
Subshifts, MSO Logic, and Collapsing
Hierarchies

Ilkka Törmä

TUCS – Turku Center for Computer Science
University of Turku, Finland

iatorm@utu.fi

Abstract. We use monadic second-order logic to define two-dimensional
subshifts, or sets of colorings of the infinite plane. We present a natu-
ral family of quantifier alternation hierarchies, and show that they all
collapse to the third level. In particular, this solves an open problem of
[Jeandel & Theyssier 2013]. The results are in stark contrast with picture
languages, where such hierarchies are usually infinite.

Keywords: subshift, MSO logic, quantifier alternation

1 Introduction

A two-dimensional subshift is a set of colorings of the infinite plane with finitely
many colors. Concrete examples are given by sets of Wang tiles, or squares with
colored edges, introduced by Wang in [13]. The associated tiling system consists
of all tilings of the plane where overlapping edges have the same color. The
initial motivation for Wang tiles was to use a possible algorithm for the infinite
tiling problem to recognize tautologies in first-order logic. The tiling problem
was proved undecidable by Berger [2], and more undecidability results for tiling
systems followed. More recently, strong connections between multidimensional
subshifts and computability theory have been found. For example, it was shown
in [3], [1] that every vertically constant co-RE subshift can be implemented as a
letter-to-letter projection of a tiling system. The topological entropies of tiling
systems were characterized in [4] as the right recursively enumerable nonnegative
reals. It seems that every conceivable behavior occurs in the class of (projections
of) tiling systems, if there is no obvious geometric or computational obstruction.

In this article, we follow the approach of [5,6] and define two-dimensional
subshifts by monadic second-order (MSO) logical formulas. We show that cer-
tain hierarchies obtained by counting quantifier alternations are finite, solving
an open problem posed in [6]. Classes of finite structures defined by MSO for-
mulas have been studied extensively. Examples include finite words, trees, grids
and graphs; see [8] and references therein. For words and trees, MSO formulas
define exactly the regular languages, and the quantifier alternation hierarchy col-
lapses to the second level. On the other hand, the analogous hierarchy of picture
languages was shown to be infinite in [9] and strict in [11]. Although subshifts

behave more like sets of words or trees than picture languages in this sense, the
reasons are different: MSO-definable languages are regular because the geometry
is so simple, while the subshift hierarchy collapses since we can simulate arbitrary
computation already on the third level. The concept of constructing subshifts
by quantifying over infinite configurations has also been studied in [7] under the
name of multi-choice shift spaces, and in [12] under the more general framework
of quantifier extensions. Both formalisms are subsumed by MSO logic.

2 Preliminary Definitions

2.1 Patterns and Subshifts

Fix a finite alphabet A. A pattern is a map P : D → A from an arbitrary domain
D = D(P) ⊂ Z2 to A. A pattern with domain Z2 is a configuration, and the set

AZ2

of all configurations is the full shift over A. The set of finite patterns over
A is denoted by A∗∗, and those with domain D ⊂ Z2 by AD. The restriction of
a pattern P to a smaller domain E ⊂ D(P) is denoted P |E . A pattern P occurs
at v ∈ Z2 in another pattern Q, if we have v + w ∈ D(Q) and Qv+w = Pw for
all w ∈ D(P). We denote P @ Q if P occurs in Q at some coordinate. For a set
of patterns X, we denote P @ X if P occurs in some element of X.

A set of finite patterns F ⊂ A∗∗ defines a subshift as the set of configurations
XF = {x ∈ AZ2 | ∀P ∈ F : P 6@ x} where no pattern of F occurs. If F is finite,

then XF is of finite type, or SFT. The language of a subshift X ⊂ AZ2

is B(X) =
{P ∈ A∗∗ | P @ X}. For a finite D ⊂ Z2, we denote BD(X) = B(X) ∩ AD. For

v ∈ Z2, we denote by σv : AZ2 → AZ2

the shift by v, defined by σv(x)w = xw+v

for all x ∈ AZ2

and w ∈ Z2. Subshift are invariant under the shift maps.
A block map is a function f : X→ Y between two subshifts X ⊂ AZ2

and Y ⊂
BZ2

defined by a finite neighborhood D ⊂ Z2 and a local function F : BD(X)→ B
which is applied to every coordinate synchronously: f(x)v = F (x|D+v) for all
x ∈ X and v ∈ Z2. The image of an SFT under a block map is a sofic shift.

Example 1. Let A = {0, 1}, and let F ⊂ A∗∗ be the set of patterns where 1

occurs twice. Then XF ⊂ AZ2

is the set of configurations containing at most one
letter 1. This subshift is sometimes called the sunny side up shift, and it is sofic.

A famous example of an SFT is the two-dimensional golden mean shift on the
same alphabet, defined by the forbidden patterns 1 1 and 1

1 . In its configurations,
no two letters 1 can be adjacent, but there are no other restrictions.

2.2 Logical Formulas

We continue the line of research of [5,6], and define subshifts by monadic second-
order (MSO) formulas. We now introduce the terminology used in these articles,
and then expand upon it. A structure is a tuple M = (U, τ), where U is an un-
derlying set, and τ a signature consisting of functions f : Un → U and relations
r ⊂ Un of different arities n ∈ N. A configuration x ∈ AZ2

defines a structure
Mx = (Z2, τA), whose signature τA contains the following objects:

– Four unary functions, named North, South, East and West, and called adja-
cency functions in this article. They are interpreted in the structure Mx as
NorthMx((a, b)) = (a, b+1), EastMx((a, b)) = (a+1, b) and so on for a, b ∈ Z.

– For each symbol a ∈ A, a unary symbol predicate Pa. It is interpreted as
PMx
a (v) for v ∈ Z2 being true if and only if xv = a.

The MSO formulas that we use are defined with the signature τA as follows.

– A term (of depth k ∈ N) is a chain of k nested applications of the adjacency
functions to a first-order variable.

– An atomic formula is either t = t′ or P (t), where t and t′ are terms and P
is either a symbol predicate or a second-order variable.

– A formula is either an atomic formula, or an application of a logical connec-
tive (∧,∨,¬, . . .) or first- or second-order quantification to other formulas.

The radius of a formula is the maximal depth of a term in it. First-order variables
(usually denoted n1, . . . ,n`) hold elements of Z2, and second-order variables hold
subsets of Z2. Formulas without second-order variables are first-order.

Let φ be a closed MSO formula, and let D ⊂ Z2. A configuration x ∈ AZ2

is a D-model for φ, denoted x |=D φ, if φ is true in the structure Mx when the
quantification of the first-order variables in φ is restricted to D. If D = Z2, then
we denote x |= φ and say that x models φ. We define a set of configurations

Xφ = {x ∈ AZ2 | x |= φ}, which is always shift-invariant, but may not be a
subshift. A subshift is MSO-definable if it equals Xφ for some MSO formula φ.

As we find it more intuitive to quantify over configurations than subsets of
Z2, and we later wish to quantify over the configurations of specific subshifts,
we introduce the following definitions.

– The notations ∀X[X] and ∃X[X] (read for all (or exists) X in X) define a
new configuration variable X, which represents a configuration of a subshift
X ⊂ BZ2

over a new alphabet B.
– For X[X] quantified as above, b ∈ B and a term t, the notation Xt = b defines

an atomic formula that is true if and only if the configuration represented
by X has the letter b at the coordinate represented by t.

MSO formulas with configuration variables instead of ordinary second-order vari-
ables are called extended MSO formulas, and the relation |= is extended to them.
We state without proof that if the subshifts occurring in an extended MSO for-
mula φ are MSO-definable, then so is Xφ. Conversely, we can convert an MSO
formula to an extended MSO formula by replacing every second-order variable
with a configuration variable over the binary full shift. Unless stated otherwise,
by second-order variables (usually denoted X1, . . . , Xn) we mean configuration
variables, and by MSO formulas we mean extended MSO formulas.

Example 2. The two-dimensional golden mean shift is defined by the formula

∀n
(
P1(n) =⇒

(
P0(North(n)) ∧ P0(East(n))

))
.

Also, the sunny side up shift is defined by the formula

∀m∀n
(
P1(n) =⇒ (P0(m) ∨m = n)

)
.

Another way to define the sunny side up shift is to use a second-order quantifier:

∃U∀n
(
U(n)⇐⇒

(
U(North(n)) ∧ U(West(n))

))
∧
(
P1(n) =⇒

(
U(n) ∧ ¬U(South(n)) ∧ ¬U(East(n))

))
.

We can produce an equivalent extended MSO formula, as per the above remark:

∃X[{0, 1}Z2

]∀n
(
Xn = 1⇐⇒ (XNorth(n) = 1 ∧XWest(n) = 1)

)
∧
(
P1(n) =⇒ (Xn = 1 ∧XSouth(n) = 0 ∧XEast(n) = 0)

)
.

2.3 Computability Theory

We recall the arithmetical hierarchy, a classical reference for which is [10]. A first-
order arithmetical formula over N is Π0

0 (equivalently, Σ0
0), if it only contains

bounded quantifiers (of the form ∀n ≤ k or ∃n ≤ k). The formula is Π0
k+1 (Σ0

k+1)
if it is of the form ∀n1 · · · ∀n`φ (∃n1 · · · ∃n`φ) where φ is Σ0

k (Π0
k , respectively).

Every such formula is equivalent to a Π0
k or Σ0

k one, and if it defines a subset of N,
that set is given the same classification. Completeness and hardness in the classes
are defined using Turing reductions. For all k ∈ N, the class ∆0

k+1 = Π0
k+1∩Σ0

k+1

contains exactly the languages decidable by Turing machines with Π0
k oracles.

Also, Σ0
1 is the class of recursively enumerable subsets of N.

When classifying subsets of countable sets other than N, we assume they are
in some natural and computable bijection with N. For example, a co-recursively
enumerable set of finite patterns is Π0

1 . A subshift X is given the same classifi-
cation as its language B(X). If X is Π0

k for some k ∈ N, then it can be defined by
a Σ0

k set of forbidden patterns (the complement of B(X)), and a subshift defined
by such a set is always Π0

k+1. In particular, SFTs and sofic shifts are Π0
1 .

Remark 1. We use several hierarchies of subshifts obtained by counting quanti-
fier alternations in different kinds of formulas, and the notation for them can be
confusing. In general, classes defined by computability conditions (the arithmeti-
cal hierarchy) are denoted by Π and Σ, while classes defined by MSO formulas
via the modeling relation are denoted by Π̄ and Σ̄.

3 Hierarchies of MSO-Definable Subshifts

In this section, we recall the definition of a hierarchy of subshift classes defined
in [5,6], and then generalize it. We also state some general lemmas.

Definition 1. Let C be a class of subshifts. An MSO formula ψ is over C with
universal first-order quantifiers, or C-u-MSO for short, if it is of the form

ψ = Q1X1[X1]Q2X2[X2] · · ·QnXn[Xn]∀n1 · · · ∀n`φ,

where each Qi is a quantifier, Xi ∈ C, and φ is quantifier-free. If there are k
quantifier alternations and Q1 is the existential quantifier ∃, then ψ is called
Σ̄k[C], and if Q1 is ∀, then ψ is Π̄k[C]. The set Xψ is given the same classifica-

tion. If C is the singleton class containing only the binary full shift {0, 1}Z2

, then
ψ is called u-MSO, and we denote Σ̄k[C] = Σ̄k and Π̄k[C] = Π̄k. The classes
Σ̄k and Π̄k for k ∈ N form the u-MSO hierarchy.

In [6], the u-MSO hierarchy was denoted by the letter C, but we use the
longer name for clarity. In the rest of this article, C denotes an arbitrary class of
subshifts, unless otherwise noted. We proceed with the following result, stated
for u-MSO formulas in [6]. We omit the proof, as it is essentially the same.

Theorem 1 (Generalization of Theorem 13 of [6]). Let φ be a C-u-MSO

formula over an alphabet A. Then for all x ∈ AZ2

, we have x |= φ if and only if
x |=D φ for every finite domain D ⊂ Z2.

Corollary 1. Every C-u-MSO formula φ over an alphabet A defines a subshift.

Proof. Let r ∈ N be the radius of φ. By Theorem 1, we have Xφ = XF , where

F = {x|D+[−r,r]2 | D ⊂ Z2 finite, x ∈ AZ2

, x 6|=D φ}. ut

Corollary 2. For all k, n ∈ N, we have Π̄n[Π0
k] ⊂ Π0

k+1. In particular, the
u-MSO hierarchy only contains Π0

1 subshifts.

Proof. Let φ = ∀X1[X1]∃X2[X2] . . . QnXn[Xn]ψ be a Π̄n[Π0
k] formula, where

each Xi ⊂ AZ2

i is a Π0
k subshift and ψ is first-order. Then the product subshift∏n

i=1 Xi is also Π0
k . Let P ∈ A∗∗ be a finite pattern. Theorem 1, together with a

basic compactness argument, implies that P ∈ B(Xφ) holds if and only if for all

finite domains D(P) ⊂ D ⊂ Z2, there exists a configuration x ∈ AZ2

such that
x|D(P) = P and x |=D φ. For a fixed D, denote this condition by CP (D).

We show that deciding CP (D) for given pattern P and domain D is ∆0
k+1.

Denote E = D+[−r, r]2, where r ∈ N is the radius of φ, and let L = BE(
∏n
i=1 Xi).

For a configuration x ∈ AZ2

, the condition x |=D φ only depends on the finite
pattern x|E ∈ AE , and is computable from it and the set L. Thus CP (D) is
equivalent to the existence of a pattern Q ∈ AE such that x|E = Q implies

x |=D φ for all x ∈ AZ2

. Moreover, this can be decided by the oracle Turing
machine that computes L using a Π0

k oracle, and then goes through the finite
set AE , searching for such a Q. Thus the condition CP (D) is ∆0

k+1, which implies
that deciding P ∈ B(Xφ) is Π0

k+1. ut

Finally, if the final second-order quantifier of a u-MSO formula is universal,
it can be dropped. This does not hold for C-u-MSO formulas in general. We
omit the proof, as it is essentially the same as that of [6, Lemma 7].

Lemma 1. If k ≥ 1 is odd, then Π̄k = Π̄k−1, and if it is even, then Σ̄k = Σ̄k−1.

Example 3. Define the mirror shift M ⊂ {0, 1,#}Z2

by the forbidden patterns
a
and

a for a 6= #, every pattern {0 7→ #, (n, 0) 7→ #}, and every pattern
{(−n, 0) 7→ a,0 7→ #, (n, 0) 7→ b} for n ∈ N and a 6= b. A ‘typical’ configuration
of M contains one infinite column of #-symbols, whose left and right sides are
mirror images of each other. It is well-known that M is not sofic. We show that it
can be implemented by an SFT-u-MSO formula ψ = ∀X[X]∀n1∀n2∀n3φ in the
class Π̄1[SFT]. This also shows that Lemma 1 fails outside the u-MSO hierarchy.

a

b

c

Fig. 1. A pattern of X in Example 3, containing its entire alphabet.

Let X be the SFT whose alphabet is seen in Figure 1, defined by the obvious
2× 2 forbidden patterns. Define the formula φ as φ1 ∧ (φ2 =⇒ φ3), where

φ1 = P#(n2)⇐⇒ P#(North(n2))

φ2 = Xn1 = a ∧Xn2 = b ∧Xn3 = c ∧ P#(n2)

φ3 = ¬P#(n1) ∧ ¬P#(n3) ∧ (P0(n1)⇐⇒ P0(n3))

It is easy to see that the subshift Xψ is exactly M, with ψ defined as above.

4 The u-MSO Hierarchy

The u-MSO hierarchy is a quite natural hierarchy of MSO-definable subshifts.
Namely, the lack of existential first-order quantification makes it easy to prove
that every u-MSO formula defines a subshift, and quantifier alternations give
rise to interesting hierarchies in many contexts. The following is already known.

Theorem 2 ([6]). The class of subshifts defined by formulas of the form ∀nφ,
where φ is first-order, is exactly the class of SFTs. The class Π̄0 = Σ̄0 consists
of the threshold counting shifts, which are obtained from subshifts of the form
{x ∈ AZ2 | P occurs in x at most n times} for P ∈ A∗∗ and n ∈ N using finite
unions and intersections. Finally, the class Σ̄1 consists of exactly the sofic shifts.

We show that the hierarchy collapses to the third level, which consists of
exactly the Π0

1 subshifts. This gives negative answers to the questions posed in
[6] of whether the hierarchy is infinite, and whether it only contains sofic shifts.

Theorem 3. For all n ≥ 2 we have Π0
1 = Π̄n.

Proof. As we have Π̄n ⊂ Π0
1 by Corollary 2, and clearly Π̄n ⊂ Π̄n+1 also holds,

it suffices to prove Π0
1 ⊂ Π̄2. Let thus X ⊂ AZ2

be a Π0
1 subshift. We construct an

MSO formula of the form φ = ∀Y [BZ2

]∃Z[CZ2

]∀nψ(n, Y, Z) such that Xφ = X.

The main idea is the following. We use the universally quantified configura-
tion Y to specify a finite square R ⊂ Z2 and a word w ∈ A∗, which may or may
not encode the pattern xR of a configuration x ∈ AZ2

. The existentially quan-
tified Z enforces that either w does not correctly encode xR, of that it encodes
some pattern of B(X). As R and w are arbitrary and universally quantified, this
guarantees x ∈ X. The main difficulty is that Y comes from a full shift, so we
have no control over it; there may be infinitely many squares, or none at all.

First, we define an auxiliary SFT Y ⊂ BZ2

, whose configurations contain the
aforementioned squares. The alphabet B consists of the tiles seen in Figure 2,
where every wi ranges over A, and it is defined by the set FY of 2× 2 forbidden
patterns where some colors or lines of neighboring tiles do not match. A configu-
ration of Y contains at most one maximal pattern colored with the lightest gray
in Figure 2, and if it is finite, its domain is a square. We call this domain the
input square, and the word w ∈ A∗ that lies above it is called the input word.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Fig. 2. A pattern of Y. In this example, the input word w ∈ A∗ is of length 10.

We now define another SFT S, this time on the alphabet A × B × C. The
alphabet C is more complex than B, and we specify it in the course of the
construction. The idea is to simulate a computation in the third layer to ensure
that if the second layer contains a valid configuration of Y and the input word
encodes the contents of the input square in the first layer, then that square
pattern is in B(X). We also need to ensure that a valid configuration exists even
if the encoding is incorrect, or if second layer is not in Y. For this, every locally
valid square pattern of Y containing an input square will be covered by another
square pattern in the third layer, inside which we perform the computations. We
will force this pattern to be infinite if the second layer is a configuration of Y.

Now, we describe a configuration (x, y, z) ∈ S. The coordinates of every 2×2
rectangle R ⊂ Z2 with y|R ∈ FY are called defects. A non-defect coordinate

v ∈ Z2 such that yv = is called a seed. Denote C = C1 ∪ C2, where C1 is
the set of tiles depicted in Figure 3 (a). Their adjacency rules in S are analogous
to those of Y. The rules of S also force the set of seeds to coincide with the
coordinates v ∈ Z2 such that zv = . These coordinates are the southwest
corners of computation squares in z, whose square shape is again enforced by
a diagonal signal. The southwest half of a computation square is colored with
letters of C2. See Figure 3 (b) for an example of a computation square.

a)
C2

b)

D D

D D

D D

D D

D D

D D

D D

Fig. 3. The alphabet C (a) and a pattern of the third layer of S (b), with the elements
of C2 represented by the featureless light gray tiles. The dashed line represents the
border of an input square on the second layer. Defects are marked with a small D.

A computation square may not contain defects or coordinates v ∈ Z2 such

that yv = except on its north or east border, and conversely, one of the
borders will contain a defect. This is enforced by a signal emitted from the
northwest corner of the square (the dotted line in Figure 3 (b)), which travels
along the north and east borders, and disappears when it encounters a defect.

We now describe the set C2, and for that, let M be a Turing machine with
input alphabet Σ = A × (A ∪ {0, 1,#}) and two initial states q1 and q2. This
machine is simulated on the southwest halves of the computation squares in a
standard way, and we will fix its functionality later. The alphabet C2 is shown in
Figure 4. Note that the colors and lines in C2 are disjoint from those in C1, even
though the figures suggest otherwise. The idea is to initialize the machine M

with either the input word (if it correctly encodes the input square), or a proof
that the encoding is incorrect, in the form of one incorrectly encoded symbol.

a

a0, q0

a

ac s

s

b

b

b

b
s, q

t

r

s

s, q

q q

B, q

s

s, q

q

s, q

t

r a

ab

b

a

a#

Fig. 4. The sub-alphabet C2. The letters a and b range over A, c can be 0 or 1, the
letter s over the tape alphabet of M , the letter q0 can be either of the initial states
q1 and q2, and in the first (fourth) tile on the top row we require that the machine M
writes t ∈ Σ on the tape, switches to state r and steps to the left (right, respectively)
when reading the letter s ∈ Σ in state q.

The white squares and circles of C2 must be placed on the letters of the
input word w ∈ A∗ of the computation square, the square on the leftmost letter
and circles on the rest. The A-letters of these tiles must match the letters of w,
and the second component is 1 if the tile lies on the corner of the input square,
0 if not, b ∈ A in the presence of a vertical signal, and # in the presence of a
diagonal signal. Such signals are sent by a white diamond tile (called a candidate
error), which can only be placed on the interior tiles of the input square, and
whose letter must match the letter on the first layer x. Other tiles of C2 simulate
the machine M , which can never halt in a valid configuration. See Figure 5 for
a visualization. We also require that for a pattern c2

c1 to be valid, where ci ∈ Ci
for i ∈ {1, 2}, the tile c2 should have a gray south border with no lines. Other
adjacency rules between tiles of C1 and C2 are explained by Figure 3 (a).

We now describe the machine M . Note first that from an input u ∈ Σ∗ one
can deduce the input word w ∈ A∗, the height h ∈ N of the input square, and the
positions and contents of all candidate errors. Now, when started in the state q1,
the machine checks that there are no candidate errors at all, that |w| = h2, and
that the square pattern P ∈ Ah×h, defined by P(i,j) = wih+j for all i, j ∈ [0, h−1],
is in B(X). If all this holds, M runs forever (the check for P ∈ B(X) can indeed
take infinitely many steps). When started in q2, the machine checks that there
is exactly one candidate error at some position (i, j) ∈ [0, h − 1]2 of the input
square containing some letter b ∈ A, and that one of |w| 6= h2 or wih+j 6= b
holds. If this is the case, M enters an infinite loop, and halts otherwise.

The definition of S is now complete, and it can be realized using a set F of
forbidden patterns of size 3× 3. We define the quantifier-free formula ψ(n, Y, Z)
as ¬

∨
P∈F ψP , where ψP states that the pattern P occurs at the coordinate

Fig. 5. An infinite computation square with an input word of length 11 and a single
candidate error.

n. This is easily doable using the adjacency functions, color predicates and the
variables Y and Z. If we fix some values y ∈ BZ2

and z ∈ CZ2

for the variables Y
and Z, then x |= ∀nψ(n, y, z) holds for a given x ∈ AZ2

if and only if (x, y, z) ∈ S.

Let x ∈ AZ2

be arbitrary. We need to show that x |= φ holds if and only if
x ∈ X. Suppose first that x models φ, and let v ∈ Z2 and h ≥ 1. Let y ∈ Y be a
configuration whose input square has interior D = v+[0, h−1]2, and whose input

word correctly encodes the pattern x|D. By assumption, there exists z ∈ CZ2

such that (x, y, z) ∈ S, so that the southwest neighbor of v is the southwest corner
of a computation square in z, which is necessarily infinite, since no defects occur
in y. In this square, M runs forever, and it cannot be initialized in the state q2
as the encoding of the input square is correct. Thus its computation proves that
x|D ∈ B(X). Since D was an arbitrary square domain, we have x ∈ X.

Suppose then x ∈ X, and let y ∈ BZ2

be arbitrary. We construct a configu-
ration z ∈ CZ2

such that (x, y, z) ∈ S, which proves x |= φ. First, let S ⊂ Z2 be
the set of seeds in y, and for each s ∈ S, let `(s) ∈ N∪{∞} be the height of the
maximal square D(s) = s+ [0, `(s)− 1]2 whose interior contains no defects. We
claim that D(s) ∩D(r) = ∅ holds for all s 6= r ∈ S. Suppose the contrary, and
let v ∈ D(s)∩D(r) be lexicographically minimal. Then v is on the south border
of D(s) and the west border of D(r) (or vice versa). Since these borders contain
no defects, yv is a south border tile and a west border tile, a contradiction.

Now, we can define every D(s) to be a computation square in z. If it con-
tains an input square and an associated input word which correctly encodes
its contents, we initialize the simulated machine M in the state q1. Then the
computation does not halt, since the input square contains a pattern of B(X).
Otherwise, we initialize M in the state q2, and choose a single candidate error
from the input square such that it does not halt, and thus produces no forbidden
patterns. Then (x, y, z) ∈ S, completing the proof. ut

We have now characterized every level of the u-MSO hierarchy. The first level
Π̄0 = Σ̄0 contains the threshold counting shifts and equals Π̄1 by Lemma 1, the
class Σ̄1 = Σ̄2 contains the sofic shifts, and the other levels coincide with Π0

1 .
The quantifier alternation hierarchy of MSO-definable picture languages was

shown to be strict in [11]. It is slightly different from the u-MSO hierarchy, as ex-
istential first-order quantification is allowed. However, in the case of pictures we
know the following. Any MSO formula QL∃nQRφ, where QL and QR are strings
of quantifiers, is equivalent to a formula of the form QL∃XQR∀nψ, where φ and
ψ are quantifier-free. See [8, Section 4.3] for more details. Thus the analogue of
the u-MSO hierarchy for picture languages is infinite. The proof of the result of
[11] relies on the fact that one can simulate computation within the pictures,
and the maximal time complexity depends on the number of alternations. In the
case of infinite configurations, this argument naturally falls apart.

Finally, Theorem 3 has the following corollary (which was also proved in [6]).

Corollary 3. Every Π0
1 subshift is MSO-definable.

5 Other C-u-MSO Hierarchies

Next, we generalize Theorem 3 to hierarchies of Π0
k -u-MSO formulas. The con-

struction is similar to the above but easier, since we can restrict the values of
the variable Y to lie in a geometrically well-behaved subshift.

Theorem 4. For all k ≥ 1 and n ≥ 2 we have Π0
k+1 = Π̄n[Π0

k]. Furthermore,
Π0

2 = Π̄n[SFT] for all n ≥ 2.

Proof (sketch). As in Theorem 3, it suffices to show that for a given Π0
k+1 sub-

shift X ⊂ AZ2

, there is a Π̄2[Π0
k] formula φ = ∀Y [Y]∃Z[Z]∀nψ such that Xφ = X.

In our construction, Y ⊂ BZ2

is a Π0
k subshift and Z = CZ2

is a full shift.

For a square pattern P ∈ Ah×h, define the word w(P) ∈ Ah
2

by wih+j =
P(i,j) for all i, j ∈ [0, h− 1]. Let R ⊂ A∗×N be a Π0

k predicate such that the set

F = {P ∈ Ah×h | h ∈ N,∃n ∈ N : R(w(P), n)}

satisfies XF = X. As in Theorem 3, configurations of Y may contain one input
square with an associated input word. This time, the input word is of the form
w#n for some w ∈ A∗, n ∈ N and a new symbol #. As Y is Π0

k , we can enforce
that R(w, n) holds, so that w does not encode any square pattern of X. This can
be enforced by SFT rules if k = 1: a simulated Turing machine checks R(w, n)
by running forever if it holds. As before, the existential layer Z enforces that w
does not correctly encode the contents of the input square in the first layer.

Let x ∈ X and y ∈ Y be arbitrary. If y has a finite input square D ∈ Z2 and
input word w#n, then w ∈ A∗ cannot correctly encode the pattern x|D ∈ B(X),
and thus a valid choice for the variable Z exists. Degenerate cases of y (with,
say, an infinite input square) are handled as in Theorem 3. Thus we have x |= φ.
Next, suppose that x /∈ X, so there is a square domain D ⊂ Z2 with x|D /∈ B(X).

Construct y ∈ Y such that the input square has domain D, the word w ∈ A∗
correctly encodes x|D, and the number n ∈ N of #-symbols is such that R(w, n)
holds. For this value of Y , no valid choice for Z exists, and thus x 6|= φ. ut

Corollary 3, Theorem 4 and a simple induction argument show the following.

Corollary 4. For every k ∈ N, every Π0
k subshift is MSO-definable.

However, note that the converse does not hold, since one can construct an
MSO-formula defining a subshift whose language is not Π0

k for any k ∈ N.

Acknowledgments

I am thankful to Emmanuel Jeandel for introducing me to [5,6] and the open
problems therein, and to Ville Salo for many fruitful discussions.

References

1. Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-
dimensional subshifts of finite type. Acta Appl. Math., 126(1):35–63, August 2013.

2. Robert Berger. The undecidability of the domino problem. Mem. Amer. Math.
Soc. No., 66, 1966. 72 pages.

3. Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets
and their applications. J. Comput. System Sci., 78(3):731–764, 2012.

4. Michael Hochman and Tom Meyerovitch. A characterization of the entropies of
multidimensional shifts of finite type. Ann. of Math. (2), 171(3):2011–2038, 2010.

5. Emmanuel Jeandel and Guillaume Theyssier. Subshifts, languages and logic. In
Developments in language theory, volume 5583 of Lecture Notes in Comput. Sci.,
pages 288–299. Springer, Berlin, 2009.

6. Emmanuel Jeandel and Guillaume Theyssier. Subshifts as models for MSO logic.
Inform. and Comput., 225:1–15, 2013.

7. Erez Louidor, Brian Marcus, and Ronnie Pavlov. Independence entropy of Zd-shift
spaces. Acta Applicandae Mathematicae, pages 1–21, 2013.

8. Oliver Matz and Nicole Schweikardt. Expressive power of monadic logics on words,
trees, pictures, and graphs. In Jörg Flum, Erich Grädel, and Thomas Wilke, edi-
tors, Logic and Automata, volume 2 of Texts in Logic and Games, pages 531–552.
Amsterdam University Press, 2008.

9. Oliver Matz and Wolfgang Thomas. The monadic quantifier alternation hierar-
chy over graphs is infinite. In In Twelfth Annual IEEE Symposium on Logic in
Computer Science, pages 236–244. IEEE, 1997.

10. G.E. Sacks. Higher recursion theory. Perspectives in mathematical logic. Springer-
Verlag, 1990.

11. Nicole Schweikardt. The monadic quantifier alternation hierarchy over grids and
pictures. In Computer science logic (Aarhus, 1997), volume 1414 of Lecture Notes
in Comput. Sci., pages 441–460. Springer, Berlin, 1998.

12. Ilkka Törmä. Quantifier Extensions of Multidimensional Sofic Shifts. ArXiv e-
prints, January 2014.

13. Hao Wang. Proving theorems by pattern recognition II. Bell System Technical
Journal, 40:1–42, 1961.

	Subshifts, MSO Logic, and Collapsing Hierarchies

