

This is a self-archived – parallel-published version of an original article. This version may differ from

the original in pagination and typographic details. When using please cite the original.

AUTHOR Wenshuai Zhao, Jorge Peña Queralta, Li Qingqing, Tomi Westerlund

TITLE Towards Closing the Sim-to-Real Gap in Collaborative Multi-Robot Deep

 Reinforcement Learning

YEAR 2021

DOI 10.1109/ICRAE50850.2020.9310796

VERSION Final draft

CITATION W. Zhao, J. P. Queralta, L. Qingqing and T. Westerlund, "Towards Closing the Sim-to-

 Real Gap in Collaborative Multi-Robot Deep Reinforcement Learning," 2020 5th

 International Conference on Robotics and Automation Engineering (ICRAE),

 Singapore, Singapore, 2020, pp. 7-12, doi: 10.1109/ICRAE50850.2020.9310796.

1

Towards Closing the Sim-to-Real Gap in
Collaborative Multi-Robot Deep Reinforcement Learning

Wenshuai Zhao1, Jorge Peña Queralta1, Li Qingqing1, Tomi Westerlund1

1 Turku Intelligent Embedded and Robotic Systems Lab, University of Turku, Finland
Emails: 1{wezhao, jopequ, qingqli, tovewe}@utu.fi

Abstract—Current research directions in deep reinforcement
learning include bridging the simulation-reality gap, improv-
ing sample efficiency of experiences in distributed multi-agent
reinforcement learning, together with the development of ro-
bust methods against adversarial agents in distributed learning,
among many others. In this work, we are particularly interested
in analyzing how multi-agent reinforcement learning can bridge
the gap to reality in distributed multi-robot systems where the
operation of the different robots is not necessarily homogeneous.
These variations can happen due to sensing mismatches, inherent
errors in terms of calibration of the mechanical joints, or simple
differences in accuracy. While our results are simulation-based,
we introduce the effect of sensing, calibration, and accuracy
mismatches in distributed reinforcement learning with proximal
policy optimization (PPO). We discuss on how both the different
types of perturbances and how the number of agents experiencing
those perturbances affect the collaborative learning effort. The
simulations are carried out using a Kuka arm model in the
Bullet physics engine. This is, to the best of our knowledge,
the first work exploring the limitations of PPO in multi-robot
systems when considering that different robots might be exposed
to different environments where their sensors or actuators have
induced errors. With the conclusions of this work, we set the
initial point for future work on designing and developing methods
to achieve robust reinforcement learning on the presence of real-
world perturbances that might differ within a multi-robot system.

Index Terms—Reinforcement Learning; Multi-Robot Systems;
Collaborative Learning; Deep RL; Adversarial RL; Sim-to-Real;

I. INTRODUCTION

Reinforcement learning (RL) algorithms for robotics and
cyber-physical systems have seen an increasing adoption
across multiple domains over the past decade [1], [2]. Deep
reinforcement learning (DRL) enables agents to be trained in
realistic environments without the need for large amounts of
data to be gathered and labeled a priori. Specifically, rein-
forcement learning has enjoyed significant success in robotic
control tasks involving manipulation [3], [4], [5]. Motivated
by the way humans and animals learn, DRL algorithms work
on a trial and error basis, where an agent interacts with its
environment and receives a reward based on its performance.
When complex agents or environments are involved, the
learning process can be relatively slow. This has motivated
the design and development of multi-agent DRL algorithms.
In this paper, we are interested in exploring some of the
challenges remaining in multi-robot collaborative DRL.

Reinforcement learning applied to multi-agent systems has
two dimensions: DRL algorithms that model policies for multi-
agent control and interaction, and DRL approaches that rely on

Ex
p

er
ie

n
ce

 A
gg

re
ga

ti
o

n

Ex
p

er
ie

n
ce

 A
gg

re
ga

ti
o

n

Ex
p

er
ie

n
ce

 A
gg

re
ga

ti
o

n

Experiences
and

Rewards

Updated
Common

Model

Policy
Updates

Policy
Updates

Policy Updates

PPO2

Fig. 1: Conceptual view of the proposed scenario, where multiple
robotic agents are collaboratively learning the same task. While the
task is common, and the agents are a priori identical, we study how
different alterations in the agents or their environments affects the
performance of the collaborative learning process.

multiple agents to parallelize the learning process or explore a
wider variety of experiences. Within the former category, we
can find examples of DRL for formation control [6], obstacle
and collision avoidance [7], [8], collaborative assembly [9], or
cooperative multi-agent control in general [10]. In the latter
category, most existing approaches refer to the utilization of
multiple agents to learn in parallel, but from the point of view
of a multi-process or multi-threaded application [3]. We are
interested in works exploring the possibilities of using multiple
robotic agents that collaborate on learning the same task.
This has been identified as one of the future paradigms with
5G-and-beyond connectivity and edge computing [11]. For
instance, in [12] an asynchronous method for off-policy up-
dates between robots was presented. Other works also consider
network conditions and propose frameworks for multi-agent
collaborative DRL over imperfect network channels [13]. This
type of scenario is illustrated in Fig. 1, where three robotic
arms are collaboratively learning the same task and sharing
their experiences to update a common policy. Hereinafter, we
refer to these types of scenarios as multi-agent or multi-robot

https://tiers.utu.fi

2

collaborative RL tasks, where multiple agents collaborate
to learn the same task but might be exposed to different
environments, or work under different conditions.

Among the multiple challenges in DRL, recent years have
seen a growing research interest in closing the simulation-
to-reality gap [5], [14], and on the design and development
of robust algorithms with resilience against adversarial con-
ditions [15], [16], [17]. This latter topic is also of paramount
relevance in distributed or multi-agent DRL, where adversarial
agents can hinder the collaborative learning process [18].
When multiple agents are learning a collaborative or coordi-
nated behavior, byzantine agents can significantly reduce the
performance of the system as a whole.

We aim at studying how adversarial conditions can help
to bridge the simulation-to-reality gap. In [5] and [14], the
authors analyze perturbances in the rewards towards the
applicability of DRL in real-world applications. In [5], the
focus is on learning how to manipulate deformable objects,
with agents trained in a simulation environment but directly
deployable in the real-world. In [19], the authors present a
meta-learning approach for domain adaption in simulation-to-
reality transfers. Our objective in this paper is not to design
a specific sim-to-real method for a given algorithm or task,
but instead to analyze the performance of collaborative multi-
robot DRL in the presence of disturbances in the environment
as a step towards more effective sim-to-real transfers where
real noises, errors or perturbances are accounted for also
in the simulation environment. This includes variability in
the operation of the robots, as robots might be operating in
slightly different environments, or operate in different ways
under the same environment. In particular, we are interested
in studying how exposing multiple collaborative robots to
different environments from the point of view of sensing and
actuation can affect the joint learning effort.

In this paper, therefore, we focus on introducing pertur-
bances inspired by real-world cases in a multi-agent DRL
simulation. We expose different subsets of agents to slightly
modified environments and study how different types of dis-
turbances affect the collaborative learning process and the
ability of the multi-robot system to converge to a common
policy. The main contribution of this paper is the analysis of
how input and output disturbances affect a collaborative deep
reinforcement learning process with multiple robot arms. In
particular, we simulate real-world perturbations that can occur
on robotic arms, from the sensing and actuation perspectives.
This is, to the best of our knowledge, the first study to consider
the evaluation of both sensing and actuation disturbances in
a multi-robot collaborative learning scenario, with different
robots being exposed to different environments.

The remainder of this document is organized as follows.
In Section II we review the literature in distributed RL,
adversarial RL, and robust multi-agent RL in the presence
of byzantine agents. Then, Section III introduces the DRL
algorithm, and the methodology and simulation environment
utilized in our experiments. The agent training methods and
environment disturbances introduced to emulate real-world
operational variability, together with the simulations results,
are presented in Section IV. Section V concludes the work.

II. RELATED WORKS

In this work, we study adversarial conditions in a simulation
environment to emulate real-world conditions in terms of
variability of the environment across a set of multiple agents
collaborating in learning the same task. With most of the
literature in simulation-to-reality transfer aiming at specific
applications or adaptation to different environments [14], [5],
[19], in this section we focus instead on previous works
analyzing the effect of adversarial of byzantine effects in
multi-agent reinforcement learning, as well as considering
other perturbations in the environment to better emulate real-
world conditions. The literature in adversarial conditions for
collaborative multi-agent learning is, nonetheless, sparse.

Adversarial RL has been a topic of extensive study over
the past years. Multiple deep learning algorithms have been
shown to be vulnerable when subject to adversarial input
perturbations, being able to induce certain policies [15]. This
is a general problem of reinforcement learning that affects
different types of algorithms and scenarios. In multi-agent
environments, the ability of an attacker to create adversarial
observations increases significantly [16]. A comprehensive
survey on the main challenges and potential solutions for ad-
versarial attacks on DRL is available in [20]. The authors clas-
sify attacks in four categories: attacks targeting (i) rewards, (ii)
policies, (iii) observations, and (iv) the environment. Among
these, those targeting observations and the environment are
the most relevant within the scope of this survey. In most of
these cases, however, the literature only considers single-agent
learning (or multiple agents being affected in the same way).
Moreover, previous works focus on malicious perturbations
aimed at decreasing the performance of the learning agent.
In this paper, nonetheless, we induce perturbations that are
inspired by real-world issues including changes in accuracy
or calibration errors.

Other authors have explored the effects of having noisy
rewards in RL. In this direction, Wang et al. presented an
analysis of perturbed rewards for different RL algorithms,
including PPO but also DQN and DDPG, among others [17].
Compared to their approach, we also consider perturbances
on the RL process but focus on those that model real-world
noises and errors. Moreover, we specifically put an emphasis
on multi-robot collaborative learning, and consider situations
in which the perturbances that affect different robots are also
different. We also focus on the PPO algorithm as the state-
of-the-art in three-dimensional locomotion. In fact, PPO has
been identified as one of the most robust approaches against
reward perturbances in [17]. Also within the study of noisy
rewards, a method to improve performance in such scenarios
is proposed in [21].

In general, we see a gap in the literature in the study of
noisy or perturbed environments that do not affect equally
across multiple agents collaborating towards learning the same
task. This paper thus tries to address this issue with an
initial assessment of how perturbations in the environment
influencing a subset of agents affect a global common model
where experiences from different agents are aggregated.

3

III. METHODOLOGY

In this section, we define our problem of distributed rein-
forcement learning with a subset of perturbed agents, as well
as the simulation environment and modifications applied to it.

A. Multi-agent RL

In multi-agent reinforcement learning, approaches can be
roughly divided into two parallel modes, asynchronous and
synchronous. A3C (Asynchronous Advantage Actor-Critic)[3]
is one of the most widely adopted methods for multi-agent re-
inforcement learning, representing the asynchronous paradigm.
A3C consists of multiple independent agents with their own
networks. These agents interact with different copies of the en-
vironment in parallel and update a global network periodically
and asynchronously.After each update, the agents reset their
own weights to those of the global network and then resume
their independent exploration.Because some of the agents will
be exploring the environment with an older version of the
network weights, A3C results in relatively suboptimal use of
computational resources as well as more noisy updates. An
alternative is A2C (Advantage Actor-Critic), which utilizes
synchronous parallel mode. In this case, there are only two
networks in the system. One is used by all agents equally to
interact with the environment in parallel, and outputs a batch
of experiences. With this data, the second network is trained
and updates the former network.

In this paper, we utilize a synchronous multi-agent rein-
forcement learning algorithm: proximal policy optimization
(PPO). PPO and has been adopted as the default method
of OpenAI owing to its excellent performance. The PPO
algorithm takes advantage of the A2C ideas in terms of having
multiple workers, and gradient policy ideas from TRPO (Trust
Region Policy Optimization) to improve the actor performance
by utilizing a trust region. PPO seeks to find a balance between
the ease of implementation, sample complexity, and ease of
adjustment, trying to update at each step to minimize the cost
function while assuring that the new policies are not far from
last policies. The scheme follows these steps:
1) Set the initial policy parameters θ0.
2) In each iteration, use θk to interact with the environment,
collect experience data (a tuple of state and action {st, at}),
and compute their advantage Aθ

k

(st, at) [3].
3) Find the optimal θ by optimizing JPPO(θ):

Jθ
k

PPO(θ) = Jθ
k

(θ)− βKL
(
θ, θk

)
(1)

where β is a hyperparameter and will be adapted according to
the value of KL. Jθ

k

(θ) is calculated by:

Jθ
k

(θ) ≈
∑

(st,at)

pθ(at|st)
pθk(at|st)

Aθ
k

(st, at) (2)

where pθk (at|st) is the probability of (st, at) under θk.

B. Simulation Environment

Our simulation environment is built based on top one of
the Bullet physics simulators, specifically the PyBullet Kuka
arm for grasping [22]. In order to simplify the training of

Fig. 2: Kuka arm reaching environment based on Bullet simulator.

our RL algorithm, we modify the original grasping task into a
reaching task, which allows us to focus on observing the effect
of adversarial agents in training distributed reinforcement
learning algorithms, rather on optimizing the training itself.

The simulation environment is shown in Figure 2. The
robotic arm in this environment attempts to reach the object
in the bin. It takes the Cartesian coordinates of the gripper
and the relative position of the object as input instead of the
on-shoulder camera observation. This input can be seen as a
list with nine elements:

Input = [xg, yg, zg, yawg, pitg, rolg, xog, yog, rolog] (3)

where xg, yg, zg denote the Cartesian coordinates of the center
of the gripper, and yawg, pitg, rolg refers to its three Euler
angles, while xog, yog, rolog indicate the relative x, y position
and the roll angle of the object in the gripper space.

Our RL algorithm receives the input and then gives a
Cartesian displacement:

Output = [dx, dy, dz, dφ] (4)

in which φ is the rotation angle of the wrist around the z-axis.
An inverse kinematics method is then employed to calculate
the real motor control values of the joints. Note that all the
units used for the position are in meters, and the angles are
in radians. This environment with our training code is now
open-source on Github1.

C. Collaborative Learning under Real-World Perturbations

In real robots, some of the most characteristic sources of
perturbations within a homogeneous multi-robot team come
from the calibration of the robots in terms of sensing and
actuation. In this paper, we thus study how these two types
of input (sensing) and output (actuation) perturbations affect
a collaborative learning process:

Input perturbations: we consider both fixed and variable
errors in the input to the network regarding the position of the
object to be reached. This emulates the error that might result
from identifying the position of the object from a camera or
another sensor on the robot arm. The fixed noise represents, for
instance, installation or calibration errors on the position of the
camera, which might have an offset in position or orientation.

1https://github.com/TIERS/NoisyKukaReacher

4

Variable errors, on the other hand, try to emulate the sensing
errors that come, for example, from the vibration of the arm or
local odometry errors describing its orientation and position.

Output perturbations: we simulate both fixed and variable
perturbations in the actuation of the robotic arm, emulating
calibration errors (e.g., a constant offset in one direction), or
changes in accuracy or repeatability across different robots.

Through multiple simulations, we study how these types of
perturbations affect the collaborative learning effort when they
are not common across the entire set of agents.

IV. EXPERIMENTATION AND RESULTS

In this section, we describe the training parameters uti-
lized through our simulations, and the ways in which the
environments have been modified to introduce disturbances
in both sensors and actuators. We then present the results of
multiple simulations where different numbers of agents have
been trained in different environments but treated equally from
the point of view of the collaborative learning process.

A. Training Method

The maximal number of steps in one episode is set to 1200,
and the maximum number of steps for the whole training
process is set to 4 million. If the gripper contacts the object or
approaches it at a very small distance (0.008 m), the episode
will be terminated. The final score for this episode is thus
calculated by summing all the rewards obtained in all the steps
until termination.

The initial reward is set as -1000 for each step if the distance
is larger than 1 m. However, if the distance between the finger
on the gripper and the object is smaller than 1 m, the reward is
computed as rewardraw = −10·distance. Moreover, we also
add the cost of each step, in order to encourage the gripper to
approach the target as soon as possible. The cost of each step
is set as 1. Therefore, the final reward for this step is hence:
rewardfinal = −10·distance−1, where the distance is given
in meters. If the gripper finally contacts its target or approach
it in a threshold, we give it a significantly larger reward (1000)
to help the model learn faster and clearly.

In total, in our simulations, we utilize 30 agents parallelized
on the GPU processes to produce experience data based on a
vectorized environment. Therefore, these agents can represent
a multi-robot system learning a collaborative RL task. We
give different settings on individual environments to manually
simulate the possible perturbations that robots find in real-
world scenarios.

B. Calibration and Accuracy Noises

To emulate the practical noises and errors that robots could
encounter when training an RL algorithm, we consider the
following four types of perturbations, for each of which we
generate a different environment to expose a variable number
of robots to: fixed input errors on all the nine elements by
0.005m, uniformly distributed sensing errors in the interval
[0.005m, 0.01m], fixed output errors modifying the gripper
actuators by an offset of 0.005m on the x axis, and uniformly

distributed output errors in the interval [0.005m, 0.01m]. It
should be noted that the uniform distributed errors on input and
output could be different in each step, which can be regarded
as inaccurate sensing errors, or reduced repeatability in the
actuation of real robots.

Moreover, in order to further analyze how more extreme
cases affect the collaborative learning process, we also con-
sider fixed disturbances on larger magnitude (0.015 m on all
the values for the sensing error and 0.015 m on the x-axis
for the actuation error) as well as scenarios where the noise
is different for each of the agents exposed to the modified
environment (in the interval 0.005 m to 0.025 m for 25 agents).

C. Simulation Results

Figure 3 shows the results of our simulations. The notation
describing each subfigure is as follows: {I,O}: representing
the input (sensing) and output (actuation) perturbances, {F,V}:
representing fixed and variable perturbances, and {5, 15, 25}:
representing the number of agents exposed to the modified
environment where the perturbances occur.

Comparing perturbations in the sensors versus perturbations
in the actuators, we see an overall more robust performance
against adversarial elements in the sensing part. In Figures 3b
to 3d, we see that the network always converges and we only
see more unstable behaviour when there is a large fraction
of agents suffering of variable sensing errors (50% and 83%).
When we compare the effect of constant or fixed perturbations
against variable ones, we notice that variable perturbations
induce less stable convergence. This can be to some extent
explained by the fact that there are no large subsets of agents
being exposed to a common environment.

For small fixed perturbations affecting actuation (output dis-
turbances), we have seen that the agents are able to converge
towards a working policy. In the cases where 5 or 25 of the
agents are affected, this was expected as there is a majority
(25) of agents, in both cases, that work in exactly the same
way, and a small subset (5) that work in a slightly different
way (but still the same within that subset). When this fixed
perturbation is introduced to half of the agents, then we have
two subsets of the same size operating in different ways, but
again consistently across each of the subsets. In this case, we
have seen that for a small magnitude in the perturbation, the
agents still converge on a policy that works for both subsets.
As the difference between the operation of the agents in these
two subsets diverges, the performance of the system as a whole
drops significantly. Nonetheless, we have observed that the
case were half of the agents have a common fixed perturbation
of small magnitude the system is able to converge even when
the initial conditions are disadvantageous.

In order to analyze the effect of perturbations with larger
magnitude as well as fixed perturbations in both sensing and
actuation that vary across the robots exposed to a modified
environment, we have analyzed four more cases shown in
Fig. 4. In Figures 4a and 4b, we analyze how perturbations
with larger magnitude affect the learning process, with half of
the agents being affected as the worst-case scenario. We see
that the trend from the previous results is followed, with the

5

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4
)

Training
Evaluation

(a) Base scenario with common perturbation-free environments.

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−

4
)

(b) IF5

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−

4
)

(c) IF15

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−

4
)

(d) IF25

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−

4
)

(e) IV5

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(f) IV15

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(g) IV25

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(h) OF5

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(i) OF15

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(j) OF25

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(k) OV5

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

(l) OV15

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)
M

ea
n

sc
or

e
(×

1
0
−
4

)

(m) OV25

Fig. 3: Simulation results where we show the training in perturbance-free environment, and 12 cases where we analyze the effect of a
modified environment (fixed and variable perturbances on both sensing and actuation) on 5, 15 and 25 agents. The total number of agents
is 30 in all cases. The legend is common across all graphs and has been omitted in subfigures (b) through (m) to improve readability.

network being able to converge to a common policy when a
constant error is added to the sensors interface, but not when
the disturbances affect to the actuators. Finally, Figures 4c
and 4d show that when there are no differentiated subsets of
agents with a common behaviour and the perturbations are
different across a large number of agents, then the system is
not able to converge.

V. CONCLUSION AND FUTURE WORK

Adversarial agents and closing the simulation-to-reality gap
are among the key challenges preventing wider adoption
of reinforcement learning in real-world applications. In this
paper, we have addressed the latter one from the perspective of
the former: by introducing adversarial conditions inspired by
real-world perturbances to a subset of agents in a multi-robot
system during a collaborative reinforcement learning process,
we have been able to identify points where the robustness of
distributed multi-agent DRL algorithms needs to be improved.

In this paper, we have considered multiple robotic arms in
a simulation environment collaborating towards learning a
common policy to reach an object. In order to emulate more
realistic conditions and understand how perturbances in the
environment affect the learning process, we have considered
variability across the agents in terms of their ability to sense
and actuate accurately. We have shown how different types of
disturbances in the model’s input (sensing) and output (actua-
tion) affect the robustness and ability to converge towards an
effective policy. We have seen how variable perturbances have
the most effect on the ability of the network to converge, while
disturbances in the ability of the robots to actuate properly
have had a comparatively worse effect than those in their
ability to sense the position of the object accurately.

The conclusions of this work serve as a starting point
towards the design and development of more robust methods
able to identify and take into account these disturbances in
the environment that do not occur across all robots equally.

6

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

Training
Evaluation

(a) IF15 - Large perturbations

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

Training
Evaluation

(b) OF15 - Large perturbations

0 1 2 3 4

-8

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

Training
Evaluation

(c) OF25 - Each agent exposed to a different environment

0 1 2 3 4

-6

-4

-2

Simulation steps (millions)

M
ea

n
sc

or
e

(×
1
0
−
4

)

Training
Evaluation

(d) IF25 - Each agent exposed to a different environment

Fig. 4: Simulation results with an extra 4 scenarios analyzed: two of them where we consider perturbations of larger magnitude, and two
more where we consider that each of the agents in a modified environment is affected differently.

This will be the subject of our future work, as well as
the study of other types or combinations of disturbances in
the environment. We will also work towards modeling more
accurately real-world errors for RL simulation environments.

ACKNOWLEDGEMENTS

This work was supported by the Academy of Finland’s
AutoSOS project with grant number 328755.

REFERENCES

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. A brief survey of deep reinforcement learning. arXiv
preprint arXiv:1708.05866, 2017.

[2] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep
reinforcement learning for multiagent systems: A review of challenges,
solutions, and applications. IEEE transactions on cybernetics, 2020.

[3] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, 2016.

[4] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani,
John Schulman, Emanuel Todorov, and Sergey Levine. Learning
complex dexterous manipulation with deep reinforcement learning and
demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[5] Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real rein-
forcement learning for deformable object manipulation. arXiv preprint
arXiv:1806.07851, 2018.

[6] Ronny Conde, José Ramón Llata, and Carlos Torre-Ferrero. Time-
varying formation controllers for unmanned aerial vehicles using deep
reinforcement learning. arXiv preprint arXiv:1706.01384, 2017.

[7] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decen-
tralized non-communicating multiagent collision avoidance with deep
reinforcement learning. In ICRA, pages 285–292. IEEE, 2017.

[9] Dorothea Schwung, Fabian Csaplar, Andreas Schwung, and Steven X
Ding. An application of reinforcement learning algorithms to industrial
multi-robot stations for cooperative handling operation. In 2017 IEEE
15th International Conference on Industrial Informatics (INDIN), pages
194–199. IEEE, 2017.

[8] Pinxin Long, Tingxiang Fanl, Xinyi Liao, Wenxi Liu, Hao Zhang, and
Jia Pan. Towards optimally decentralized multi-robot collision avoidance
via deep reinforcement learning. In ICRA. IEEE, 2018.

[10] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative
multi-agent control using deep reinforcement learning. In AAMAS, pages
66–83. Springer, 2017.

[11] Jorge Peña Queralta, Li Qingqing, Zhuo Zou, and Tomi Westerlund.
Enhancing autonomy with blockchain and multi-acess edge computing
in distributed robotic systems. In The Fifth International Conference on
Fog and Mobile Edge Computing (FMEC). IEEE, 2020.

[12] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep
reinforcement learning for robotic manipulation with asynchronous off-
policy updates. In ICRA, pages 3389–3396. IEEE, 2017.

[13] Yiding Yu, Soung Chang Liew, and Taotao Wang. Multi-agent deep rein-
forcement learning multiple access for heterogeneous wireless networks
with imperfect channels. arXiv preprint arXiv:2003.11210, 2020.

[14] Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac,
Vineet Khare, Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, et al.
Deepracer: Educational autonomous racing platform for experimentation
with sim2real reinforcement learning. arXiv:1911.01562, 2019.

[15] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement
learning to policy induction attacks. In MLDM, pages 262–275. Springer,
2017.

[16] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine,
and Stuart Russell. Adversarial policies: Attacking deep reinforcement
learning. arXiv preprint arXiv:1905.10615, 2019.

[17] Jingkang Wang, Yang Liu, and Bo Li. Reinforcement learning with
perturbed rewards. In AAAI, pages 6202–6209, 2020.

[18] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-
agent generative adversarial imitation learning. In Advances in neural
information processing systems, pages 7461–7472, 2018.

[19] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta
reinforcement learning for sim-to-real domain adaptation. arXiv preprint
arXiv:1909.12906, 2019.

[20] Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Jan-
jua, Ala Al-Fuqaha, Dinh Thai Hoang, and Dusit Niyato. Challenges and
countermeasures for adversarial attacks on deep reinforcement learning.
arXiv preprint arXiv:2001.09684, 2020.

[21] Aashish Kumar et al. Enhancing performance of reinforcement learning
models in the presence of noisy rewards. PhD thesis, 2019.

[22] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning. 2016.

	Introduction
	Related Works
	Methodology
	Multi-agent RL
	Simulation Environment
	Collaborative Learning under Real-World Perturbations

	Experimentation and Results
	Training Method
	Calibration and Accuracy Noises
	Simulation Results

	Conclusion and Future Work
	References

