0Þi, will
follow the evolution jψðωtÞi obtained by applying
every infinitesimal time dt one of the operations in
fIωt;∅; Iωt;jgj¼1;…;n (and normalizing the resulting state),
according to the count sequence ωt.
In particular, for any time t and sequence ωt, we define

the operation associated to the count j between t and
tþ dt as

Iωt;jρ ¼ Vωt;jρV
†
ωt;j

dt; j ¼ 1;…n; ð8Þ

which is indeed CP and trace nonincreasing; here Vωt;j is a
shorthand notation for VψðωtÞ;j, which is defined as in
Eq. (3), with respect to the state jψðωtÞi (see also Sec. II of
Ref. [52]). Moreover, let

Iωt;∅ρ ¼ Fωt;∅ρF
†
ωt;∅ ð9Þ

be the operation associated with the “null count." As a
defining property of any instrument, the overall probability
has to be 1. By virtue of Eqs. (2)–(4), one can see that this is
achieved by defining

Fωt;∅ ¼
�
1 −

i
ℏ
Hωt

dt

�
Πωt

; ð10Þ

where Πωt
¼ jψðωtÞihψðωtÞj, and introducing an auxiliary

event a, associated with Iωt;aρ ¼ ð1 − Πωt
Þρð1 − Πωt

Þ, so
that

P
n
j¼1 pjðtÞ þ p∅ðtÞ þ paðtÞ ¼ 1 for any ρ.

Now, when applied to the pure state ρ ¼ jψðωtÞihψðωtÞj,
the state transformation and occurrence probability fixed by
Eq. (8) coincide with, respectively, Eqs. (6) and (7), while
the state transformation due to Eqs. (9) and (10) coincides
with the deterministic one in Eq. (5); indeed, the auxiliary
event a happens with probability 0. We can thus conclude
that, for any sequence of counts ωt, the open-system state
obtained by applying Iωt;j and Iωt;∅ every infinitesimal
time dt and resulting in jψðωtÞi provides us with the same

trajectories and associated probabilities as the unraveling
described in the previous paragraph (identifying ωt with the
sequence of jumps). In Sec. I of Ref. [52] we also give the
description of the above continuous-measurement evolu-
tion in terms of a stochastic differential equation [40].
Let us stress that Eqs. (8) and (9) define a family of

instruments, one for every time t and sequence ωt. In the
standard approaches [19,20,40] the probabilities to have a
certain count j given the sequence ωt do depend on ωt, i.e.,
they are to be understood as conditional probabilities [40]; in
rate operator jumps, in addition to this, the instrument itself,
and then the resulting state transformation, becomes an
object conditioned onωt, in principle different for any count
sequence. This is the key feature which allows us to
introduce consistently and systematically a measurement
interpretation for a class of dynamics, the P-divisible ones,
which is strictly larger than the set of CP-divisible dynam-
ics, where the standard scheme applies. Later on, we will
discuss the meaning of this dependence of the instrument on
ωt in terms of memory effects in the unraveling.
General open quantum system dynamics: Reverse

quantum jumps.—We now move on to the second main
purpose of the Letter, that is, introducing a general version
of the rate operator quantum jump method, able to deal also
with non-P-divisible dynamics.
When P divisibility is broken, the rate operator WJ in

Eq. (2) is not positive definite, but it is still Hermitian and
we can thus write its spectral decomposition as

WJ
ψðtÞ ¼

X

jþ
λψðtÞ;jþjφψðtÞ;jþihφψðtÞ;jþj

−
X

j−
jλψðtÞ;j− jjφψðtÞ;j−ihφψðtÞ;j− j; ð11Þ

where λψðtÞ;jþ (jφψðtÞ;jþi) and λψðtÞ;j− (jφψðtÞ;j−i) are the
positive and negative eigenvalues (eigenvectors) of WJ

ψðtÞ,
respectively. Once again, we define the rate operator jump
unraveling as the deterministic evolution fixed by Eqs. (4)
and (5) interrupted by sudden jumps, associated to the
spectral decomposition of WJ. For the positive eigenvalues
λψðtÞ;jþ , we can proceed exactly as in the P-divisible case,
introducing the operators VψðtÞ;jþ as in Eq. (3), which
induce the jump in Eq. (6) with probability as in Eq. (7). On
the other hand, for the negative eigenvalues λψðtÞ;j− we
cannot proceed in the same way, as we would get negative
probabilities (analogously to what happens in MCWF for
negative coefficients in the master equation). A possible
way out is obtained by relating the different trajectories of
the unraveling to each other [29]. Hence, let us consider the
ensemble ΨðtÞ ¼ fjψ iðtÞigi¼1;…;N of the pure states gen-
erated by the N trajectories of the unraveling at time t. We
define a second kind of jump operator, given by
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BψkðtÞ;ψk0 ðtÞ;j− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλψk0 ðtÞ;j− j

q
jψk0 ðtÞihψkðtÞj; ð12Þ

and we postulate that it acts only if the source and target
states are related by

jψkðtÞi ¼ jφψk0 ðtÞ;j−i; ð13Þ

inducing the state transformation jψkðtÞi ↦ jψk0 ðtÞi, with
probability

pðk→k0Þ
j− ðtÞ ¼ Nk0 ðtÞ

NkðtÞ
jλψk0 ðtÞ;j− jdt; ð14Þ

where NiðtÞ is the number of elements jψ iðtÞi in ΨðtÞ. In
Sec. III of Ref. [52], we show that the trajectories described
above do provide a valid unraveling; i.e., the average stateP

i NiðtÞjψ iðtÞihψ iðtÞj=N satisfies the master equation (1).
Differently from the jumps in Eq. (3), each of the jumps

in Eq. (12) connects couples of states [jψkðtÞi and jψk0 ðtÞi]
which must be both in the ensemble ΨðtÞ before the jump,
and the associated probability depends on the number of
corresponding ensemble members [NkðtÞ and Nk0 ðtÞ]; see
Eq. (14). The crucial point is that only if the source state
jψkðtÞi is related to the target state jψk0 ðtÞi by the relation in
Eq. (13) they will be connected by a jump BψkðtÞ;ψk0 ðtÞ;j− .
Note that this also means that this kind of jump can be
interpreted as a reverse jump, with respect to the “standard”
ones. The extension of the rate operator quantum jump
method to non-P-divisible dynamics is in fact inspired by
the reverse quantum jumps of the NMQJ method [29,37],
but, as will be shown explicitly below, ROQJ has a wider
range of applicability.
Two case studies.—First, we consider a master equation

where one of the decay rates is negative for all times
t > 0—while the corresponding dynamical Λt is CP, not
CP divisible, and still P divisible for all t > 0. In this case,
one cannot use MCWF nor NMQJ methods. Take the
dynamics of a two-level system fixed by the master
equation [45,48,57,58],

d
dt

ρðtÞ ¼ 1

2

X3

k¼1

γkðtÞ½σkρðtÞσk − ρðtÞ�; ð15Þ

where the fσkgk¼1;2;3 are the Pauli matrices. Equation (15)
is exactly solvable and the P divisibility of the correspond-
ing evolution is equivalent to the conditions [48,58]
γiðtÞ þ γjðtÞ ≥ 0, i ≠ j; the controlled transition between
P-divisibile and non-P divisible evolutions for the dynamics
in Eq. (15) has been realized experimentally in Ref. [46].
Let us fix in particular γiðtÞ ¼ μiðtÞ − μjðtÞ − μkðtÞ, with

μiðtÞ ¼ −ðxj þ xkÞ=ðxj þ xk þ e2txiÞ, for i ≠ j ≠ k ¼ 1, 2,
3 and with x1, x2, x3 non-negative numbers summing up to
1. P divisibility holds at any time, but the rates γiðtÞ can be
negative; even more, there are choices of the xi’s such that

one of the γiðtÞ is negative for any time t > 0; i.e., CP
divisibility is broken at any t > 0. Dynamics with a
perpetually negative master-equation coefficient have been
extensively studied in the literature [44–48,59,60] and are
usually referred to as eternal non-Markovian. This kind of
master equations cannot be unraveled by the standard
MCWF [19] since a negative decay rate leads to a negative
quantum jump probability. NMQJ [29,37], in turn, is based
on canceling previously occurred quantum jumps when the
decay rate turns negative. Having a negative rate since the
very beginning of the time evolution implies that one
should cancel something that never happened—which
leads to the mathematical problems in addressing such
jumps. On the other hand, rate operator quantum jumps
can easily treat such a situation, as shown in Fig. 1. By
choosing x1 ¼ x2 ¼ 1=2 and x3 ¼ 0, the corresponding
decay rates in master equation (15) are γ1ðtÞ ¼ 1,
γ2ðtÞ ¼ 1, and γ3 ¼ − tanhðtÞ < 0 for t > 0. We report
in Fig. 1(a) the evolution of the two-level system pop-
ulation averaged over N ¼ 103 realizations. The excellent
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FIG. 1. (a) Evolution of the real part of the two-level system
coherence, Reðρ12ðtÞÞ, according to the master equation in
Eq. (15) (solid line), and as average of 104 trajectories (circles)
with dt ¼ 0.002. The decay rates are γ1ðtÞ ¼ γ2ðtÞ ¼ 1 and γ3 ¼
− tanhðtÞ < 0 for t > 0. Inset: Three examples of realizations:
Evolution of Re(αðtÞβ�ðtÞ) with jψðtÞi ¼ αðtÞj1i þ βðtÞj0i.
(b) Dissipative seven-coupled-site system (for more details, see
the text). The simulation results for the site populations (circles)
show excellent match with the analytical results (solid lines). The
system is initially in the pure state jψi ¼ j1i. We have used
ensemble size 3 × 104 and time-step size dt ¼ 0.005. Inset: An
example realization: Evolution of the site populations. In both
cases, the error bars of the simulation results are smaller than the
circles.
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agreement with the exact solution can be seen on the whole
timescale. Moreover, some illustrative trajectories are
reported in the inset of Fig. 1. Indeed, the jumps can be
read as the action of the operations defined in Eq. (8),
associated with the “click” of a detector which is contin-
uously monitoring the two-level system.
As a second example, we consider a seven-site system

including Hamiltonian interaction between the sites and
also dissipative jumps between them. The open system
Hamiltonian is HS ¼

P
i≠jΩi;jjiihjj, where Ωi;j ¼ Ωj;i,

and the values for each are chosen uniformly random so
that 0 ≤ Ωi;j ≤ 0.6. In other words, all of the sites are
coupled unitarily to all other sites with random coupling
strength. In the dissipator, jumps can happen between any
pair of sites i and j; i.e., we have 49 jump operators given
by jiihjj for any combination of i and j. Here, for
simplicity, we use for all operators equal rate, which we
choose as cðtÞ ¼ 0.5½ð1 − e−0.5tÞ0.3þ e−0.3t sinð4.5tÞ�.
This also guarantees CP of the dynamical map since the
time integral of the rate remains positive. The rate oscillates
between positive and negative values, and P divisibility is
broken whenever the rate is negative. By exploiting the
properties of the ROQJ method, we have in the simulation
only

ffiffiffiffiffi
49

p ¼ 7 decay channels. Figure 1(b) shows the
excellent match between the analytical and simulation
results while the inset displays an example realization.
In between Markovian and non-Markovian.—We now

clarify the different degrees of memory effects present in
rate operator quantum jumps, also in comparison with other
(jump) unraveling approaches. Let us start from CP-
divisible dynamics, which have been identified with quan-
tumMarkovian dynamics in Ref. [35]. Here, MCWF can be
applied and the resulting unraveling is built up via the same
non-Hermitian Hamiltonian and Lindblad operators for any
sequence of jumps ωt. On the other hand, the probability to
have a jump j at a time t depends on the state before the
jump, jψðωtÞi, and then on all the previous sequence of
types and instants of jumps which led to that state. We
conclude that the jump probabilities do carry some memory
[61], though the averaged state can follow, e.g., semigroup
dynamics.
If we nowmove to the P-divisible case and the unraveling

provided by the ROQJ method, we see that the memory
described above gets amplified, since now not only the
probabilities but also the kind of jump at a given time depend
on the previous sequence of jumps. In terms of the meas-
urement interpretation, this means that not only the outcome
at time t but also the measurement apparatus used to realize a
certain instrument will have to depend on the past outcomes.
The strongest form of memory for the unravelings is

certainly the one characterizing the reversed jumps, both in
NMQJ and in the non-P-divisible version of the ROQJ
method. Here, the jump probabilities and operators connect
different trajectories, in a way that the event at a time t on a
given trajectory will depend on the previous events also on

all the other trajectories. No measurement interpretation is
possible in this case.
Conclusions.—In this Letter, we have introduced a

quantum jump unraveling, named rate operator quantum
jumps, which allowed us to define a consistent measure-
ment interpretation for a wider class of dynamics than those
where the standard MCWF interpretation applies. This
includes the case where the master equation contains
negative rates and the corresponding dynamical map is
not CP divisible. Our approach is able to deal with any
open quantum-system dynamics—including dynamical
regions where neither MCWF nor NMQJ can be used—
and provides a unified framework for using quantum jumps
to deal with open-system dynamics. Moreover, our results
highlight the different kinds of memory effects which
arise within the context of quantum unravelings and will
hopefully help further clarify the difference between
Markovianity and non-Markovianity in the quantum realm.
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