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ABSTRACT

We present a Bayesian method to constrain the masses and radii of neutron stars (NSs) using the information encoded in the X-ray
pulse profiles of accreting millisecond pulsars. We model the shape of the pulses using “oblate Schwarzschild” approximation, which
takes into account the deformed shape of the star together with the special and general relativistic corrections to the photon trajectories
and angles. The spectrum of the radiation is obtained from an empirical model of Comptonization in a hot slab in which a fraction of
seed black-body photons is scattered into a power-law component. By using an affine-invariant Markov chain Monte Carlo ensemble
sampling method, we obtain posterior probability distributions for the different model parameters, especially for the mass and the radius.
To test the robustness of our method, we first analysed self-generated synthetic data with known model parameters. Similar analysis was
then applied for the observations of SAX J1808.4−3658 by the Rossi X-ray Timing Explorer (RXTE). The results show that our method
can reproduce the model parameters of the synthetic data, and that accurate constraints for the radius can be obtained using the RXTE
pulse profile observations if the mass is a priori known. For a mass in the range 1.5–1.8 M�, the radius of the NS in SAX J1808.4−3658
is constrained between 9 and 13 km. If the mass is accurately known, the radius can be determined with an accuracy of 5% (68%
credibility). For example, for the mass of 1.7 M� the equatorial radius is Req = 11.9+0.5

−0.4 km. Finally, we show that further improvements
can be obtained when the X-ray polarization data from the Imaging X-ray Polarimeter Explorer will become available.
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1. Introduction

Neutron stars (NSs) are the densest directly observable objects
in the Universe. The matter inside a NS is at supranuclear
densities. The pressure–density–temperature relation of such
dense matter is described by the equation of state. There is
one-to-one mapping relating the equation of state to the mass–
radius dependence of the NS (see, for example, Lindblom 1992;
Lattimer 2012). Thus, measurements of the NS masses and
radii from observations can in principle help us to constrain
microphysical properties of high-density matter. One way to
obtain information on these parameters is to study pulse pro-
files produced by hotspots on the surface of rapidly spinning NSs
(Watts et al. 2016), in particular, in accreting millisecond pulsars
(AMPs).

In accreting millisecond pulsars, the matter from a low-mass
companion star accretes onto the magnetic poles of a rapidly
rotating NS, forming two hotspots on the stellar surface. Because
the hotspots are misplaced from the rotational axis of the NS, the
X-ray radiation observed from these spots pulsates coherently at
the spinning frequency of the NS. The pulse profiles carry infor-
mation about the mass and radius of a NS because the light bend-
ing and thus pulse shape depends strongly on the compactness of
the star (Poutanen 2008). However, many other physical param-
eters and observing angles affect both the light curves and the
spectra of these sources.

To model the pulse profiles from the hotspots of NSs, the
necessary formalism was first developed by Pechenick et al.
(1983) and Page (1995). For rapid rotation the formalism was
extended by Miller & Lamb (1998), Weinberg et al. (2001), and
Poutanen & Gierliński (2003). The transformation of polariza-
tion was studied by Viironen & Poutanen (2004). A simple
approximation for light bending was given in Beloborodov
(2002). Other useful analytical results were obtained by
Poutanen & Beloborodov (2006). How deviations from the
Schwarzschild metric affect the profiles have been studied by
Braje et al. (2000; using the Kerr metric), who corrected pre-
vious errors by Chen & Shaham (1989) and showed that the
effects are rather small. The effects of oblateness of the star
due to rapid rotation were studied by Morsink et al. (2007)
using Schwarzschild metric and by Cadeau et al. (2007) using
a numerically-generated metric for rapidly rotating NSs in gen-
eral relativity. A ray-tracing algorithm using Hartle–Thorne
metric was examined by Bauböck et al. (2012). In addition,
Nättilä & Pihajoki (2018) showed that the special relativistic
rotational effects emerge directly from a general relativistic treat-
ment of a rotating compact object.

In order to infer the stellar mass and radius, with help of the
forthcoming observations, the pulse profiles were investigated
by Psaltis et al. (2014) using approximate relations between the
modelled and observed parameters. Previously, mass and radius
constraints using pulse profile modelling for thermonuclear
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burst oscillations and Bayesian analysis were studied by Lo et al.
(2013) and Miller & Lamb (2015). Mass–radius constraints
were also studied by Stevens et al. (2016) using evolutionary
optimization algorithm. They as well considered the thermonu-
clear burst oscillations and used the synthetic data, however,
keeping spot size and temperature fixed.

In this paper, our aim is to get new information of
mass–radius relation using the energy-resolved pulse profiles
of accretion-powered millisecond pulsations, for which we
have plenty of already existing data (see e.g. Gierliński et al.
2002; Poutanen & Gierliński 2003; Gierliński & Poutanen 2005;
Leahy et al. 2008; Morsink & Leahy 2011). On the other hand,
we also want to show how accurately NS parameters could
be constrained with help of the upcoming polarimeters and
X-ray missions like the Imaging X-ray Polarimeter Explorer
(IXPE; Weisskopf et al. 2016) and the enhanced X-ray Timing
and Polarimetry mission (eXTP; Zhang et al. 2016). We do the
full Bayesian analysis with both synthetic data and observations
of SAX J1808.4−3658, and fit the data simultaneously in phase
and energy dimensions. Like Miller & Lamb (2015), we sam-
ple the parameter space for synthetic data using a Markov chain
Monte Carlo (MCMC) method. However, we have more free
parameters, and instead of maximizing, we also marginalize the
likelihoods over the distance and spot temperature. In particular,
we now have the angular dependence of the emitted radiation
(beaming) as a free parameter.

The remainder of this paper is structured as follows. In
Sect. 2, we describe the methods we have used to fit the pulse
profiles and spectra of accreting millisecond pulsars. In Sect. 3
we present our synthetic data as well as the original data for
SAX J1808.4−3658 that we have used in our analysis. The
results of the modelling are described in Sect. 4. We discuss the
results in Sect. 5 and summarize in Sect. 6.

2. Methods

2.1. Pulse shape modelling

Our pulse shape modelling is based on the model intro-
duced in Poutanen & Beloborodov (2006), which takes the spe-
cial and general relativistic effects into account by using the
Schwarzschild-Doppler approximation. The effects of general
relativity (gravitational light bending) are modelled as though
the star is not rotating describing the exterior metric with a
Schwarzschild solution. On the other hand, rotational effects
have been approximated by using special relativistic Doppler
transformations and angle aberrations as though the star is a
rotating object with no gravitational field.

In Schwarzschild geometry we know the exact relation
between the photon emission angle α and the deflection angle
ψ. The angle α is measured between the radial direction r and
the initial direction of photon k0 (see Fig. 1), and the angle ψ
between r and observer k (see Fig. 1). When α < π/2, it is given
by (e.g. Misner et al. 1973; Pechenick et al. 1983; Beloborodov
2002)

ψp(R, α) =

∫ ∞

R

dr
r2

[
1
b2 −

1
r2

(
1 −

rS

r

)]−1/2

, (1)

where b is the impact parameter,

b =
R

√
1 − u

sinα, (2)

u ≡ rS/R, rS = 2GM/c2 is the Schwarzschild radius, G is the
gravitational constant, c is the speed of light, R is the radius of
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Fig. 1. Geometry of the problem. The Cartesian (x, y, z) and spherical
(with θ and φ) coordinate systems are shown. The star has an oblate
shape, because it is rotating rapidly around the z-axis. Therefore, the
radial vector r̂ and the surface normal n̂ differ from each other. The
photon from the hot spot is initially emitted towards k̂0 but due to
the light bending it reaches the observer in direction of k̂.

the star at the point which emits the photon, and M is the mass
of the NS. A numerical method to evaluate integral (1) is pre-
sented in Appendix A. For an oblate star, there is a possibility to
have photon trajectories with decreasing radial coordinate (i.e.
photons emitted towards the star) corresponding to α > π/2. In
this case, the relation between α and ψ takes the form

ψ(R, α) = 2ψmax − ψp(R, π − α), (3)

where ψmax = ψp(p, α = π/2) and p is the distance of closest
approach, given by

p = −
2
√

3
b cos

(
[arccos (3

√
3rS/2b) + 2π]/3

)
. (4)

The original model of Poutanen & Beloborodov (2006) has
been expanded to take into account the geometrical effects of the
oblate shape of the NS as described by Morsink et al. (2007).
The oblate shape of the star is obtained by using a function from
AlGendy & Morsink (2014), which gives the radius R of the star
as a function of co-latitude. The geometry of the system with
the star, hot spot, and observer in the direction k is presented
in Fig. 1. Here θ is the co-latitude of the spot, i is the observer
inclination, and φ is the spot phase angle. Due to the oblateness,
the local surface normal n and radius vector r are not always
pointing to the same direction. Therefore, to check the visibility
condition, we need to consider the emission angle σ relative to
n, instead of α. Only photons with emission angle σ ≤ π/2 can
reach the observer. However, the emitted photon might not be
visible, even though cosσ > 0, if the photon hits the NS surface
at any later phase of its trajectory. We tested this requirement
empirically by studying different photons emitted almost paral-
lel to the surface from various emission locations. Photons were
propagated from the surface and their radial location was tested
to see if the trajectory intersected with the oblate surface. These
tests show that (at least for all the cases we considered) a photon
initially satisfying the requirement cosσ > 0 will always reach
the distant observer.

Hereafter, all the primed quantities are measured in the co-
rotating frame of the spot. The infinitesimal spot area measured
in the frame co-moving with the spot may be calculated as
(Morsink et al. 2007)

dS ′(θ) = γR2(θ)[1 + f 2(θ)]1/2 sin θ dθdφ, (5)
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where the Lorentz factor γ = 1/
√

1 − β2, β is the spot velocity
in units of c,

f (θ) =
1 + z

R
dR
dθ
, (6)

and 1 + z = 1/
√

1 − u is the gravitational redshift. The factor
[1 + f 2(θ)]1/2 takes into account the oblateness of the spot sur-
face. The Lorentz factor γ originates from considering a dif-
ferential area element in rotating coordinates. It results from
the fact, that the surface element dS ′ here is defined based
on simultaneous measurements of co-moving observers, instead
of using simultaneous measurements of local static observers
(Nättilä & Pihajoki 2018; Lo et al. 2018).

Following derivation presented by Poutanen & Beloborodov
(2006), we can get the observed spectral flux

dFE = (1 − u)1/2δ4I′E′ (σ
′) cosσ

d cosα
d cosψ

dS ′

D2 , (7)

where D is the distance to the star, I′E′ is the spectral intensity
and σ′ is the emission angle relative to the normal as measured
in the co-moving frame of the spot,

δ =
1

γ(1 − β cos ξ)
(8)

is a Doppler factor, and ξ is the angle between the spot velocity
and initial direction of the photon. We note that the only differ-
ence from Eq. (A15) given in Poutanen & Beloborodov (2006)
is the change of α′ to σ′ in the argument of the intensity and in
cosσ, which accounts for the projection of the spot area on the
observer sky.

The flux in expression (7) depends on the pulsar phase φ
(because e.g. the Doppler factor δ depends on it). This flux actu-
ally corresponds to an observed phase φobs, which is different
from φ due to light travel delays. The time delay is caused by
different travel times of emitted photons to the observer, depend-
ing on the position of the emitting point. A photon following the
trajectory with an impact parameter b (and α < π/2) is lagging
a photon originating at the same radius R with impact parameter
b = 0 by (Pechenick et al. 1983)

c∆tp(R, α) =

∫ ∞

R

dr
1 − rS/r


[
1 −

b2

r2

(
1 −

rS

r

)]−1/2

− 1

 . (9)

Because we need to account for the stellar oblateness, we have
to compute all the delays relative to the photons emitted at some
reference radius rref (which can be chosen arbitrarily as long as
it exceeds rS) and b = 0 (i.e. α = 0). Photons with b = 0 emitted
at radius R will be lagging photon emitted at rref by

cδt(R, rref) = rref − R + rS ln
(

rref − rS

R − rS

)
· (10)

Thus the total delay of photons emitted at R and angle α (with
corresponding impact parameter given by Eq. (2)) relative to the
photons emitted at rref with b = 0 is

∆t(R, α) = ∆tp(R, α) + δt(R, rref). (11)

In our model, we use the equatorial radius as a reference radius
(rref = Req). A numerical method to evaluate integral (9) is pre-
sented in Appendix A.

In the case of α > π/2, the corresponding delay can be
calculated using the symmetry around distance p of the closest
approach as

∆t(R, α) = 2∆t(p, π/2) − ∆t(R, π − α)
= 2∆tp(p, π/2) − ∆tp(R, π − α)
+ 2δt(p, rref) − δt(R, rref). (12)

Otherwise, the computation of the light curve follows
Poutanen & Beloborodov (2006) with corrections for oblateness
as described in Morsink et al. (2007). One notable difference is,
however, that we are considering finite-sized spots which may
be also large in size. In order to compute the flux from a spot
with finite size, we need to integrate over the spot surface, in
other words we integrate Eq. (7) with dS ′ given by Eq. (5) over
the solid angle. It is done by splitting the spot into a number
of small sub-spots and computing the fluxes to each sub-spot
separately. For a circular spot around the magnetic pole, instead
of using θ and φ are variables, it is easier to integrate over the
solid angle using Gaussian quadrature in the cosine of the mag-
netic co-latitude (i.e. the angle measured from the magnetic pole)
and using trapezoidal rule for integration over the corresponding
azimuth. For each phase bin and sub-spot we need to evaluate
light bending and time delays separately, because each sub-spot
is located at a different radius due to the oblateness.

We have also made some physical assumptions to simplify
the model. We assume a spot which has a constant angular
radius ρ, which is the angle between the centre and the edge
of the spot measured from the centre of the star. In this paper we
also model the pulse profiles using only one hot spot (see e.g.
Ibragimov & Poutanen 2009). In addition, we ignore the radia-
tive transfer effects related to photon propagation through the
accretion stream. See Sect. 5 for discussion how these assump-
tions may affect the results.

2.2. Spectrum of the radiation

Next we present how the energy and angular spectra of radi-
ation are modelled, or how the intensity I′E′ (σ

′) depends on
energy E′ and emission angle σ′. The material accreted onto
a NS is abruptly decelerated close to the surface releasing its
kinetic energy and forming a hotspot. The energy spectrum
of AMPs above 3 keV can be well represented as a sum of
the black-body-like component at lower energies and a power-
law-like component extending to ∼100 keV and likely produced
by thermal Comptonization (e.g. Poutanen & Gierliński 2003;
Gierliński & Poutanen 2005; Falanga 2008). We can associate
the black-body component with the emission from the heated NS
surface and the Comptonization components with the accretion
shock or very surface layers heated to 50–100 keV by bombard-
ing particles. The seed photons for Comptonization are likely
coming from the cooler layers immediately under the shocked
plasma. In this work we thus use a two-component model for the
spectrum.

For each point inside the spot, we represent the intensity as a
sum of the black-body (I′bb) and Comptonization (I′comp) parts.
Following Poutanen & Gierliński (2003), we assume that the
intensities of both black-body and Comptonization components
can be expressed as products of functions that depend either only
on energy E′ or only on emission angle σ′. For the black-body
component we use the Planck law for the specific intensity, in
other words we assume the angular pattern to be isotropic, which
means that I′bb(σ′) = I′bb.
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2.2.1. Radiation from hot spots

In this paper we approximate the spectrum with Comptonization
model simpl introduced by Steiner et al. (2009) and implemented
into xspec (Arnaud 1996). This model is based on the solution of
the Kompaneets equation describing Compton scattering in non-
relativistic plasmas (Sunyaev & Titarchuk 1980). In this model
a fraction of photons of a seed black-body spectrum is Compton
scattered into a power-law-like component with photon spectral
index Γ:

I′E′ ∝ E′−(Γ−1). (13)

The parameters of the simpl model are Γ and the scattered frac-
tion Xsc of black-body photons. In addition, we take into account
only the up-scattered photons. The model simpl-2, designed
for non-relativistic thermal Comptonization, would take into
account also the down-scattered photons. However, since the
difference between the models is small, we use the more sim-
ple model simpl-1 introduced by Steiner et al. (2009). Later we
discuss, how the results would change if simpl-2 was used (see
Sect. 5). The input black-body spectrum is convolved with the
Green’s function describing the scattering (see Eqs. (1) and (4)
in Steiner et al. 2009) into a Comptonized power-law-like spec-
trum.

For a given temperature T ′ of the spot, we compute a seed
black-body spectrum I′bb(E′) at a grid of photon energies loga-
rithmically spaced from 0.1 to 100 keV with a step ∆ log E′ =
0.02. Using then simpl, we obtain also a table of intensities for
the Comptonized spectrum I′comp(E′). For each emitting point,
we compute the intensity as

I′E′ (σ
′) = (1 − Xsc)I′bb(E′) + f (σ′)I′comp(E′), (14)

where the black body is assumed to be isotropic and the angu-
lar dependence of the Comptonized emission is given by the
function

f (σ′) = I0(1 + h cosσ′), (15)

with h being the (free) anisotropy parameter and I0 being the
normalization, such that 2

∫ π/2
0 cosσ′ f (σ′) sinσ′ dσ′ = 1.

2.2.2. Disc reflection

In order to fit the spectrum of SAX J1808.4−3658, we need also
take into account the reflection of the photons from the accretion
disc. In addition to the Compton reflection continuum that pro-
duces spectral hardening above ∼10 keV, a fluorescent Kα iron
line close to 6.4 keV is emitted as observed by Gierliński et al.
(2002). To describe reflection, we use the xspec model xilconv,
which is a convolution model combining reflection model
xillver from an ionized disc (García et al. 2013) with the
Compton reflection code by Magdziarz & Zdziarski (1995) to
give a more correct representation of Compton recoil effect.
It is a modified version of the rfxconv model described in
Kolehmainen et al. (2011).

We use the xilconv algorithm to re-compute all the energy
spectra separately in each of our modelled phase bins. The orig-
inal phase-resolved spectra are given as input. We fix most of
the additional parameters of the reflection model at the best-fits
of the observed phase-average spectrum of SAX J1808.4−3658
with the model phabs×(xilconv(simpl(bbodyrad))). We assume
that the redshift parameter is zero, because the accretion disc is
not expected to be very close to the compact object. We also
assume that the exponential cut-off energy is 300 keV. From the

xspec fits we get that the iron abundance is ten times higher
than the solar iron abundance, and that the ionization parame-
ter log ξ ≈ 3.2. The relative reflection normalization Xrefl is still
kept as a free parameter, as well as the inclination angle i (same
angle as in the pulse profile modelling).

2.2.3. Response convolution

In this work, the instrumental response of the detector has been
taken into account by convolving all modelled physical fluxes
with response matrix of the Proportional Counter Array (PCA) at
the Rossi X-ray Timing Explorer (RXTE) satellite. This is done
by integrating the product of modelled photon number flux N(E)
and response matrix R(n, E) over the energies E to get modelled
counts Cmodel(n) in each observed energy channel n. The inte-
gration is performed from the lowest response energies up to
Emax = 60 keV (above which the source flux would contribute
negligibly to the counts observed in the RXTE/PCA band below
∼20 keV) using equation

Cmodel(n) = Tobs

∫ Emax

0
N(E)R(n, E) dE, (16)

where Tobs is the observing time. The values of photon flux N(E)
are computed in 50 logarithmic energy bins from 1 keV to Emax.
The integration is performed using denser energy grid of the
response matrix. The corresponding values of log N(E) are then
linearly interpolated to the desired log E.

In addition, the detected instrumental background of
SAX J1808.4−3658 is kept fixed and it is added to the mod-
elled counts. These predicted counts are then fitted with the
observed counts as explained in the following sections. How-
ever, only the 24 observational energy channels between 3 and
18 keV have been used. This is based on the best sensitivity of
proportional counter units of RXTE and the exclusion of the
highest energies where instrumental background dominates for
SAX J1808.4−3658 (Hartman et al. 2008).

Interstellar photon absorption affecting at the lowest ener-
gies has been taken into account by using neutral hydro-
gen column density for interstellar absorption NH as one of
the free parameters in our model. The computed amount of
absorption is based on the phabs-function in xspec. In prac-
tice, this has very little effect because interstellar absorption is
severely affecting the spectra only below 1 keV. Hence, instead
of using the typically more accurate tbabs we can simplify
the treatment by adopting the phabs model. The difference
between these models was investigated by fitting the phase-
averaged spectrum of SAX J1808.4−3658 with xspec using both
the model phabs×(xilconv(simpl(bbodyrad))) and the model
tbabs×(xilconv(simpl(bbodyrad))). Our fits show that the differ-
ence between the fitted parameters with the two models are at
most at 1% level, and the difference in the fitted flux is almost
indistinguishable, even at the lowest energy channels of 3 keV.

2.3. Bayesian modelling

In order to constrain parameters of NSs we use Bayesian infer-
ence combined with the pulse shape and spectral model pre-
sented in Sects. 2.1 and 2.2. We fit the model to the observed
or synthetic data and use Markov chain Monte Carlo (MCMC)
methods to integrate over the parameter space to find the most
probable values for the parameters of the model. As a first step,
we use synthetic data in order to test our methods and tools. The
aim of this work is to determine the credible regions for all the
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parameters in the pulse profile model, given the synthetic and
observed waveforms. In particular, the credible regions for the
mass and radius are obtained by marginalizing over the uncer-
tainties in other parameters.

We are interested in the probability of the parameters y of
the waveform model when the observed waveform is known.
The probability distribution of the parameters given the data is
p(y|D), where D is the energy- and phase-resolved waveform
data. According to the Bayes’ theorem this (posterior) probabil-
ity distribution can be obtained from the likelihood of the data,
given the parameter values as (see e.g. Grinstead & Snell 1997)

p(y|D) ∝ p(D|y)p(y), (17)

where p(D|y) is the likelihood or the probability distribution of
the data given the parameters. The factor p(y) is the prior prob-
ability distribution of the parameter values. As a first approxi-
mation we use uniform priors for most of our parameters (see
discussion of the priors in Sect. 5). The constant of proportion-
ality is the inverse of the normalization factor, but it is irrelevant
when estimating the values of the parameters in a given model.

2.3.1. Probabilities

The likelihood of the data for each sample p(D|y) is calculated
by fitting the data to the pulse profile model. To be more spe-
cific, we assume that the probability density of the data counts
Cdata given the modelled counts Cmodel is normally distributed
around Cmodel with the square root of the modelled counts as
standard deviation similar to Pearson’s chi-squared test (Cash
1979). Adding also intrinsic scatter of the model and the calibra-
tion error of the instrument, we have

p(Cdata|Cmodel) =

exp
(
−(Cdata−Cmodel)2

2(Cmodel+σ
2
i +σ2

c )

)
√

2π(Cmodel + σ2
i + σ2

c)
, (18)

where the intrinsic scatter σi includes the error of the model in
describing the data, andσc = 0.005×Cmodel includes the calibra-
tion error of the detector (see Sect. 3). In other words, intrinsic
scatter is the measure of the systematic errors coming from the
choice of the model. It is a free parameter in the model: if the
data are not fully described by the model, it leads to an increase
both in σi and in the credible regions of other parameters. Nor-
malization is needed because it will not cancel out when calcu-
lating likelihood ratios (because of the intrinsic scatter and cali-
bration error). In an optimal case, σ2

i is very small compared to
the count noise term

√
Cmodel. The total probability density of the

data given the sample is the product of p(Cdata|Cmodel) from each
phase and energy bin including at least 20 observed photons (or
the sum in case of log-probabilities).

We have also made tests to see that the similar-looking pos-
terior probabilities for pulse profile parameters are also obtained
by using Poisson probabilities:

p(Cdata|Cmodel) = exp(−Cmodel)
CCdata

model

Cdata!
· (19)

The phase shift is treated as a nuisance parameter in our
modelling. We calculate the probability densities, the products of
p(Cdata|Cmodel) over phase and energy bins, using different phase
shifts. A bisection method is used to find the phase shift which
has the highest probability. As final probability p(D|y) we use
the solution with the most probable phase shift. Instead of max-
imizing the likelihood, we could have also marginalized likeli-
hoods over all phase shifts, but the difference between these two

methods was found to be marginal. However, marginalization
requires a denser and more evenly distributed phase shift grid
than what is possible by using only bisection method (at least in
case of very flat light curves).

2.3.2. Sampling methods

To get constraints for our model parameters, we make sam-
ples from the posterior distributions using an affine invariant
ensemble sampler, which is a MCMC method described in
Goodman & Weare (2010). The algorithm has a similar structure
to the normal Metropolis scheme and still uses a proposal and
either accepts or rejects a step. But instead of evolving only one
sample value, it evolves an ensemble of sample values, called
walkers, together. On each iteration the algorithm generates a
new sample for every walker using the current positions of all the
other walkers in the ensemble. The affine invariant trial move,
that we use here, is the so-called stretch move. In this method
each walker is moved using only one randomly selected comple-
mentary walker.

When using the ensemble sampler method to data with
significantly less than 1% errors (and using more than a few
free parameters), we encountered problems with walkers either
getting stuck into local optima or being unable to move effi-
ciently enough due to the non-linear parameter degeneracies.
The convergence of the posterior probability distributions was
also very slow, even though we used multiple independent
ensembles.

To solve these issues, we made few variable transforma-
tions (see Sect. 2.3.3 for more detailed discussion). Secondly,
we used more precise starting limits for the priors in parameters
that could be fitted separately with xspec (spectral parameters)
or could be approximated from other studies (size of the spot
and distance). The recommended technique is to start walkers
in a small sphere around the a priori preferred position. How-
ever, for the radius, mass, observer inclination, and the magnetic
inclination, we allowed a larger range of initial positions. The
exact starting limits ranged from 0.01% to 20% of the corre-
sponding widths of the final priors shown in Figs. 2, 5, and 6
(with the exceptions mentioned in Sect. 4). The starting points
for every walker were drawn randomly from this ball, which
was surrounding our initial guess. For each ensemble, the ini-
tial guess was a point obtained by perturbing the correct solution
of synthetic data by 4% of the width of the final priors in each
dimension (see Sect. 3.2 for the correct solution for the synthetic
data).

Finally, we also applied a clustering method described in
Hou et al. (2012). At certain moments during the burn-in phase
of the sampling, the walkers with worst-fitting parameters were
drawn to the vicinity of the best-fitting walkers of the same
ensemble, if the gap between log-likelihoods of two adjacent
walkers (ordered according to decreasing likelihood) became too
high compared to differences of other adjacent walkers. We also
tried to use the simulated annealing method1 described again in
Hou et al. (2012), but found no significant help from that.

1 In this method an “artificial temperature” is introduced to create
a modified posterior distribution allowing an exploration of parameter
space without getting stuck into the local optima. The temperature is
decreased slowly until the true posterior distribution is obtained. How-
ever, in our case we did not find any cooling schedule that would be
computationally short enough, and would have significantly helped to
reduce the multiple solutions found by different ensembles with differ-
ent starting positions.
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Fig. 2. Posterior probability distributions for the MCMC runs with the synthetic data. The dark orange colour shows a 68% and the light orange
colour a 95% highest posterior density credible interval. In the 2D posterior distributions the solid contour shows a 95% and the dashed contour
a 68% highest posterior density credible region. The blue crosses show the correct solution. The sin i prior in i is shown with a blue line. The
compactness parameter u is defined here as u ≡ rS/Req. The inset in the upper right corner shows the mass–radius posterior distribution in more
detail.

In addition, we have checked our results using a multi-
modal nested sampling algorithm, implemented in MultiNest
(Feroz et al. 2009)2, instead of the ensemble sampler. It is a
Monte Carlo method targeted at the efficient calculation of
Bayesian evidence for a model, but it also produces posterior
samples as a by-product. The method should have improved effi-
ciency especially for posterior distributions that may contain
multiple probability maxima and pronounced degeneracies in
high dimensions, that are multi-modal distributions. To compute

2 https://ccpforge.cse.rl.ac.uk/gf/project/multinest/

the posterior probability distributions, we used the PyMulti-
Nest3 package of Python.

2.3.3. Variable transformations

In all of our models, we have 13 free parameters (in addition to
the phase shift). The parameters are listed in Table 1. To improve
the performance of our method, we have used several parameter
transformations given as i + θ, i − θ, M/Req, (Reqρ(1 + zeq)/D)2,

3 https://github.com/JohannesBuchner/PyMultiNest
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Table 1. Parameters of the synthetic data.

Parameter Value

Equatorial radius Req 12.0 km
Mass M 1.5 M�
Inclination i 60◦
Spot co-latitude θ 15◦
Spot angular radius ρ 15.5◦
Distance D 3.5 kpc
Temperature T ′ 0.85 keV
Beaming parameter h −0.7
Scattered photon fraction Xsc 0.6
Photon spectral index Γ 1.8
Intrinsic scatter σi 0.0
Hydrogen column density NH 1021 cm−2

Relative reflection from accretion disc Xrefl 0.05

(T ′/(1 + zeq))4, Xrefl cos i, and logσi as our parameters instead of
i, θ, Req, ρ, T ′, Xrefl, and σi, when sampling the parameter space
(see discussion in Sect. 5.1). Here zeq is the gravitational redshift
at R = Req.

The choice of sampling i + θ and i − θ is easy to explain,
because the pulse profile is nearly degenerate to switching i and θ
(see e.g. Viironen & Poutanen 2004, and Sect. 5.1) and depends
only on x ≡ sin i sin θ and y ≡ cos i cos θ. Therefore, it is eas-
ier to get constraints for x and y, or, alternatively, for y + x and
y − x. Because i − θ = ± arccos(x + y) and i + θ = arccos(y − x),
we get better constraints also for i + θ. For i − θ we expect still
a bimodal distribution, if there is no prior information of these
angles. The inclination has been constrained to i = 36◦−67◦
using optical observations (Deloye et al. 2008). The X-ray anal-
ysis of the 2002 outburst (Ibragimov & Poutanen 2009) led to
a similar constraint of i = 50◦−70◦. Modelling the broad-
ened iron line with observations from Suzaku and XMM-Newton,
Cackett et al. (2009) obtained i = 51◦−63◦ with 90% confidence.
In any case, due to the lack of X-ray eclipses, the inclination
should be below 82◦−84◦, depending on the assumed NS mass
(Chakrabarty & Morgan 1998). Using slightly more conserva-
tive values, we first limit the inclination still between 40◦ and
90◦ in our model, in order to be as model-independent as possi-
ble. Later we test, how the tighter constraints on inclination, will
affect the results (see Sect. 5.3).

The choices of sampling mass–radius-ratio M/Req, normal-
ization parameter (Reqρ(1 + z)/D)2, the observed temperature
in the fourth power (T ′/(1 + z))4, and the angle-corrected rel-
ative reflection Xrefl cos i are based on our expectations of which
variables most directly affect the observed pulse profiles (see
Sect. 5.1). These parameter transformations are also aimed to
help sampling with for example the coupled Req and ρ. In the
case of σi, we sample logσi, because the intrinsic scatter is a
scale parameter of the model. Even though the original non-
transformed parameters were not sampled, we show their pos-
terior distributions in Sect. 4.

3. Data

3.1. SAX J1808.4−3658

The primary data used in this article is the phase-resolved energy
spectrum of SAX J1808.4−3658 observed during its outburst in
1998 by RXTE. The energy-dependent pulse profiles are con-
structed in the same way as in Poutanen & Gierliński (2003).

We use the data binned in 16 phase bins and use the 24
energy channels which extend between 3 keV and 18 keV, as
justified in Sect. 2.2.3. The data are obtained by combin-
ing observations of all the 5 proportional counters of the
PCA/RXTE and observations between 1998 April 11 and 29
(identical to that used by Poutanen & Gierliński 2003). During
this period the pulse shape stayed most of the time almost con-
stant (see Fig. 3 in Hartman et al. 2008). Therefore, we do not
expect large changes in best-fit mass and radius when using
a shorter interval. This was also noted by Morsink & Leahy
(2011). The exposure time of each phase bin is approximately
10.5 h, and the total number of detected counts is close to
4 × 107. This means that the mean statistical uncertainty in our
384 phase-energy-bins is approximately 0.3%. The systematic
calibration error of PCA is about 0.5% (Jahoda et al. 2006).
Although, the response files we use were generated in 2003
with a possibly slightly higher calibration error, this not criti-
cal, because the underestimated calibration error should be cap-
tured by the intrinsic scatter σi term when fitting the data (see
Sect. 2.3.1).

3.2. Synthetic data

In order to test the method and measure its accuracy, we also
apply the fitting framework for the synthetic data, which are
generated using our model, and thus we know the result. The
synthetic data in this work are designed to resemble the actual
observations of SAX J1808.4−3658 as closely as possible. The
amplitude of the modulation in the normalized number fluxes
has been set close to the same value in the synthetic data as in
the observations. We also use the same energy intervals and the
same number of phase bins as in the actual data. In addition, the
total number of counts is the same as in the observed data (see
Sect. 3.1).

The synthetic data have been generated using our pulse
profile model with parameters shown in Table 1. In addi-
tion, we have fixed the rotational frequency of the star at
401 Hz, according to the observations of SAX J1808.4−3658
(Wijnands & van der Klis 1998). We have also performed an
extra phase shift to our synthetic pulse profile so that the best-
fitting phase shift is not immediately found, which is also the
case for the observed data.

When creating the data, we have used a higher phase reso-
lution (500 phase bins) in the model than when actually fitting
the data (128 phase bins). In both cases, the physical fluxes are
calculated with 50 energy bins between 1 and 60 keV. The syn-
thetic pulse profiles are interpolated and integrated to 16 phase
bins (similar to the data of SAX J1808.4−3658) and convolved
with the response matrix, in order to get light curves in the 24
PCA energy channels between 3 and 18 keV. In order to include
the noise, we have Poisson sampled the detected counts at each
phase point and energy channel. Thus, a relatively larger noise
appears at the highest energy channels where the count rates
are lowest. The 0.5% calibration error of the PCA instrument
is included in to the fit because of the systematic uncertainties in
the response matrix (see Sect. 2.3.1).

4. Results

4.1. Synthetic data

We begin our analysis with synthetic data created as described
in the previous section. In the first model we keep all our
parameters free and use the least constraining limits for prior
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Fig. 3. Normalized pulse profiles integrated to 3 energy bins for the syn-
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physical units using the best-fit model are shown with blue circles with
the error bars according to the Poisson noise. The 0.5% calibration error
of the detector, used in the fitting procedure, is not included to the error
bars.

distributions. The uniform prior probability is set for cos i instead
of i, because we assume the observers to be uniformly dis-
tributed on a sphere around the star. Because d cos i ∝ sin i di,
we have sin i prior probability in i. Otherwise, we use uniform
prior distributions for our sampling parameters. Of course, since
the sampling parameters differ from the model parameters (see
Sect. 2.3.3), the prior probabilities in Req, i, θ, ρ, T ′, and Xrefl are
multi-dimensional and non-uniform (and therefore not shown in
the figures of this article).

The resulting posterior distributions are shown in Fig. 2. The
intervals shown in this figure are also the boundaries of the prior
distributions we have used, excluding the upper limit h = 1.0
for the beaming parameter and θ = 90◦ for the magnetic obliq-
uity. Also, M/Req, i− θ, and i + θ are not sampled in the range
shown in Fig. 2, but in a range allowing all M, Req, i, and θ
be inside their prior, but rejecting the step if any of the param-
eters would be outside of it. In addition, we have estimated a
more strict upper limit for M/Req from the causality condition
u ≡ 2GM/Reqc2 . 0.96 × 2/3 (Lattimer & Prakash 2004). The
factor 0.96 is added to ensure that the causality condition is valid
also at the pole of the oblate NS. We also limit the spot temper-
ature in the observer frame T to be in the range 0.6−0.7 keV,
which is obtained by spectral fitting with xspec.
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Fig. 4. Time-averaged spectrum for the synthetic data. The lower panel
shows the residuals. The contours and the symbols are the same as in
Fig. 3. The 0.5% calibration error of the detector, used in the fitting
procedure, is not included to the error bars.

The contours for pulse profiles (integrated to three energy
intervals for easier visualization purposes only) and for the spec-
trum are shown in Figs. 3 and 4. These figures demonstrate that
very good fits are found both in time and energy dimension. The
best-fit solution presented has χ2/d.o.f. = 119.1/(384 − 14) ≈
0.32 (for 14 free parameters including the phase shift). The
reduced chi-squared value is very low, because we have fitted the
data using calibration error, even though there is no such error in
the observed synthetic counts. Without the calibration error we
would have χ2/d.o.f. = 375.6/370 ≈ 1.02. Also, the probabil-
ity distribution around the best-fit is very tightly concentrated
around the correct solution.

From Fig. 2 we see that the posterior probability distributions
for each parameter are more or less close to the original input
values of the synthetic data. As expected, the parameter i − θ is
more difficult to constrain than i+θ. But from two solutions with
opposite signs, we find the correct one, since the solution with
switched i and θ is, fortunately, below our lower limit for incli-
nation, which is 40◦. However, the inclination angle i is slightly
biased towards higher angles. On the other hand, θ is better con-
strained than i.

Most of the parameters of our model seem to be very well
constrained. The relative reflection Xrefl, the scattered fraction of
photons Xsc, the spot temperature T ′, the photon spectral index
Γ, and the beaming parameter h are the most tightly constrained.
The angular radius of the spot ρ has a relatively broad probabil-
ity distribution, however, not as broad as the distance to the star
D. The distribution for the hydrogen column density NH is also
very broad, and it is slightly biased towards higher values. The
uncertainty is, however, expected because NH will only affect the
lowest energy channels.

The most interesting parameters regarding this work are, of
course, the mass M and the radius Req. The results in Fig. 2
show that even with using only broad priors and high level of
flexibility in our model, we are able to get meaningful con-
straints for masses and radii. The correct value for the synthetic
data is located inside the 68% credible region. The probability
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Table 2. Most probable values and 68% and 95% credible limits for all 3 different simulations.

Quantity 95% lower limit 68% lower limit Most probable value 68% upper limit 95% upper limit

Synthetic data
Req (km) 10.4 11.1 12.0 12.8 13.7
M (M�) 1.36 1.44 1.51 1.64 1.75
i (deg) 52 56 61 68 75
θ (deg) 12 13 15 16 18
ρ (deg) 4.8 9.7 16 24 26
D (kpc) 1.1 1.9 3.6 5.6 5.9
h −0.84 −0.77 −0.70 −0.66 −0.63
T ′ (keV) 0.81 0.83 0.85 0.87 0.90
Xsc 0.56 0.58 0.60 0.61 0.62
Γ 1.794 1.798 1.803 1.807 1.812
logσi 0.90 0.92 1.05 1.42 1.75
NH (1022 cm−2) 0.019 0.083 0.14 0.20 0.20
Xrefl 0.040 0.044 0.051 0.059 0.076

Synthetic data with more precise priors for i and θ
Req (km) 10.6 11.0 11.9 12.4 13.3
M (M�) 1.38 1.46 1.53 1.57 1.61
i (deg) 57.1 58.8 62.6 62.9 62.9
θ (deg) 13.8 14.6 15.2 16.5 16.9
ρ (deg) 4.7 9.2 18 23 26
D (kpc) 1.1 1.9 3.7 5.3 5.9
h −0.75 −0.72 −0.70 −0.68 −0.67
T ′ (keV) 0.81 0.83 0.86 0.87 0.89
Xsc 0.59 0.59 0.60 0.61 0.61
Γ 1.794 1.798 1.803 1.808 1.812
logσi 0.90 0.93 1.1 1.4 1.7
NH (1022 cm−2) 0.025 0.087 0.14 0.20 0.20
Xrefl 0.046 0.048 0.050 0.052 0.055

Observed data of SAX J1808.4−3658
Req (km) 4.80 5.13 5.77 6.71 10.5
M (M�) 1.01 1.07 1.13 1.26 1.54
i (deg) 71 79 82 86 87
θ (deg) 9.5 14 17 19 21
ρ (deg) 8.4 10 12 26 36
D (kpc) 1.0 1.1 2.5 2.8 3.8
h −0.89 −0.75 −0.69 −0.65 −0.62
T ′ (keV) 0.79 0.96 1.0 1.0 1.1
Xsc 0.56 0.60 0.62 0.63 0.65
Γ 1.798 1.803 1.807 1.812 1.816
log(σi) 1.65 2.12 2.30 2.44 2.79
NH (1022 cm−2) 0.0021 0.0027 0.0049 0.042 0.11
Xrefl 0.027 0.052 0.087 0.12 0.20

Notes. The quantities shown in the table are equatorial radius Req, mass M, inclination i, spot co-latitude θ, spot angular size ρ, distance D, beaming
parameter h, temperature of the spot T ′, scattered photon fraction Xsc, photon spectral index Γ, intrinsic scatter logσi, hydrogen column density
NH, and the reflection amplitude Xrefl.

distribution for the mass seems to slightly favour too high
masses. We do not see any significant biases in the radius.
All calculated credible limits and the most probable values are
given in Table 2. The limits are calculated using the highest
posterior probability credible intervals. For the radius we find
the 68% (95%) limits and the most probable value as Req =

12.0+0.8 (1.7)
−0.9 (1.6) km, and for the mass M = 1.51+0.13 (0.24)

−0.07 (0.15) M�.
The posterior probability distribution for intrinsic scatter σi

shows that the model describes the synthetic data well. The
mean logσi ≈ 1 of the posterior translates to an error of
10–100 counts in each phase bin. This can be compared to the
level of Poisson noise in the data, which is approximately 300

counts on average in each phase bin. Therefore, logσi ≈ 1
is effectively the same as σi ≈ 0, as expected for synthetic
data.

4.2. Synthetic data with additional polarimetric constraints

In this section we show what is the effect of having prior
information of observer inclination i and spot co-latitude θ.
This information could be obtained using the polarization mea-
surements from, for example, the upcoming IXPE mission.
The swing of the polarization angle with phase can be used
to determine both i and θ (Viironen & Poutanen 2004). Our
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Fig. 5. Posterior probability distributions for the MCMC runs with the synthetic data, where angles i and θ are better constrained using the data
possibly coming from IXPE. The colours, contours, and other symbols are the same as in Fig. 2.

synthetic data are exactly the same as in Sect. 4.1. How-
ever, we assume that the polarization data allow constrain-
ing inclination between 57◦ and 63◦ and the spot co-latitude
between 13◦ and 17◦ (i.e. around the assumed parameters,
see Table 1), restricting therefore the prior distributions. The
boundaries of the prior distributions for other parameters are
the same as in Sect. 4.1. The results are shown in Fig. 5.
We emphasize here that the values used here might not be
exactly correct but they do provide a rough estimate of how
the possible polarization measurements might improve our
inference.

From the resulting posterior distribution, we see that mass
and radius, among all the other parameters, are only slightly

better constrained when compared to Fig. 2. The biases in i
and NH point to the same direction as previously. The result-
ing credibility limits can be again found from Table 2. In this
case, we get a radius Req = 11.9+0.5 (1.4)

−0.9 (1.3) km, and for the mass

M = 1.53+0.04 (0.08)
−0.07 (0.15) M�. Compared to the previous model, addi-

tional constraints for the geometrical angles improved the accu-
racy clearly more in mass than in the radius. The accuracy in
determination of mass, with 68% credibility level, increased
from 7% to 4%, when the corresponding accuracy for radius
increased from 8% to 6%. For the 95% credibility level, the accu-
racy in mass improved from 13% to 8% and in the radius from
14% to 12%.
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Fig. 6. Posterior probability distributions for the MCMC runs with SAX J1808.4−3658 data. The colours, contours, and other symbols are the
same as in Fig. 2. The posterior shows that letting the mass be a free parameter results in unrealistic radius estimates due to possible biases in other
parameters when the model does not describe data perfectly. More realistic parameter constraints with a fixed mass grid are shown in Fig. 9.

4.3. SAX J1808.4−3658 with RXTE

We now analyse the actual data of SAX J1808.4−3658 from the
1998 outburst obtained with the RXTE. We use the same model
as in Sect. 4.1 to fit the data. The resulting posterior probability
distributions are shown in Fig. 6. The limits of the priors are
the same as in Sect. 4.1, except the lower limit for the radius is
decreased to 4 km.

The contours for the pulse profiles and for the spectrum are
again shown in Figs. 7 and 8. From these figures we see that
the reasonably good fits are found both in time and in energy
dimensions. The best-fit solution presented has χ2/d.o.f. =
420.6/370 ≈ 1.14 where we have taken into account the 0.5%

calibration error of the PCA. Also, the probability distribu-
tion around the best-fit is quite tightly concentrated around the
observed data. However, at the higher energy channels the fits are
worse and they are not fully able to produce the observed smaller
pulse amplitude (see the energy band 12–18 keV in Fig. 7).

From the posterior distributions we can see that many of the
parameters of our model are quite well constrained. For exam-
ple, the photon spectral index Γ and the scattered fraction of pho-
tons Xsc are reasonably well-constrained close to the values they
should have according to the independently performed spectral
fits with xspec (Γ = 1.82+0.04

−0.03 and Xsc = 0.60+0.02
−0.05 with 90% con-

fidence ranges). The beaming parameter h = −0.69+0.04 (0.07)
−0.06 (0.20) is
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Fig. 7. Normalized pulse profiles integrated to 3 energy bins for
SAX J1808.4−3658 data. The contours and the symbols are the same
as in Fig. 3. The 0.5% calibration error of the detector is included to the
error bars.

constrained close to the results of Poutanen & Gierliński (2003),
and the reflection amplitude Xrefl = 0.09+0.03 (0.11)

−0.04 (0.06) is consistent
with the results of Gierliński et al. (2002). The posterior of the
hydrogen column density NH peaks at a value factor of twenty
lower than expected. However, this is not critical because it just
implies that the data do not contain enough information to put
any stringent constraints on it. Later we confirm this by fixing
the value of NH to 0.14 × 1022 cm−2 given by Pinto et al. (2013)
(see Sect. 5.3).

The angular size of the spot ρ has a relatively broad
probability distribution, like in the case of the synthetic data,
but it reaches slightly higher values (up to about 30◦). For
the distance we get D = 2.5+0.3 (1.3)

−1.4 (1.5) kpc, where the most
probable distances are slightly smaller than the most prob-
able distance of 3.5 kpc given by Galloway & Cumming
(2006). The source inclination is constrained to lie
above 71◦.

The credibility limits for parameters, when fitting the
observed data, are also shown in Table 2. In case of radius
Req, our original choices to the limits of the priors would have
strongly constrained the results. In this case, we get a radius
Req = 5.8+0.9 (4.7)

−0.6 (1.0) km, and for the mass M = 1.13+0.13 (0.41)
−0.06 (0.12) M�.

These results favour smaller NSs than generally accepted. How-
ever, this could occur, for example, due to any biased estimates
in the other model parameters (see Sect. 5 for more detailed
discussion).
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Fig. 8. Time-averaged spectrum for SAX J1808.4−3658. The contours
and the symbols are the same as in Fig. 3. The 0.5% calibration error of
the detector is included to the error bars.

The posterior probability distribution for intrinsic scatter
with the mean logσi ≈ 2.3 shows that the model does not
describe the data as well as the synthetic data. This corresponds
an absolute error of about 200 counts or a relative error of 0.2%
in each phase-energy bin. However, this error is still smaller than
the Poisson noise level in the data (see Sect. 3).

4.4. SAX J1808.4−3658 with fixed M

To get more reasonable estimates for the NS radius, we have also
computed the posterior distributions for all the parameters with
a fixed grid of NS masses from 1.4 to 2.2 M� with the step of
0.1 M�. These are then combined to obtain 2D-posterior distri-
butions for every parameter against mass. The assumption is that
each of the mass bins has an equal probability. This way it is
possible to see what would be the constraints, especially for the
radius, if the requirement for the free mass is relaxed and we
assume it is to be known instead.

The results for this analysis are shown in Fig. 9. From the
posterior distributions of the intrinsic scatter, we see that all the
mass bins give more or less similar fits. Most of the parameters
depend on the mass only slightly. This then indeed implies that
the data do not contain enough information to convincingly con-
strain the radius and the mass simultaneously. However, some
correlation with the mass exists especially in the radius, incli-
nation, distance, temperature, and relative reflection amplitude.
This time we can get reasonable estimates for the radius; for
example, for a NS mass of 1.7 M� we get Req = 11.9+0.5 (1.0)

−0.4 (1.0) km
for the equatorial radius. Furthermore, at this mass we have
the most probable distance to the source closest to distance of
3.5 kpc given by Galloway & Cumming (2006).

5. Discussion

The results presented in Sect. 4 demonstrate that obtaining reli-
able radius constraints is difficult without having a priori knowl-
edge of the NS mass. Our method works well with the synthetic
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data, but in case of SAX J1808.4−3658 our model describes the
data less accurately, which might lead to larger biases in param-
eter estimates. Although, using a fixed grid of NS masses, we
obtained more realistic results for the radius, in addition to more
likely values for the distance of the star.

When using synthetic data and having additional informa-
tion on the observer inclination and spot co-latitude, we get only
slightly better constraints. However, it is not yet exactly known
how much the upcoming polarization measurements could limit
the possible values of these angles. In our case, for the synthetic
data, constraining i in the interval [57◦, 63◦] and θ in [13◦, 17◦],
instead of [40◦, 90◦] and [0◦, 90◦], respectively, resulted in a
change of the 68% credibility interval for the radius from 11.1–
12.8 to 11.0–12.4 km and the interval for the mass from 1.44–
1.64 to 1.46–1.57 M�. Similarly, the 95% credibility intervals
have changed from 10.4–13.7 to 10.6–13.3 km and from 1.36–
1.75 to 1.38–1.61 M�. In addition, the most probable posterior
value for the mass was found to be closer to the correct solution.

The more significant accuracy improvement on the mass,
rather than on the radius, results from the stronger correlation
between mass and inclination, than between radius and inclina-
tion. This is also seen in the posterior probability distributions
in Figs. 2 and 5. From the latter figure, we see that the equato-
rial radius Req is more correlated with the spot co-latitude θ, as
expected for the oblate star. However, our new limits for i and θ
bind the original posterior more for i than for θ.

The constraints in mass and radius appeared to be very good
in both cases where we fitted our synthetic data. However, as
expected, the obtained constraints were weaker in the case of
the observed data. This shows that our model does not describe
the observations perfectly. On the other hand, the most probable
values obtained for the radius (from 5 to 11 km), are somewhat
lower than usually predicted for NSs. However, these results
are quite similar than what has previously been obtained by
Poutanen & Gierliński (2003) and Leahy et al. (2008) for the
same source SAX J1808.4−3658. Of course, the (equatorial)
radius seems to depend strongly on the combination of many
other parameters, including at least the mass, spot co-latitude,
magnetic inclination, spot angular size, distance, beaming, and

the spot temperature. An error or bias in any of these parame-
ters would give incorrect results in Req. For example, a higher
mass than the best-fitted 1.13 M�, would give higher radii, if the
compactness M/Req remained the same. The results with a fixed
mass grid, shown in Fig. 9, also support this and give reasonable
radius estimates if the mass is known a priori.

The beaming parameter h turned out be better constrained
than the mass and the radius, both with synthetic and real data.
However, the linear I′non-th ∝ I0(1+h cosσ′) model for the beam-
ing might not be the optimal one, because the largest deviations
between the model and the data in the pulse profile are found
from the reduced pulse amplitude at highest energies (see Fig. 7).
The beaming parameter h is expected to be larger in absolute
value at higher energies where the non-thermal radiation dom-
inates, and this should flatten the pulse profiles. The current
model may not do that efficiently enough.

5.1. Analytical approximations

In order to understand the relations between the parameters of
our model and the observed quantities, we next present approx-
imate analytical expressions for the pulse amplitudes. These
amplitudes are expected to be the best constrained quantities
from the observations. Using these expressions, we may also bet-
ter interpret our results.

First we would like to get an estimate for the normalization
of the light curve. This can be done by using the bolometric ver-
sion of Eq. (7), where instead of (1 − u)1/2δ4I′E′ (σ

′) we have
(1−u)δ5I′(σ′). Assuming a slowly rotating (δ ≈ 1) spherical star
(R = Req), with an always visible small spot (dS ′ ≈ π(ρReq)2)
radiating black-body flux (I′(σ′) ∝ T ′4), the observed normal-
ization, or the phase-independent part of the flux, scales as

N0 ∝

(
ρReq(1 + zeq)

D

)2 (
T ′

1 + zeq

)4

, (20)

where the first factor is proportional to the solid angle the spot
occupies on the sky and the second factor is related to the bolo-
metric black-body flux, both in the frame of an observer. Because
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linear correlations are the optimal relations between different
variables when using ensemble sampler, we chose to sample the
solid angle the spot is seen instead of the spot angular size ρ,
and the bolometric black-body flux instead of temperature T ′
(see Sect. 2.3.3).

We can also get a useful approximation for the bolomet-
ric pulse amplitude. This time we use the same assumptions as
when deriving N0, but we, in addition, allow the radiation to be
anisotropic and allow a larger spot size. This is done by replacing
I0 with I0(1 + h cosα′) in the derivation of oscillation amplitude
in the paper by Poutanen & Gierliński (2003). In case of using
the following notations:

U ≡ (1 − rS/Req) sin i sin θ, (21)
Q ≡ rS/Req + (1 − rS/Req) cos i cos θ, (22)

P ≡
rS

Req
tan2 ρ

2
, (23)

we get for the flux (see also Poutanen & Beloborodov 2006):

F(φ) ∝ Q + hQ2 +
hU2

2
+ hQP + P

+ U(1 + 2hQ + hP) cos φ + h
U2

2
cos 2φ. (24)

From this we see that the pulse amplitude of fundamental
increases with a positive h, and decreases with a negative one.

Using Eq. (24), we get the relative pulse amplitude

A1 =
U(1 + 2hQ + hP)

Q + hQ2 + hU2/2 + hQP + P
, (25)

where we ignored the harmonic, which has a smaller amplitude.
Without beaming (h = 0) and with a small spot (P = 0), this
expression reduces to the usual A1 = U/Q (Beloborodov 2002;
Poutanen & Gierliński 2003). This shows the problem with dis-
tinguishing i and θ, when fitting the data without independent
knowledge of any of the two parameters. As explained in the
Sect. 2.3.3, we may reduce the number of (almost) indistinguish-
able parameters by sampling i + θ and i − θ, instead of i and θ.

In addition, Eqs. (25) and (20) show that ρ is involved both in
the normalization and the pulse amplitude. Therefore, even our
transformed spot size parameter (see Sect. 2.3.3) that have a lin-
ear relation toN0, is not linear with respect toA1 or the observ-
ing angles. Also, the beaming parameter h is coupled with ρ. The
pulse amplitude A1 can be also used to predict the accuracy in
measurement of NS compactness when the uncertainties in the
other parameters of the expression are known and their values
estimated (see, e.g. Özel et al. 2016).

The ratio between the amplitudes of second and first har-
monic is again obtained from Eq. (24)

A2 =
hU/2

1 + 2hQ + hP
· (26)

With a small spot, this reduces to A2 ∝ h sin i sin θ
(Poutanen & Beloborodov 2006). The beaming parameter h is
thus strongly connected to the observing angles also through this
expression. However, the effect of fast rotation (Doppler effect)
causes slightly different amplitudes, and introduces a phase shift
between the fundamental and the harmonic, skewing the pulse
profile and making the relations between parameters even more
complex.

5.2. Uncertainties and systematic errors

The possible systematic errors can emerge either from the sam-
pling method or from the physical modelling of the energy-
resolved pulse profiles. As described in Sect. 2.3.2, sampling the
parameter space introduces difficulties when the model param-
eters are highly degenerate and have non-linear relations with
each other. This issue has been addressed by making variable
transformations in order to sample parameters that are easier to
constrain observationally and that would have simpler relations
with each other.

The method might still suffer from a very slow convergence.
The posterior distributions were slowly changing even after tens
of thousands of samples from individual ensembles, or more than
a thousand accepted steps on average for an individual walker.
The problems with convergence of affine invariant ensemble
sampler in high dimensions have been noted by Huijser et al.
(2015), and the problem is expected to be worse for strongly
correlated and complex models. Our solution was to use very
long runs with ensemble sampler, and confirm the results with
the independent nested sampling method multinest. In multinest
we did not use any particular initial position for sampling, which
also reduced the risk of the results being dependent on the initial
position of an ensemble.

In the case of fitting the SAX J1808.4−3658 data, a sys-
tematic error can arise from the assumptions made in physical
modelling. As already discussed, the angular distribution of the
radiation might need a more realistic model. Overall, to explain
all the spectral features, an accurate and physical atmosphere
model of the accreting NS is required. In future work, we plan
to construct the model for the accretion shock and compute self-
consistently the angular distribution of the escaping radiation.
This first-principle model would significantly reduce the num-
ber of free parameters and would allow to get better mass-radius
constraints.

The use of model simpl-1, which includes only the up-
scattered photons, instead of simpl-2 including both up- and
down-scattered photons, can be one source of error. For non-
relativistic thermal Comptonization some part of the photons is
also scattered to lower energies. The use of simpl-1 could thus
result in a slightly too small scattering fraction when compen-
sating the down-scattering effects. It could also explain the unex-
pectedly low values of hydrogen column density NH, since both
the lower NH and the down-scattering result in a higher num-
ber of photons in the lowest energy bands. However, the mass
and radius estimates are not very sensitive to a small change
in these parameters. This was also confirmed by the fit of the
SAX J1808.4−3658 data, where we switched to simpl-2, while
keeping all parameters still free. The only major difference we
found was in Xsc, which was increased from 0.6 to 0.7.

As mentioned in Sect. 2, we ignore the radiative transfer pro-
cesses of photons through an accretion column. For a typical
luminosity of 5×1036 erg s−1 (Gilfanov et al. 1998), the assumed
accretion efficiency of 0.15 and the circular radius of the spot of
2 km, the Thomson optical depth through the column is about a
unity (see Sect. 5.3 of Poutanen & Gierliński 2003). Thus, the
column may significantly affect the observed pulse profiles by
making a dip at the phase corresponding to the position of the
spot in front of the observer. How this would affect the results is
impossible to predict without simulations and the detailed model
of the accretion shock.

In our analysis we assumed a circular spot. This approxi-
mation is more likely valid when the magnetic inclination is
small and the inner radius of accretion disc is much larger
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than the NS radius. However, for the disc close to the star
and for large magnetic inclination, the spot becomes ring-like
(because the matter accretes via field lines penetrating the disc
within a narrow ring) or even crescent-like (Romanova et al.
2004; Kulkarni & Romanova 2005). A change in the spot shape
may affect the pulse profile (see e.g. Poutanen et al. 2009;
Kajava et al. 2011). Although, based on the simplicity of the
pulse profiles, we expect this effect to be rather small.

As mentioned in Sect. 2, we calculate the pulse profiles using
only one spot. This is justified, because we use the observations
of SAX J1808.4−3658, where the accretion disc is expected to
hide the second spot (Ibragimov & Poutanen 2009). The lack
of a second maximum in the pulse profile is an evidence for
this. However, there could still be a small contribution from
the second spot. In future work and when modelling also other
sources, the second spot, along with a model of light propaga-
tion to the observer through the truncated accretion disc, should
be included.

5.3. Additional observational constraints

As mentioned in Sects. 2.3.3 and 4.3, there are indepen-
dent constraints, for instance on the observer inclination i
and on the interstellar hydrogen column density NH for
SAX J1808.4−3658. Using X-ray spectroscopy with XMM-
Newton Pinto et al. (2013) found out that NH = 1.40+0.03

−0.03 ×

1021 cm−2 with 1σ errors. On the other hand, the inclination
and the mass of the NS are connected and constrained via the
mass function fM = M sin3 i/(1 + q)2, where q is the binary
mass ratio. Using optical observations of the companion star,
during the 2008 outburst, Elebert et al. (2009) constrained the
mass ratio of the system to q = 0.044+0.005

−0.004 and the mass func-
tion to fM = 0.44+0.16

−0.13 M�. Cornelisse et al. (2009) used the
same dataset, but ended up to less realistic mass estimates. Later,
Wang et al. (2013) got similar estimates as Elebert et al. (2009),
using optical observations of the companion during quiescence.

We have studied how these constraints affect our results by
making an additional analysis to the SAX J1808.4−3658 data
with a fixed value of NH = 0.14 × 1022 cm−2 and using a
Gaussian 2-dimensional prior probability distribution M sin3 i =
0.48+0.15

−0.15 M� for the mass and the inclination. In case of the
model where mass is a free parameter, using the new 2-
dimensional prior we get smaller and more realistic inclinations,
around 50◦. However, they are still not small enough to make the
prior prefer larger masses (and therefore radii) of the NS. The
smaller inclination mainly affects the spot co-latitude θ, which
now increased above 20◦ in order to still fit the observed pulse
amplitude. Also, the relative reflection from the accretion disc
Xrefl becomes smaller and is now constrained below 0.05. When
a fixed mass grid with the new priors was used, we were able
to get inclinations significantly below 50◦, as expected in case
of higher masses. However, the resulting posteriors for radii did
not change significantly.

To get the same mass function as Wang et al. (2013) or
Elebert et al. (2009), we would need i smaller than 50◦ for a NS
with a mass 1.4 M�. Since the observed small pulse amplitude
requires large enough separation between i and θ, this inclina-
tion is not very easy to produce without fixing the mass (assum-
ing that we still exclude the smallest i and hence the case of
almost equatorial spot). Of course, as seen in Sect. 5.1 and in
Eq. (25), the relative pulse amplitude is also determined by the
beaming parameter h and the spot size ρ. This might suggest
that our spot size is too small, for example due to the possibly
diffuse boundary of the spot, or that the beaming model needs to

be improved. In any case, the model is not perfect, since we have
also neglected, for instance, absorption of light by the accretion
column.

6. Summary

We have presented a method to constrain masses and radii of NSs
using both spectral and X-ray timing information from AMPs.
We have modelled the NS spectra and pulse profiles in case of
two different synthetic data. In the first case, we assumed that
the observer inclination and spot inclination angles are unknown,
while in the second case we assumed that there exist constraints
on both angles, for example, from the X-ray polarization mea-
surements. The results showed that our method works in both
cases, but the second case led to slightly tighter constraints on
mass and radius. Accuracy improved from 13% to 8% in deter-
mination of the mass and from 14% to 12% in determination of
the radius (with 95% credibilities).

We have also fitted our model to the already existing RXTE
data on SAX J1808.4−3658. The obtained constraints for the
mass and the radius are in good agreement with previous stud-
ies of this object, favouring relatively small NSs. Because the
smallest masses and radii allowed by our model are not real-
istic for any modern equation of state, we have computed the
probability distributions using also a fixed mass grid. The results
showed, that the radius can be well constrained if the NS mass is
known a priori. For example, a NS mass of 1.7 M� corresponds
to the equatorial radius of Req = 11.9+0.5 (1.0)

−0.4 (1.0) km. Getting reason-
able constraints for the NS radius is thus possible using even the
already existing data from RXTE.
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Appendix A: Numerical solutions for light bending
and time delay integrals

Numerical calculations using directly integral (1) are not possi-
ble. Making substitution y = R/r, the integral becomes

ψp(R, α) = sinα
∫ 1

0
dy

[
1 − u − y2 sin2α (1 − yu)

]−1/2
. (A.1)

Applying quadrature formulae to this form of the integral leads
to dramatic errors when sinα ∼ 1, because of the divergent
behaviour of the integrand at y = 1. However, simple variable
substitution x =

√
1 − y removes the divergence:

ψp(R, α) = 2
sinα
√

1 − u

∫ 1

0

(
cos2α + x2q

)−1/2
x dx, (A.2)

where

q =
[
2 − x2 − u(1 − x2)2/(1 − u)

]
sin2α. (A.3)

Notice that now for cosα = 0, the integrand does not diverge at
x = 0 and the integral can be computed without problems using,
for example, Simpson quadratures.

Also, direct calculations using expression (9) are not possi-
ble. Making substitution y = R/r, the integral becomes

∆tp =
R
c

∫ 1

0

dy
y2(1 − yu)

{[
1 − sin2α y2(1 − yu)/(1 − u)

]−1/2
− 1

}
.

(A.4)

This form has seemingly two divergences at y = 0 and for sinα =
1 at y = 1. The first divergence is removed by multiplying and
dividing by the expression similar to that in the curly brackets
but with the +1 in the end. This gives

∆tp =
R
c

sin2α

1 − u

∫ 1

0

dy
√

1 − w
(
1 +
√

1 − w
) , (A.5)

where

w =
y2(1 − yu)

1 − u
sin2 α. (A.6)

The divergence at y = 1 (for sinα = 1) is of the 1/
√

1 − y -
type and therefore is trivially removed by variable substitution
x =

√
1 − y. This transforms the integral to

∆tp = 2
R
c

sin2α

1 − u

∫ 1

0

x dx√
x2q + cos2α

(
1 +

√
x2q + cos2α

) , (A.7)

where q is given by Eq. (A.3). Now for cosα = 0, the integrand
does not diverge at all, but becomes 1/(qx +

√
q) and the integral

can be computed using e.g. Simpson quadratures.
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