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Identification of metastatic 
primary cutaneous squamous 
cell carcinoma utilizing artificial 
intelligence analysis of whole slide 
images
Jaakko S. Knuutila 1,2, Pilvi Riihilä 1,2, Antti Karlsson 3, Mikko Tukiainen 3, Lauri Talve 
4, Liisa Nissinen 1,2 & Veli‑Matti Kähäri 1,2*

Cutaneous squamous cell carcinoma (cSCC) harbors metastatic potential and causes mortality. 
However, clinical assessment of metastasis risk is challenging. We approached this challenge by 
harnessing artificial intelligence (AI) algorithm to identify metastatic primary cSCCs. Residual neural 
network‑architectures were trained with cross‑validation to identify metastatic tumors on clinician 
annotated, hematoxylin and eosin‑stained whole slide images representing primary non‑metastatic 
and metastatic cSCCs (n = 104). Metastatic primary tumors were divided into two subgroups, which 
metastasize rapidly (≤ 180 days) (n = 22) or slowly (> 180 days) (n = 23) after primary tumor detection. 
Final model was able to predict whether primary tumor was non‑metastatic or rapidly metastatic with 
slide‑level area under the receiver operating characteristic curve (AUROC) of 0.747. Furthermore, 
risk factor (RF) model including prediction by AI, Clark’s level and tumor diameter provided higher 
AUROC (0.917) than other RF models and predicted high 5‑year disease specific survival (DSS) for 
patients with cSCC with 0 or 1 RFs (100% and 95.7%) and poor DSS for patients with cSCCs with 2 or 
3 RFs (41.7% and 40.0%). These results indicate, that AI recognizes unknown morphological features 
associated with metastasis and may provide added value to clinical assessment of metastasis risk and 
prognosis of primary cSCC.

Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing inci-
dence  worldwide1,2. The overall rate of metastasis of cSCC has been estimated as 1–4% and it accounts for at 
least 20% of all skin cancer-related  mortality2–4. The prognosis of patients with metastatic disease is generally 
poor with 3-year overall survival (OS) of 29–46% and mortality is associated primarily with nodal  metastases3,5. 
Metastasis occurs relatively rapidly with every other patient developing detectable metastasis within 6 months 
of the diagnosis of primary metastatic cSCC (mcSCC)3.

Established tumor staging systems by American Joint Committee on Cancer (AJCC) and Brigham and Wom-
en’s Hospital (BWH) are utilized in the clinical risk assessment of cSCC patients. Tumor diameter, invasion depth, 
and perineural invasion are associated with the risk of metastasis and are pivotal factors in both the BWH and the 
 8th edition of AJCC (AJCC-8) staging  systems6. However, current staging systems are unsatisfactory in predict-
ing the risk of progression of primary cSCC to metastatic  disease7. In addition, to date, there are no clinically 
established biomarkers for assessment of metastasis risk of primary cSCC.

Current digitalization of pathology, especially whole slide imaging enables utilization of machine learning 
(ML) in the analysis of tissue  specimens8. ML represents a subfield of artificial intelligence (AI) and can be utilized 
via supervised, unsupervised, or reinforcement  learning9,10. Supervised learning dominates medical applications 
and is based on training with data with known outcomes with the aim of finding a mathematical function that 
can map input data into output  predictions11. In general, ML algorithms include regression and more advanced 
artificial neural networks (ANNs), which are computing programs inspired by biological neural  networks12. ML 
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is called deep learning (DL), when ANN includes multiple (> 1) hidden layers between the input and output 
layers and it represents more recent evolution of ML with the ability to handle large  datasets13. DL requires less 
manual preprocessing and can learn more complex features with higher efficiency enabling more successful 
pattern recognition and computer  vision14. Numerous specialized deep neural networks, such as convolutional 
neural networks (CNNs) have been developed for different  tasks15.

CNNs are deep neural networks, which contain hidden convolutional layer(s) in the  architecture9. Con-
nectivity pattern between the neurons of the CNN resembles the organization of the animal visual cortex and 
demonstrates higher performance regarding spatial features crucial for the performance of computer vision such 
as object recognition, identification and  classification10. Residual neural network-18 (ResNet-18) is an 18-layer 
deep and ResNet-50 a 50-layer deep CNN, which adds residual learning to the traditional  CNN16. ResNets 
resemble pyramidal cells in cerebral cortex and utilize skip connections to jump over layers in order to solve the 
problem of gradient dispersion and accuracy  degradation16.

To date, CNNs have been studied as diagnostic tools in clinical dermatology in dermoscopy and 
 dermatopathology17. In dermatopathology, CNNs have been shown to successfully identify basal cell carcino-
mas, dermal nevi and seborrheic keratoses, to distinguish Spitz nevi from conventional melanocytic lesions and 
to predict the prognosis of primary  melanoma18–20.

In this study, we have used AI algorithm to identify primary cSCCs with risk for metastasis. ResNet archi-
tectures were trained with cross-validation and fine-tuned on tumor tiles extracted from clinician annotated, 
hematoxylin and eosin-stained whole slide images representing a cohort of primary mcSCCs and a cohort of 
non-metastatic cSCCs (non-mcSCCs)3. Furthermore, a risk factor model (RFM), which utilized prediction by 
AI and conventional histopathological features was generated.

Results
Performance of AI‑models. For testing of AI-models we utilized input data from 45 whole slide images 
(WSIs) representing mcSCCs and 59 WSIs representing non-mcSCCs. For rapid metastasis -AI-model, WSIs of a 
subcohort of 22 rapidly (≤ 180 days) metastatic mcSCCs was used. Tumor characteristics of the rapid metastasis 
-AI-model are shown in Table 1.

In single tile -AI-model, a slide level area under the receiver operating characteristic curve (AUROC) of 0.689 
was reached at best. However, the model was dramatically overfitting to the training data despite heavy regula-
tion and data augmentation and ultimately the model could not reliably reproduce the results between different 
sampling of folds. Invasive front -AI-model produced results inferior to the single tile -AI-model with tile level 
AUROC of 0.629 at best, regardless of whether tiles inside the annotation, outside the annotation or both were 
included. Multi-tile -AI-model did not produce more convincing results than the previous approaches (AUROC 
0.672 at best) on stack tile level. This may be due to the fact that using n tiles as input effectively reduced the size 
of the dataset by n-fold, since we retained from showing a tile in different stacks multiple times.

Rapid metastasis -AI-model generated most convincing results from the beginning. Finally, AUROCs of 
0.754–0.814 were reached on tile level depending on the fold (Fig. 1A). Furthermore, an average AUROC of 
0.747 was achieved on slide level (Fig. 1B). Slide level results visualizing summary confusion matrices show that 
sensitivity of the rapid metastasis -AI-model was 64%, specificity 76% and accuracy 73% (Supplementary Fig. 1). 
This rapid metastasis -AI-model was utilized in the creation of RFMs and survival analyses.

Risk factor analysis and evaluation by dermatopathologist. Next, we evaluated whether traditional 
histopathological features could predict the risk of metastasis better than the rapid metastasis -AI-model and 
whether the predictive power of the model could be explained by histopathological features. Pearson correlation 
was conducted taking into account every variable in Table 1. The highest correlation of AI prediction (0.329) 
was with AJCC-8 tumor staging and second highest (0.256) with BWH tumor staging (Supplementary Table 1). 
In comparison, Pearson correlations regarding prediction by pathologist were higher with highest correlation of 
0.494 with BWH staging system and second highest (0.415) with Clark’s level (Supplementary Table 1). Thus, it 
can be concluded that AI prediction did not strongly rely on any of the classical clinicopathological variables but 
was based on other morphological features of the tumor.

Logistic regression analysis was conducted and AUROCs created to evaluate the metastasis risk for each 
variable and to estimate the classification power of the rapid-metastasis -AI-model. Rapid metastasis -AI-model 
provided a slide level AUROC of 0.747 and an odds ratio (OR) of 5.63. In comparison, pathologist reached an 
AUROC of 0.694 and an OR of 5.71. Clark’s level provided higher OR (13.75) and AUROC (0.788) than inva-
sion beyond fat, and diameter provided highest AUROC of 0.804 of the individual clinicopathological variables. 
AJCC-8 and BWH tumor staging systems provided slightly higher AUROCs (0.816 and 0.818, respectively), but 
in logistic regression analysis the increase of risk was non-linear (Table 2).

Next, it was evaluated, whether prediction as metastatic by AI could act as an individual risk factor in mul-
tifactorial risk factor model (RFM) and improve the clinical risk assessment. For comparison, a RFM (conven-
tional-RFM) taking into account tumor diameter ≥ 30 mm and Clark’s level 5 as risk factors provided higher 
AUROC (0.862) than AJCC-8 or BWH staging systems. Furthermore, a RFM containing prediction by AI as 
metastatic and Clark’s level 5 as risk factors provided even higher AUROC of 0.872. Finally, a RFM including 
prediction by AI as metastatic, Clark’s level 5 and diameter ≥ 30 mm as risk factors (AI-RFM) produced an 
AUROC of 0.917. Similar RFMs that took into account prediction by pathologist instead of AI resulted in lower 
AUROCs of 0.807 and 0.841 respectively (Table 2).

Different thresholds for AI-RFM were tested with respect to diameter of primary tumor. Selecting 20 mm 
instead of 30 mm as a threshold for the risk factor, resulted in lower AUROC of 0.913. Furthermore, if histological 
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Baseline primary tumor characteristics Total Non-mcSCC Rapid mcSCC P value

Number of samples 81 59 22

Age at the day of sample 0.115

 Median, y (IQR) 78 (71–85) 79 (71–87) 76 (71–81)

 Mean, y 76 77 73

 Range, y 46–93 55–93 46–93

Gender 0.216

 Male, n (%) 54 (66.7) 37 (62.7) 17 (77.3)

 Female, n (%) 27 (33.3) 22 (37.3) 5 (22.7)

Nature of the tissue specimen 0.479

 Biopsy, n (%) 11 (13.6) 7 (11.9) 4 (18.2)

 Resection, n (%) 70 (86.4) 52 (88.1) 18 (81.8)

Number of local recurrences 0.756

 Primary, n (%) 74 (91.4) 54 (91.5) 20 (90.9)

 First recurrence, n (%) 6 (7.4) 4 (6.8) 2 (9.1)

 Fifth recurrence, n (%) 1 (1.2) 1 (1.7) 0 (0.0)

Location 0.014

 Auricle/pre-/retroauricular, n (%) 17 (21.0) 12 (20.3) 5 (22.7)

 Temple, n (%) 12 (14.8) 9 (15.3) 3 (13.6)

 Nose, n (%) 5 (6.2) 5 (8.5) 0 (0.0)

 Scalp, n (%) 9 (11.1) 8 (13.6) 1 (4.5)

 Forehead, n (%) 3 (3.7) 1 (1.7) 2 (9.1)

 Orbita, n (%) 1 (1.2) 0 (0.0) 1 (4.5)

 Lip, n (%) 5 (6.2) 1 (1.7) 4 (18.2)

 Cheek, n (%) 11 (13.6) 11 (18.6) 0 (0.0)

 Neck, n (%) 2 (2.5) 1 (1.7) 1 (4.5)

 Torso, n (%) 1 (1.2) 1 (1.7) 0 (0.0)

 Upper limp, n (%) 8 (9.9) 6 (10.2) 2 (9.1)

 Lower limb, n (%) 6 (7.4) 3 (5.1) 3 (13.6)

 Unknown, n (%) 1 (1.2) 1 (1.7) 0 (0.0)

Histological grade 0.247

 1, n (%) 40 (49.4) 32 (54.2) 8 (36.4)

 2, n (%) 28 (34.6) 18 (30.5) 10 (45.5)

 3, n (%) 10 (12.3) 6 (10.2) 4 (18.2)

 Unknown, n (%) 3(3.7) 3(5.1) 0(0.0)

Diameter  < 0.001

  < 10 mm, n (%) 24 (29.6) 22 (37.3) 2 (9.1)

 10–19.9 mm, n (%) 27 (33.3) 24 (40.7) 3 (13.6)

 20–29.9 mm, n (%) 12 (14.8) 7 (11.9) 5 (22.7)

  ≥ 30 mm, n (%) 18 (22.2) 6 (10.2) 12 (54.5)

 Unknown, n (%) 0 (0.0) 0 (0.0) 0 (0.0)

Clark’s level  < 0.001

 2–4 tumor, n (%) 48 (59.3) 44 (74.6) 4 (18.2)

 5 tumor, n (%) 27 (33.3) 12 (20.3) 15 (68.2)

 Unknown, n (%) 6 (7.4) 3 (5.1) 3 (13.6)

Perineural invasion 1.000

 Not present, n (%) 80 (98.8) 58 (98.3) 22 (100.0)

 Present, n (%) 1 (1.2) 1 (1.7) 0 (0.0)

Lymphovascular invasion 0.178

 Not present, n (%) 78 (96.3) 58 (98.3) 20 (90.9)

 Present, n (%) 3 (3.7) 1 (1.7) 2 (9.1)

Invasion beyond subcutaneous fat  < 0.001

 No, n (%) 57 (70.4) 49 (83.1) 8 (36.4)

 Yes, n (%) 23 (28.4) 10 (16.9) 13 (59.1)

 Unknown, n (%) 1 (1.2) 0 (0.0) 1 (4.5)

Tumor staging

 AJCC-8  < 0.001

Continued
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grade was included in AI-RFM model with 4 different risk factors instead of 3, the discriminative power of the 
RFM was lower (AUROC 0.903) (Data not shown).

Survival analyses. Survival analyses were conducted to further evaluate the discriminative power of AI 
and AI-RFM from prognostic point of view. First, survival between slow and rapid metastasis cohorts, as well as 
non-metastatic cohort was analyzed. Survival was higher in slow metastasis cohort up to approximately 4 years 
until slow metastasis cohort reached the level of rapid metastasis cohort with 50% of patients alive at 1.2 years for 
rapid metastasis and 3.4 years for slow metastasis cohort, when OS was considered and 1.3 and 4.1 years, respec-
tively, when disease-specific survival (DSS) was considered (Supplementary Fig. 2). This notion emphasizes the 
importance of identifying especially mcSCCs, which metastasize rapidly.

Next, the prognostic power of discrimination by both AI and dermatopathologist was analyzed. AI and 
pathologist provided nearly similar OS and DSS prediction (Fig. 2A,B).

In order to elucidate the feasibility of AI-RFM, the prognostic power of conventional histopathologic param-
eters was evaluated and visualized. Notably, the survival prediction by histological grade was inferior to diameter 
and Clark’s level, especially with respect to DSS (Fig. 3A,B). These observations support the inclusion of Clark’s 
level 5 and diameter ≥ 30 mm in AI-RFM as risk factors for prediction of metastasis in combination with AI  
(Fig. 3C,D). The AI-RFM provided survival prediction with excellent prognosis for patients with cSCC with 0 
(5-year DSS estimate of 100%) or 1 (5-year DSS estimate of 95.7%) risk factors and poor prognosis for patients 
with cSCC with 2 (5-year DSS estimate of 41.7%) or 3 (5-year DSS estimate of 40.0%) risk factors (Figs. 3D, 4B,D). 
The discriminative power of AI-RFM was superior to conventional-RFM which included diameter ≥ 30 mm 
and Clark’s level 5 as risk factors with respect to DSS  (Fig. 3D). Furthermore, the AI-RFM was compared to 
BWH tumor staging (Fig. 4A,B) and to the comparative RFM utilizing prediction by pathologist instead of AI 
(pathologist-RFM) (Fig. 4C,D). When DSS was considered the discriminative power of AI-RFM was superior to 
both BWH tumor staging (Fig. 4B) and pathologist-RFM (Fig. 4D). Notably, although the survival predictions by 
both AI and pathologist alone were almost identical (Fig. 2A,B), the AI-RFM was superior to pathologist-RFM 
(Fig. 4D) emphasizing the notion that the evaluation by AI is based on yet unestablished morphological features 
unlike the evaluation by pathologist. The superiority is based on the discrimination of cases by AI-RFM into 
good (0–1 risk factors) and poor prognosis (2–3 risk factors) and the lack of “grey zone” which turns out to be 
a problem with comparative RFMs and BWH staging.

Discussion
To examine the ability of AI to recognize primary cSCCs that will develop metastasis, several approaches were 
tested with cross-validation. This is a clinically challenging task as to date there are no established biomarkers 
to predict the risk of metastasis or prognosis of primary cSCC. Conventional clinicopathological features are 
utilized in tumor staging systems, but these are unsatisfactory in predicting the risk of  metastasis7.

Our results show that an experienced dermatopathologist and AI with limited training and testing data 
perform quite similarly in order to distinguish rapidly metastatic primary cSCCs from non-metastatic cSCCs. 

Baseline primary tumor characteristics Total Non-mcSCC Rapid mcSCC P value

  T1, n (%) 46 (56.8) 44 (74.6) 2 (9.1)

  T2, n (%) 6 (7.4) 3 (5.1) 3 (13.6)

  T3, n (%) 24 (29.6) 9 (15.3) 15 (68.2)

  T4a–T4b, n (%) 4 (4.9) 3 (5.1) 1 (4.5)

  Unknown, n (%) 1 (1.2) 0 (0.0) 1 (4.5)

 BWH  < 0.001

  T1, n (%) 37 (45.7) 36 (61.0) 1 (4.5)

  T2a, n (%) 17 (21.0) 11 (18.6) 6 (27.3)

  T2b, n (%) 20 (24.7) 7 (11.9) 13 (59.1)

  T3, n (%) 4 (4.9) 3 (5.1) 1 (4.5)

  Unknown, n (%) 3 (3.7) 2 (3.4) 1 (4.5)

AI prediction 0.001

 Non-metastatic, n (%) 53 (65.4) 45 (76.3) 8 (36.4)

 Metastatic, n (%) 28 (34.6) 14 (23.7) 14 (63.6)

Pathologist prediction 0.003

 Non-metastatic, n (%) 47 (58.0) 40 (67.8) 7 (31.8)

 Metastatic, n (%) 20 (24.7) 10 (16.9) 10 (45.5)

 Cannot be assessed, n (%) 14 (17.3) 9 (15.3) 5 (22.7)

Table 1.  Clinicopathological primary tumor characteristics of the final cohorts utilized in the rapid metastasis 
-AI-model (tumor n = 81). AI: artificial intelligence; AJCC-8: the 8th edition of American Joint Committee 
on Cancer; BWH: Brigham and Women’s Hospital; IQR: interquartile range; mcSCC: primary metastatic 
squamous cell carcinoma; WSI: whole slide image.
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Although pathologists in clinical practice do not directly evaluate the risk of metastasis of primary cSCC, here 
the dermatopathologist was requested to do so. Notably, AI and pathologist had only one WSI available for 
analysis and no access to whole tissue material of the tumor or to clinical information from which the actual 
diameter or invasion depth of the whole tumor could have been deduced. By Pearson correlation (Supplemen-
tary Table 1) it appears that prediction by pathologist is based more on conventional histopathological features, 
such as invasion depth than the prediction by AI. This notion is further supported by similar survival prediction 
performance by AI and pathologist alone (Fig. 2A,B), in comparison to superior discriminative performance of 
AI-RFM to pathologist-RFM (Fig. 4D). These findings provide evidence, that the prediction by AI is based on 
yet unestablished morphological features or feature combinations. Additionally, these observations support our 
hypothesis, that these morphologic features appear in primary tumors temporally close to the time of metastasis.

The results obtained with the AI-RFM generated in this study show, that inclusion of AI algorithm in RFM 
improved the assessment of cSCC metastasis risk, as shown by AUROC of 0.917, which was superior to other 
RFMs and staging systems tested. Furthermore, the AI-RFM clearly differentiated cases with 0 or 1 risk factors 
from cases with 2 or 3 risk factors with respect to DSS prediction. This observation indicates that primary cSCCs 
with ≤ 1 risk factor should be considered as cases with low risk for metastasis and cSCCs with ≥ 2 risk factors as 
cases with high risk for metastasis when utilizing AI-RFM generated in this study.

To date, there are few published studies with similar study design in cancer field and no studies on metastasis 
risk of cutaneous cancers. A leave-one-out cross-validation accuracy of 80.77% was lately reported when predict-
ing the risk of metastasis in pancreatic neuroendocrine  tumors21. Furthermore, AUROC of 0.68 was achieved in 
prediction of lymph node metastasis of prostate cancer from primary tumor tissue utilizing  CNN22. A third study 
harnessed CNN to predict lung cancer recurrence and metastasis from histopathological images and reached an 
AUROC of 0.7923. Our results provide evidence, that the AI prediction exploiting multifactorial RFM appears 
to be a more encouraging approach to the prediction of metastasis risk by AI.

It is conceivable, that further studies on AI and metastasis risk of primary cSCCs with larger cohorts for 
training and testing are warranted. It would be advisable to use tissue specimens scanned on same occasion 
or sufficiently large, preferably equally sized cohorts of samples scanned on different dates. Same approach is 

Figure 1.  Receiver operating characteristic (ROC) curves and area under the receiver operating characteristic 
(AUROC) curve scores of the final rapid metastasis -AI-model. (A) Tile-level and (B) Slide-level results with 
different fourfold cross-validation folds are shown.
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Analysis of metastasis risk

Included in analyses Risk of metastasis by variable 
Unadjusted OR (95% CI) p value AUROC p valueRapid mcSCC Non-mcSCC

Gender 0.573 0.316

 Male, n (positive/total) (%) 17/22 (77.3) 37/59 (62.7) 2.02 (0.65–6.25) 0.221

 Female, n (positive/total) (%) 5/22 (22.7) 22/59 (37.3) 1 (ref.)

Histological grade 0.609 0.137

 1, n (positive/total) (%) 8/22 (36.4) 32/56 (57.1) 1 (ref.)

 2, n (positive/total) (%) 10/22 (45.5) 18/56 (32.1) 2.22 (0.74–6.64) 0.153

 3, n (positive/total) (%) 4/22 (18.2) 6/56 (10.7) 2.67 (0.61–11.76) 0.195

Diameter 0.804  < 0.001

  < 10 mm, n (positive/total) (%) 2/22 (9.1) 22/59 (37.3) 1 (ref.)

 10–19.9 mm, n (positive/total) (%) 3/22 (13.6) 24/59 (40.7) 1.38 (0.21–9.02) 0.740

 20–29.9 mm, n (positive/total) (%) 5/22 (22.7) 7/59 (11.9) 7.86 (1.24–49.83) 0.029

  ≥ 30 mm, n (positive/total) (%) 12/22 (54.5) 6/59 (10.2) 22.00 (3.83–126.36) 0.001

  ≥ 20 mm, n (positive/total) (%)* 17/22 (77.3) 13/59 (22.0) 14.39 (2.85–72.52) 0.001

Clark’s level 0.788  < 0.001

 2–4, n (positive/total) (%) 4/19 (21.1) 44/56 (78.6) 1 (ref.)

 5, n (positive/total) (%) 15/19 (78.9) 12/56(21.4) 13.75 (3.85–49.17)  < 0.001

Invasion beyond fat 0.725 0.002

 No, n (positive/total) (%) 8/21 (38.1) 49/59 (83.1) 1 (ref.)

 Yes, n (positive/total) (%) 13/21 (61.9) 10/59 (16.9) 7.96 (2.62–24.23)  < 0.001

Tumor staging

 AJCC-8 0.816  < 0.001

  T1, n (positive/total) (%) 2/21 (9.5) 44/59 (74.6) 1 (ref.)

  T2, n (positive/total) (%) 3/21 (14.3) 3/59 (5.1) 22.00 (2.60–186.53) 0.005

  T3, n (positive/total) (%) 15/21 (71.4) 9/59 (15.3) 36.67 (7.11–189.10)  < 0.001

  T4a–T4b, n (positive/total) (%) 1/21 (4.8) 3/59 (5.1) 7.33 (0.51–105.92) 0.144

 BWH 0.818  < 0.001

  T1, n (positive/total) (%) 1/21 (4.8) 36/57 (63.2) 1 (ref.)

  T2a, n (positive/total) (%) 6/21 (28.6) 11/57 (19.3) 19.64 (2.13–181.18) 0.009

  T2b, n (positive/total) (%) 13/21 (61.9) 7/57 (12.3) 66.86 (7.49–596.88)  < 0.001

  T3, n (positive/total) (%) 1/21 (4.8) 3/57 (5.3) 12.00 (0.59–243.85) 0.106

Prediction by pathologist 0.694 0.017

 Non-metastatic, n (positive/
total) (%) 7/17 (41.2) 40/50 (80.0) 1 (ref.)

 Metastatic, n (positive/total) (%) 10/17 (58.8) 10/50 (20.0) 5.71 (1.74–18.76) 0.004

Prediction by AI 0.747  < 0.001

 Non-metastatic, n (positive/
total) (%) 8/22 (36.4) 45/59 (76.3) 1 (ref.)

 Metastatic, n (positive/total) (%) 14/22 (63.6) 14/59 (23.7) 5.63 (1.96–16.17) 0.001

Pathologist (met) + Clark (5) 0.807  < 0.001

 Zero risk factors, n (positive/
total) (%) 2/17 (11.8) 32/48 (66.7) 1 (ref.)

 One risk factor, n (positive/total) 
(%) 7/17 (41.2) 11/48 (22.9) 10.18 (1.83–56.54) 0.008

 Two risk factors, n (positive/
total) (%) 8/17 (47.1) 5/48 (10.4) 25.60 (4.17–157.00)  < 0.001

AI (met) + Clark (5) 0.872  < 0.001

 Zero risk factors, n (positive/
total) (%) 0/19 (0.0) 33/56 (58.9) NA NA

 One risk factor, n (positive/total) 
(%) 11/19 (57.9) 22/56 (39.3) NA NA

 Two risk factors, n (positive/
total) (%) 8/19 (42.1) 1/56 (1.8) NA NA

Conventional-RFM 0.862  < 0.001

 Zero risk factors, n (positive/
total) (%) 2/19 (10.5) 43/56 (76.8) 1 (ref.)

 One risk factor, n (positive/total) 
(%) 8/19 (42.1) 10/56 (17.9) 17.20 (3.16–93.72) 0.001

 Two risk factors, n (positive/
total) (%) 9/19 (47.4) 3/56 (5.4) 64.50 (9.38–443.51)  < 0.001

Continued
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also recommended with usage of different scanners. Based on our findings, small subcohorts scanned with dif-
ferent scanners or on another date can generate bias and therefore identical scanning settings should be used. 
Furthermore, with larger cohorts it would be useful to further analyze the ability of AI algorithm to recognize 
both rapid and slow metastasis cases as well as biopsies and resections. Unfortunately, in this study with limited 
tissue specimens further analysis of the impact of above mentioned qualities as well as analysis of tissue samples 
at different stages of tumor progression could not be executed.

In summary, our results provide proof of concept, that there are certain yet unknown morphological fea-
tures or feature combinations, which associate with the risk of cSCC metastasis and can be recognized by AI. 
Further studies are warranted in order to unveil these and to further develop AI algorithm as prognostic tool in 

Analysis of metastasis risk

Included in analyses Risk of metastasis by variable 
Unadjusted OR (95% CI) p value AUROC p valueRapid mcSCC Non-mcSCC

Pathologist-RFM 0.841  < 0.001

 Zero risk factors, n (positive/
total) (%) 2/16 (12.5) 31/48 (64.6) NA NA

 One risk factor, n (positive/total) 
(%) 3/16 (18.8) 10/48 (20.8) NA NA

 Two risk factors, n (positive/
total) (%) 6/16 (37.5) 7/48 (14.6) NA NA

 Three risk factors, n (positive/
total) (%) 5/16 (31.3) 0/48 (0.0) NA NA

AI-RFM 0.917  < 0.001

 Zero risk factors, n (positive/
total) (%) 0/19 (0.0) 32/56 (57.1) NA NA

 One risk factor, n (positive/total) 
(%) 5/19 (26.3) 20/56 (35.7) NA NA

 Two risk factors, n (positive/
total) (%) 9/19 (47.4) 4/56 (7.1) NA NA

 Three risk factors, n (positive/
total) (%) 5/19 (26.3) 0/56 (0.0) NA NA

Table 2.  Analysis of metastasis risk utilizing final rapid metastasis -AI-model cohorts. *Alternative grouping 
in which 20–29.9 mm and ≥ 30 mm categories are combined. AI: artificial intelligence; AI (met): analyzed by 
AI as metastatic; AJCC-8: The eight edition of American joint committee on cancer tumor staging; AUROC: 
area under receiver operating characteristic curve; BWH: Brigham and Women’s Hospital tumor staging; CI: 
confidence interval; Clark (5): Clark’s level 5; Diameter (≥ 30): tumor diameter ≥ 30 mm; mcSCC: primary 
metastatic squamous cell carcinoma; OR: odds ratio; Pathologist (met): analyzed by pathologist as metastatic; 
positive/total: tumors with named category out of all tumors with known information about named feature; 
RFM: risk factor model; ref: reference category.

Figure 2.  Kaplan–Meier overall survival (OS) and disease-specific survival (DSS) estimates calculated from 
the time of initial diagnosis of primary cSCC. (A) OS and (B) DSS estimates of actual non-metastasis (n = 59) 
and rapid metastasis (n = 22) cohorts in comparison with cohorts predicted by artificial intelligence (AI) as 
non-metastatic and rapid metastasis as well as cohorts predicted by pathologist as non-metastatic and rapid 
metastasis.
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combination with potential biomarkers and clinicopathological variables for the challenging assessment of the 
metastasis risk of cSCC.

Materials and methods
Ethical issues. The study was approved by The Ethics Committee of the Hospital District of Southwest 
Finland (187/2006) and Auria Biobank’s Scientific Steering Committee (AB15-9721). The research was carried 
out according to the Declaration of Helsinki. Registry study approval for collection and use of clinicopathologi-
cal data was obtained from the Turku University Hospital Clinical Research Centre (18.11.2018; TO5/042/18). 
Informed consent was obtained from all subjects involved in the study.

Research material. Hematoxylin and eosin-stained archived formalin-fixed and paraffin-embedded tissue 
specimens representing primary non-mcSCC and mcSCC tumors were scanned and digitalized into WSIs. Each 
tumor was obtained for diagnostic purpose from patients from the area served by Turku University Hospital. 
Eventually, one tumor per patient and one WSI representing each cSCC was utilized to train and test the AI algo-
rithm, and in blind analysis by dermatopathologist. Altogether 45 mcSCC from 45 and 59 non-mcSCCs from 
59 individual patients, who did not develop cSCC metastasis during at least 5-year follow-up were included in 

Figure 3.  Kaplan–Meier overall survival (OS) and disease-specific survival (DSS) estimates calculated from 
the initial diagnosis of primary cSCC (rapid metastasis and non-metastatic cohorts, total tumor n = 81). (A) OS 
and (B) DSS estimates of cSCCs based on classification by primary tumor diameter, Clark’s level and histologic 
grade. OS (C) and DSS (D) estimates of cSCCs based on classification by artificial intelligence -risk factor model 
(AI-RFM) taking into account prediction by AI as metastatic, tumor diameter ≥ 30 mm and Clark’s level 5 as 
risk factors, and by conventional-RFM taking into account tumor diameter ≥ 30 mm and Clark’s level 5 as risk 
factors.
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the analyses. mcSCCs were further divided into two subcohorts: one with primary mcSCCs, which developed 
metastasis within 180 days (rapid metastasis cohort) (n = 22) and another with primary mcSCCs that developed 
metastasis after 180 days from the initial diagnosis of primary tumor (slow metastasis cohort) (n = 23). Clinical, 
histopathological, follow-up and demographic data were gathered manually from patient records and pathology 
reports (Tables 1,2). All mcSCCs developed at least one nodal metastasis and part also distant metastases.

In survival analyses death was the primary clinical endpoint. The exact cause of death was rarely reported 
and autopsies were infrequently performed, but the cause of death could be deduced from patient records with 
acceptable reliability by clinician (JSK). Both unambiguous OS and deduced DSS were utilized in survival analy-
ses. Survival time was calculated from the date of initial diagnosis of the primary cSCC with 5 years of follow-up. 
Death represented the end of follow-up.

Tissue specimens (slides) were scanned with 3DHistech scanner (3DHistech, Budapest, Hungary) and anno-
tated using CaseViewer (3DHistech, Budapest, Hungary). The WSIs representing cSCCs were manually anno-
tated. Annotated area included whole tumor represented on the WSI, including tumor cells, intratumoral and 
peritumoral stroma, as well as intratumoral inflammatory cells (Supplementary Fig. 3). Additionally, manual 

Figure 4.  Kaplan–Meier overall survival (OS) and disease-specific survival (DSS) estimates calculated from 
the initial diagnosis of primary cSCC (rapid metastasis and non-metastatic cohorts, total tumor n = 81). (A) 
OS and (B) DSS estimates of cSCCs based on grouping by artificial intelligence- risk factor model (AI-RFM) 
taking into account prediction by AI as metastatic, tumor diameter ≥ 30 mm and Clark’s level 5 as risk factors 
and by Brigham and Women’s hospital (BWH) tumor staging. (C) OS and (D) DSS estimates of cSCCs based 
on classification by AI-RFM taking into account prediction by AI as metastatic, tumor diameter ≥ 30 mm and 
Clark’s level 5 as risk factors and by similar model utilizing prediction by pathologist instead of AI (pathologist-
RFM).
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exclusions were made if artefacts were detected in annotated tumor area. These annotated areas of the WSIs were 
used to train and validate the neural networks.

As WSIs are too large to feed any ML model, the images were cut into 1024 × 1024 and 512 × 512 pixel tiles at 
the largest zoom level (20 ×) from the annotated tumor areas. The tissue content of the tiles was further analyzed 
by using a combination of binary and Otsu thresholding: a tile was considered valid if it contained more than 
50% of tissue pixels as defined by the thresholding algorithm. Similarly, a tile was considered a tumor tile if it 
contained more than 50% pixels from the tumor annotation mask. All tiles inherited the cohort label from the 
original slide. Every tile was then resized into 299 × 299 pixels before training the algorithms.

Training setup. We analyzed the task of distinguishing mcSCCs from non-mcSCCs as a binary classifi-
cation problem on the level of a single tumor tile. Each tumor tile was assigned to a single cohort and the 
binary classification problem was to classify the tiles into these two classes. As the data set is relatively small we 
approached the task with cross-validation, in which data is sectioned into subsets and one subset at a time is used 
for testing and rest for training. Thus, several models are trained and the performance of each model is tested 
with alternating validation subset.

Final reported results of the rapid metastasis -AI-model are based on the ResNet18 architecture with a 
custom head consisting of average pooling and two dense layers with heavy dropout to combat overfitting. 
More complex ResNet models (ResNet50) were also tested but were more prone to overfitting, which lead to 
the choice of a simpler model for the final rapid metastasis -AI-model. The models were trained using threefold 
cross-validation (3-CV) with different extraction tile sizes until the final rapid metastasis -AI-model in which 
fourfold cross-validation (4-CV) was used. The loss function used was the binary cross-entropy loss. In training, 
it was confirmed that the tiles from a given patient and slide were exclusively sampled into one of the cross-
validation-folds to prevent the leakage of information between the training and validation sets. With every fold 
the model was trained 10 or 20 epochs.

Visualization of the results. In addition to analyzing the cross-validation accuracy and loss, we created 
the out-of-the-fold (OOF) tile level receiver operating characteristic (ROC) curves and calculated area under 
the curve (AUC) values. The OOF tile level predictions were also mapped to slide level. Namely, each tile and 
the corresponding location in the WSI was assigned a prediction probability between 0 and 1 for developing a 
metastasis. This probability was scaled to [0,100] and then shifted to the interval [− 50, 50] for each tile. The 
scores on WSI were then spatially smoothed using a median filter with window size 2. This meant that a window 
of 2 × 2 tiles was moved along the slide and the tile value was replaced with the median of the tile values within 
the window. The idea was to remove noise according to our hypothesis, that the features representing metastasis 
risk would vary smoothly across the tissue slide. To date, there is no way to scientifically select a correct size for 
the smoothing window. Our selection was based on visualizations of the results. Probability maps of the anno-
tated tumors were generated for metastasis score visualization (Fig. 5).

After the previous steps, where the OOF tile level predictions were accumulated to slide level, a simple major-
ity vote of the scaled predictions was performed to determine the predicted label of the WSI and the tumor by 
assessing the mean slide level score. We took 0 as the decision threshold to discriminate between the low/high 
metastasis risk tumors and visualized the slide level results in ROC curves with AUC scores and summary confu-
sion matrices. The workflow from WSI input to tile level result is visualized in Fig. 6.

AI‑models and hypotheses. In our initial approach we used single tile -AI-model, in which individual 
tiles served as input. Hypothetically, as most of the cells are the offspring of the cancerous cells and inherit the 
genetic alterations of the first generation of tumor cells, most tiles should represent the possible differences 
between the metastatic and non-metastatic tumors. It was noted that this classification algorithm is easy to 
implement and it is easy to aggregate and visualize the single tile predictions at slide level, but the model is 
prone to label noise. Another approach was to focus on the invasive front of the tumor (invasive front -AI-
model). Hypothetically, metastatic characteristics of the tumor are more likely visualized in the invasive front 
and focusing on this area was expected to lead to less noisy training labels. Third approach was to use stack of 
tiles (multi-tile -AI-model) as an input data in order to reduce the noise in the labels. Instead of just one tile, 
randomly selected sample of stack of n tiles from the same WSI was used as the input of the classifier. In above 
mentioned approaches ResNet50 architecture was used with 3-CV and single tiles from annotated WSIs rep-
resenting the two cohorts (primary mcSCCs and primary non-mcSCCs) were used as input data. In multi-tile 
-AI-model instead of single tile a stack of tiles and in invasive front -AI-model only tiles adjacent to the edge of 
the annotation (either inside and/or outside of the annotated area) from annotated WSIs were used as input data.

Due to previous notion of rapid development of  metastasis3 we subdivided the mcSCC cohort into cases that 
metastasize rapidly and slowly. Furthermore, we hypothesized that features characteristic for the metastatic 
tumor would be more prominent or more probably already present at the date of tissue specimen in primary 
tumors, which metastasize rapidly. Therefore, only tumors, which metastasized rapidly were utilized in the 
rapid metastasis -AI-model. Both stack of tiles and single tiles from annotated WSIs representing two cohorts 
(primary non-mcSCCs and primary rapid mcSCCs) were used as input data. Fourfold cross-validation and 
ResNet18 architecture were ultimately used. To further prevent overfitting into the more exclusive dataset, we 
used a “zoomed-in” approach in which 512 × 512 pixels instead of 1024 × 1024 pixels tiles were used.

Regarding technical execution of the study, during repeated runs of 3 × or 4 × CV analysis on all of the avail-
able slides for training, it seemed that depending on the choice of the CV split, the results varied considerably. 
Often it seemed that one fold was much more difficult for the model to analyze than the others, leading to 
considerably lower AUROC values. We took this as a sign that the dataset contained some examples that were 
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difficult for the model to analyze, for example by being very atypical cases of rapid metastasis tumors. More 
careful analysis of the metadata revealed, however, that the difficult cases appeared in folds where the slide data 
had been scanned in 2020 instead of 2016. Most of the rapid metastasis cases were scanned earlier because vari-
ous research projects have been conducted with the samples in the past. The scanner used was the same, but we 
hypothesized that the scanning software, image packing algorithms or the physical components of the scanner 
itself could have been updated affecting the image colors, noise patterns or other qualities. We used heavy color 
augmentations in training of the algorithm, but to study the possible effect of slides scanned at different times 
we tried and restricted the data to old samples only. This reduced the size of the dataset available, but was useful 
in ruling out at least one more possible source of error. This affected the AUROC results somewhat and brought 
the average AUROC value up.

Blinded assessment by pathologist. For comparison purposes, every WSI included in the final rapid 
metastasis -AI-model was analyzed by experienced dermatopathologist (LT). Only tissue sample ID and infor-
mation, whether the specimen represented biopsy or resection was provided to the pathologist in accordance 
with access to CaseCenter folder including 81 WSIs representing non-mcSCCs and rapid metastasis mcSCCs 
without the knowledge of the proportion of cases. The histological criteria used by the pathologist for predicting 

Figure 5.  Probability maps of annotated whole slide images analyzed by artificial intelligence (AI). The color 
in the probability map indicates the predicted metastasis score by AI on tile level in annotated tumor area. Red 
color represents high and blue color low score i.e. red color indicates tiles analyzed as metastatic and blue color 
tiles analyzed as non-metastatic by AI algorithm. White color on the edge of the slides represents excluded tissue 
outside manual annotations. (A) and (D) represent rapid metastasis and (B) and (C) non-metastatic cSCCs that 
were classified correctly on slide level by AI.
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metastasis in this series included invasion depth, histological grade, tumor size, perineural invasion and also the 
subjective interpretation of the pattern of invasion (large vs. small nests/single cells). Although for instance inva-
sion depth is a part of staging systems, no staging system as such was used. The pathologist also had the option 
not to classify the specimen into the cohorts, if assessment was not possible, as was the case with biopsy samples.

Statistical analysis. All statistical analyses were conducted using IBM SPSS Statistics for Windows, ver-
sion 25.0 (IBM Corp., Armonk, NY, USA). Bidirectional p values < 0.05 and 95% confidence intervals (95% CIs) 
of odds ratios (ORs) not including 1.00 were considered statistically significant. Baseline tumor characteristics 
were analyzed using descriptive statistics mainly crosstabs and frequency tabulation. Statistical analyses were 
conducted with Pearson χ2 test and Fisher’s exact test. Binary logistic regression analyses with 95% CIs were 
performed in order to determine ORs regarding the risk of metastasis. For every risk factor and risk factor 
combination an AUROC was calculated in order to further visualize results in relation to AI prediction. Pearson 
correlation was conducted in order to visualize multicollinearity and to examine whether predictions correlated 
with some of the clinicopathological variables. The Kaplan–Meier method was applied to generate survival esti-
mate curves and define survival probabilities.

Data availability
The data collected during this study is patient data obtained under Ethical Committees approval and cannot be 
shared.

Received: 27 January 2022; Accepted: 26 May 2022

Figure 6.  The rapid metastasis -AI-model workflow. The whole slide images are divided into small tiles. The 
tiles are assigned the binary yes/no tumor labels based on the annotations. The tumorous tiles are further 
labeled based on the metadata to yes/no rapid metastasis. This is done for all of the WSI images. The ResNet-18 
model is trained to classify the tiles according to the labels. Batches of tiles are fed to the model, which then 
learns to extract relevant visual features (feature encoding) from them and produce a classification. Finally, the 
confidence scores "P(metastatic)" are aggregated to produce whole slide level results.
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