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Abstract: The current statistics on cancer show that 90% of all human cancers originate from epithelial
cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would
benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in
clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the
tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism
of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer
structure and microenvironment, such as 2D and 3D cell culture models and animal models. A
specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed
tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on
high-content imaging technologies that are used in the field to visualize in vitro models and their
morphology. The associated technological advancements and challenges are also discussed. Finally,
the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial
cancer research both as tools in tumor modeling and how they can be utilized for the development
of nanotherapeutics.

Keywords: spheroid; organoid; tumor microenvironment (TME); extracellular matrix (ECM);
biomaterials; 3D bioprinting; nanoparticles (NPs); high-content screening

1. Introduction

Cancer is the second leading cause of mortality worldwide, and 90% of cancers are
of epithelial origin, known as carcinoma. Carcinoma is a malignancy in the epithelial
cells, which have a multidisciplinary role in protection, absorption, secretion, excretion,
filtration, diffusion, and sensory reception in tissues. The World Health Organization
(WHO) conducted a worldwide study in 2018, which showed that in both sexes, the
leading cause of cancer deaths is lung cancer (18.4%). In males, prostate, colorectal, and
liver cancers show the highest incidence after lung cancer, and stomach cancer shows the
highest mortality, whereas in females, breast cancer is the leading cause of cancer deaths,
followed by colorectal and lung cancer for incidence [1].

To study the origin, progression, metastasis, and underlying mechanisms of epithelial
cancers, various models have been designed, utilizing multidisciplinary fields of science
such as biomaterials engineering, nanotechnology, and high-content imaging. They have
provided substantial information to improve anti-cancer drug discovery and diagnostics

Int. J. Mol. Sci. 2021, 22, 6225. https://doi.org/10.3390/ijms22126225 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6747-4022
https://orcid.org/0000-0001-6085-1112
https://doi.org/10.3390/ijms22126225
https://doi.org/10.3390/ijms22126225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22126225
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22126225?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6225 2 of 27

(Figure 1). The most simplistic model of in vitro cancer research is a two-dimensional (2D)
monolayer culture of cancer cell lines, which, in spite of being the most utilized model,
cannot provide realistic data about the heterogeneous, multicellular tumor microenviron-
ment (TME) in the body. Currently, various models such as animals [2,3], transwells [4],
spheroids [5–8], organoids [8–10], and xenografts [11,12] are utilized in cancer research
with many advantages and disadvantages [13,14]. Hence, there is a need to develop models
that can be utilized for monitoring cell growth, viability, polarization, and differentiation, as
well as for and studying migration and invasion of tumor cells into the surrounding TME.
Hence, a lot of attention has been focused on developing 3D model systems containing
the extracellular matrix (ECM) of natural, synthetic, or semisynthetic origins using 3D
bioprinting technologies that can provide more accurate information about the TME and
cancer progression [14–18]. The 3D models can also serve as better choices for high-content
screening approaches in the preclinical phase of drug development.
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Figure 1. Research areas that are related to epithelial cancer and where 3D cell culture models are useful.

Anti-cancer drug development data show that ~5.1% of drugs that succeed to enter
clinical trials eventually obtain approval from the Food and Drug Administration [19],
and the cost of bringing a new drug to the market is over USD 2.6 billion [20]. A thor-
ough understanding of TME, and occurrence mechanisms possess grand challenges in
anti-cancer drug development research. The new era of anti-cancer drug development has
been focusing on nanotechnological approaches for drug discovery research and diagnostic
studies [21]. These can be utilized for the development of novel anti-cancer treatments,
early detection of tumors, and discovery of cancer biomarkers [22]. The current scenario
provides an opportunity to stimulate the preclinical testing phase by developing physio-
logically relevant models, which could reflect human tumor conditions using advanced
imaging technologies for monitoring disease progression that also have the capacity of
high-throughput screening in cancer research.

The review encompasses an overview of the crucial parameters to develop in vitro
3D models of epithelial cancers, especially breast and prostate cancer; followed by the
current in vitro 3D experimental models in cancer research such as spheroid and organoid
cultures, organ on chip models, ex vivo tissue slices, and applications of 3D culture in drug
development. Further, 3D bioprinting technologies, associated challenges, and biomaterials
used for organotypic 3D cancer models are discussed. Finally, insight is provided on how
nanoparticles are being used in epithelial cancer research and how they can be utilized for
high-content imaging approaches in drug discovery.
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2. Key Parameters for Development of In Vitro 3D Models of Breast and
Prostate Cancer

In cancer, the TME is heterogeneous in nature and is mainly composed of ECM and
a stroma that includes fibroblasts, adipocytes, endothelial cells, immune cells, numerous
growth factors, and cytokines [23,24]. ECM plays a crucial role as it acts as a reservoir
of growth factors required for cell survival and normal tissue functions [25]. The ECM
microarchitecture, composition, stiffness, and topography play a vital role in tumor pro-
gression and directly affect cell behavior [26,27]. It has already been shown that 3D in vitro
models, which mimic the TME, can provide real insight into anti-cancer therapeutics and
how they affect the tumor formation, progression, and associated molecular mechanisms
in cancer treatment [28].

2.1. A Brief Summary of Breast Cancer

Breast cancer, being the most common cancer in the female population globally, has
a few alarming characteristics, such as hypoxic environment, variance amongst patient-
to-patient, and heterogeneity between cells within the tumor [29–31], and a potential to
metastasize to lymph nodes and other organs such as bone, liver, lungs [32]. In order to
understand the breast cancer origin, progression, and microenvironment that is extremely
complex in nature, various approaches such as in vivo models, ex vivo models, and in vitro
models have been applied to recapitulate at least the basic components that play a role in
tumor progression [13,33].

In a normal functional mammary gland, the epithelium is composed of tightly attached
epithelial and myoepithelial cells via cell adhesion molecules, resulting in hollow tubular
structures [34,35]. In breast tumors the cell–cell adhesion decreases, resulting in fast
dissociation from each other and the epithelium, rapid proliferation, and formation of a
solid tumor in the lumen of epithelial cells, also known as ductal carcinoma [36]. Similarly,
since the ECM is very much tissue- and location-specific, the normal mammary gland
basement membrane is composed of entactin, collagen IV, and laminin proteins, which are
involved in cell polarization, formation, and maintenance of acini (mammary gland lobules).
While the normal ECM is composed of collagen I, lipids, and proteoglycans such as perlecan
and tenascin [37,38], the biochemical composition of ECMs in the TME are different from
the normal ones and result in different cellular behaviors [35]. The breast tumor tissues are
also comparatively stiffer than normal mammary tissues, resulting in enhanced migration
speed of the tumor cells, thus, promoting angiogenesis within the tumor [39,40]. The TME
is also associated with a disorganized vascular network. The fiber structure, porosity, pore
size collectively termed as microarchitecture, and signaling molecules such as cytokines,
also play a significant role in tumor progression and invasiveness [41,42].

2.2. A Brief Summary of Prostate Cancer

Similarly, prostate cancer is the most common cancer diagnosed worldwide in men,
especially in the western world. The prostate gland, which is phenotypically fibromuscular
in nature with a canalized ductal-acinar structure, has tall columnar secretory luminal cells
and a flattened basal epithelium that develops from the embryonic urogenital sinus [43].
Stem cells are the source of both prostate luminal and basal epithelia [44]. In research
with advancing tools and technologies, various hypotheses undergo reformulation. For
example, earlier, only luminal cells have been considered the cellular origin of most prostate
cancers. However, recent research suggests that prostate basal stem and progenitor cells
can also give rise to prostate cancer [45,46]. The present knowledge of the detailed prostate
cancer-driving mechanisms is incomplete, and a deeper understanding is needed to predict
tumor aggressiveness, efficient and sensitive modes of tumor detection [47].

The past and the ongoing research efforts in the fields of biomaterial and tissue
engineering have provided a platform to design human representative 3D in vitro models
mimicking human pathophysiological conditions. The 3D models allow, e.g., epithelial
morphogenesis, including the formation of tubules and acini that are fully functional [48].
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It has been shown that 3D in vitro models, which can mimic the TME and surrounding
ECM’s biochemical composition, stiffness, micro-organization, and vasculature, can serve
as representative model systems of breast and prostate cancer tumor research [35,49].

3. Current In Vitro 3D Experimental Models in Cancer Research

In vitro cancer models are the simplified versions in comparison to in vivo models
when studying cancer mechanisms and the effect of anti-cancer moieties on tumor growth
and progression. Standard 2D cell culture models fail to recapitulate the cellular mecha-
nisms involved in tumor progressions, such as cell–cell adhesion, polarization, epithelial
differentiation, mechanotransduction, invasion, and proper signaling of cells within the
tumor tissues. Recent developments have shown that 3D in vitro models have tremendous
potential in cancer research due to their most promising characteristic of very closely
mimicking the in vivo model systems (Figure 2). An ideal in vitro tumor model should
be able to recapitulate the 3D in vivo environment along with reproducing the interaction
between tumor and stromal cells, thus regulating the cellular functions. Depending upon
the method of cell seeding, the 3D in vitro models could be categorized as scaffold-based
and scaffold-free models. The scaffold-based models utilize the prefabricated ECMs pre-
pared from different materials such as natural or synthetic materials or decellularized ECM.
In scaffold-free models, cells proliferate as non-adherent floaters without any support
material, and 3D constructs are formed due to cellular self-assembly [50].
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Based upon the cell culture methodology, the 3D models in cancer research can be
classified into (i) non-adherent cultures as multicellular aggregates, (ii) culture on inserts,
and (iii) embedded in natural or synthetic ECM. Here we discuss the most common modes
of 3D cancer cell models.

3.1. Spheroid and Organoid Cultures

The most used 3D tumor models are spheroids and organoids: 3D spheroids are
in vitro models which are cellular aggregates. Spheroids can be homotypic or heterotypic.
The homotypic spheroids are composed of only cancer cells, while heterotypic are cultured
with other cell types such as fibroblasts or immune cells [51]. They have been used to design
models of various cancer types such as breast [51], prostate [52], and lung cancers [53].
Some of the most studied techniques for culturing spheroids and organoids in cancer
research are [54,55]:

1. Cells cultured in suspension-based hydrogels in spinning flasks resulting in the
formation of cellular aggregates with diverse morphologies.

2. Cells cultured in suspension condition using liquid overlay techniques in which the
interaction between cells leads to the formation of non-adherent 3D cell aggregates.

3. Hanging drop techniques in which non-adherent spheroids are formed in cellular droplets.
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4. Tapping chamber of the microfluidic reactor where cells, after injection, fuse and form
non-adherent spheroids in a controlled manner.

5. Cells embedded in ECM in multi-well plates, where either round spheroids or
invasive tumoroids are generated, and the cells adhere to and interact with the
surrounding ECM.

The internal structure of non-adherent 3D spheroids can, to some degree, mimic the
solid tumor architecture, and it is comprised of different cell layers. The core is composed of
necrotic cells, while the middle layer has mostly senescent cells. The necrotic or senescent
cells of the inner layer are dedicated to the absence or deprivation of nutrients and hypoxic
environment, which results in the accumulation of lactate in the spheroids, same as that
of in vivo solid tumors. The outer layer is formed of cells with high proliferating rates
due to convenient access to oxygen and nutrients [56,57]. The therapeutic efficacy of
anti-cancer drugs such as cisplatin, doxorubicin, which promote cancer cell death through
the formation of reactive oxygen species and drugs, is hampered due to the layered
organization in spheroids [58].

In contrast to non-adherent cultures, tumor cells can also be cultured embedded in
ECM, where they spontaneously form 3D structures of organotypic nature, which can be
called spheroids if they are round or tumoroids if they have an invasive appearance. Here,
single cells that are embedded into ECM grow into multicellular structures of organotypic
nature. Each of the functional structures is of clonal nature but often has characteristic
phenotypes that correspond to different tumor stages. Normal epithelial cells or non-
aggressive cancer cells can form well-differentiated, polarized, round spheroids with
functional basement membranes. In contrast, tumoroids formed by aggressive cells mainly
result in undifferentiated clusters of cells or massive invasive structures. In epithelial
cancers like breast and prostate, invasion through the ECM is typically of the collective
type, and typically invasion is less frequently observed [18,59]. Tumor cells can also be
embedded together with stromal cells and be co-cultured in the ECM. Incorporation of
stromal cells such as CAFs will promote genuine, functional interactions between the
different cell types, which can be observed in vivo [60]. 3D organotypic cell cultures can
therefore act as a bridge between traditional 2D cell culture and costly animal models.

In comparison to spheroids, organoids are more advanced 3D in vitro multicellular
structures that mimic the corresponding architecture of in vivo organs. The term organoid
is mostly used to describe structures obtained in 3D culture derived from stem cells that
are isolated from primary patient samples. The complexity of an organoid is regulated
by the developmental potential of the starting stem cells [61]. The organoids can, like the
spheroids, be cultured in non-adherent conditions or embedded in ECM. Organoids are
mostly used for translational epithelial research, patient-specific treatment planning, and
disease modeling due to their close resemblance to the native tissue composition. However,
the 3D organoid culture is advantageous over 3D spheroids due to enhanced physiological
and clinical functions. The 3D organoid models of various tumor types have provided
concrete evidence to validate the use of these models [62–66]. The patient-derived tumor
organoids are known to accurately resemble the molecular, genetic, morphological, func-
tional, and architectural pathophysiological characteristics of cancer. Thus, in the future,
with continuous development, they can provide substantial information in cancer research.

3.2. Organ on Chip Models

These are the more advanced versions of in vitro models in which chips of optically
transparent materials such as plastic, glass, or PDMS elastomers are designed to have
hollow microchannels for perfusion. The cells of choice are cultured in the micro-channels,
and the cellular viability is maintained via perfusion with the culture medium through the
endothelial cell-lined channels, which are supposed to mimic the structural and functional
responses of the tissues and organs under in vitro environment [67]. To mimic the physical
microenvironment of living organs, such as breathing motions in the lungs, mechanical
forces can also be applied. The concept of a tumor on a chip has provided a novel strategy
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to design a controlled TME model for studying tumor growth, metastasis, and anti-cancer
drug responses [67]. In a study to mimic the origin and progression of tumor nodules from
normal breast epithelial tissue, a mammary duct model was developed [68]. The tumor on
a chip model has also been tested to study nanoparticle transport in cancer cells [69].

3.3. Ex Vivo Tissue Slices

Ex vivo tissue slice models are based upon the concept of directly taking living tissues
from a living organism and performing the experiment with minimalistic alterations in the
organism’s natural conditions. In cancer research, the respective tumor tissues are sliced
into thin sections and mounted onto porous membranes, and incubated under controlled
conditions. The tumor tissue slices are considered to maintain the 3D structure with extra
and intercellular interactions and retain metabolic capacity. In the first human tumor
histoculture studies, collagen was used as a support matrix when growing tumors. The
results showed that directly obtained tissue slices from surgery can grow at a high rate
in vitro for a longer time maintaining many in vivo characteristics such as 3D growth,
retention of differentiated function [70]. The ex vivo tissue slices can be cultured via
submersion, grid, or sponge techniques. In the submersion technique, the tissue slices
are completely submerged in culture media. While in the grid method, the tissue slice
is kept in contact with the media through a matrix, supported by a metal or plastic grid.
The sponge technique utilizes gelatin or collagen as a sponge to culture the tissue slices
in culture media [71]. The gelatin sponge method has provided relevant information in
the case of breast and prostate tumors [72,73]. These models are typically used in cancer
drug discovery to study the tumor response to newly developed anti-cancer moieties [74].
Although these models have shown potential to assess the tumor intrinsic resistance
or sensitivity to different anti-cancer agents, with time, there is a loss of integrity, thus
prohibiting the use of these models to study drug resistance or metastasis mechanisms.

3.4. Applications of 3D Cultures in Drug Development

There is increasing evidence that 3D cell culture models can more accurately predict
therapeutic efficacy in comparison to standard 2D cell cultures [75,76]. For example, certain
cancer cell types cultured in 2D may be more sensitive to the toxic effects of drugs than
when cultured in 3D, where they form larger structures [77]. For some cell types, it has
been observed that a hypoxic TME, which can be generated in 3D spheroids, also can lead
to a decrease in drug sensitivity [6]. A practical example study is breast cancer MCF7
cells cultured in 3D, which demonstrated a significantly stronger resistance to tamoxifen
compared to 2D cultures of the same cells [78]. Another example provided evidence for
strong changes in proliferation and metabolic capacity of colon cancer spheroids in 3D
compared to 2D. These 3D models displayed increased anti-tumor responses to AKT-mTOR
or MAPK-pathway inhibition compared to those in 2D models [79]. These and many more
studies have shown increased biological relevance of 3D cultures over 2D cultures in terms
of drug responsiveness at dosages that mimic the in vivo responses. Additionally, 3D cell
culture enables co-cultures of cancer cells and stromal cells in tissue-like in vitro models to
mimic, e.g., fibroblast-tumor crosstalk or immune responses to cancer [60,80]. Currently,
the pharmaceutical drug development process relies heavily on the use of animal models
for preclinical drug sensitivity tests. However, recent comparisons of drug toxicity between
animals and humans have challenged the presumption that animal models most reliably
predict the sensitivity of novel drug treatments [81]. Additionally, 3D cell models could also
be used to bridge the gap between simplified 2D cell cultures in vivo studies in animals.
The incorporation of human cells and tissues in 3D platforms used in drug development
has the potential to significantly improve the predictive value of drug sensitivity testing.

4. 3D Bioprinting Technologies and Associated Challenges

Three-dimensional bioprinting is a technology in which 3D structures are fabricated
by layer-by-layer precise deposition of biological materials, living cells, and biochemicals.
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In cancer research, 3D bioprinting technology has provided hope and motivation to design
models to recapitulate the in vivo TME to study cancer genesis, mechanisms, and to
facilitate drug development screening by conveniently combining patient-derived cells
and materials [82]. Ideal material for 3D bioprinting must meet the most important
criteria, such as easy handling and deposition by the bioprinter, biocompatibility, structural
and mechanical stability, tissue-specific material biomimicry, and minimalistic nontoxic
byproduct generation. Herein, we discuss the most studied 3D bioprinting technologies
and associated challenges.

4.1. Bioprinting: Types of 3D Printing Technologies

In 3D bioprinting, the most important factors to be considered are biological mate-
rials used for printing, cell viability, and surface resolution. The current 3D bioprinting
technologies are inkjet-based [83], microextrusion [84], stereolithography (SL)-based [85],
and laser-assisted printing [86] (Figure 3). The inkjet-based 3D bioprinters were originally
modified versions of 2D ink-based printers in which the ink is replaced by biological
material. It works on the principle of generating bioink droplets at the printhead with
the energy provided either by a heater or a piezoelectric actuator. The major common
limitation of inkjet bioprinting is that the biological sample has to be in a liquid state to
enable droplet formation followed by self-solidification to form organized 3D structures.
Various groups have tried to address the limitation by utilizing cross-linking strategies
such as chemical or UV light exposure after droplet formation. However, the cross-linking
process may slow down the overall bioprinting process, affect the natural composition
of extracellular material, and could also be toxic to the cells [87,88]. Compared to other
technologies, the inkjet process also offers advantages such as high speed, high resolution,
simplicity of operation, low cost, and compatibility with numerous biological samples.
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In microextrusion 3D bioprinting, the robotically controlled printers extrude a con-
tinuous stream of bioink through a nozzle utilizing mechanical or pneumatic forces, thus,
resulting in layer-by-layer deposition onto a substrate by a microextrusion head [89,90].
This technique is often described as direct ink writing (DIW), which may be equipped with
UV-led sources to solidify the printed scaffold substrate in situ [91]. The substrate can be a
culture dish (solid), growth medium (liquid), or material derived from the gel. The final
bioprinted structure characteristics are directly dependent upon various parameters such
as nozzle diameter, extrusion pressure, speed, temperature, UV-led curing, and many more.
The rheological properties such as viscosity, shear thinning of the polymer or hydrogel
employed play a vital role in designing the table 3D construct. It has been shown that
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the materials showing shear thinning behavior are preferred in microextrusion applica-
tions. During biofabrication, the high shear rate at the nozzle tip facilitates the material
flow, and upon deposition, the viscosity of the material decreases automatically with a
decreased shear rate. The technique has been utilized to fabricate various tissue and tumor
models [92–94].

SL-based printing mainly includes projection-based digital light processing (DLP) and
laser-based stereolithography apparatus (SLA), due to its high printing precision, excellent
surface quality, and defect-free printing process has received widespread attention [95,96].
SL-based 3D printing applies light exposure (usually UV light) to convert photosensitive
materials into cured solids in a layer-by-layer fashion [95,96]. The photosensitive material
can be customized and formulated to have a single component or multiple components,
such as biological macromolecules [96], multifunctional nanocomposites [97], and even
living cells [85], which can simultaneously integrate the scaffolds’ bioactivity and function
for various biomedical applications. SL printing technology offers a universal 3D printing
platform for tissue engineering with high precision.

Laser-assisted bioprinting (LAB) is another promising 3D bioprinting technology
that has displayed successful compatibility with biological molecules such as DNA, as
well as cells [98,99]. It has shown the potential to print mammalian cells with a minor
negative impact on cellular viability and functions [100]. The technology uses focused laser
pulses on the absorbing layer of the ribbon to generate a high-pressure bubble that propels
cell-containing materials toward the collector substrate. The LAB resolution performance
is affected by the following factors: surface tension, wettability of the substrate, thickness,
and viscosity of the biological material layer [101]. Until now, LAB has been explored in
the area of mostly tissue engineering, but there are hopes of utilizing the technology to also
explore the potential to design tumor models in the future.

4.2. Challenges Associated with 3D Bioprinting Technology

Technological advancements are always accompanied by associated challenges, so
as in 3D bioprinting. Since 3D bioprinting involves interdisciplinary aspects of science,
from technology to biomaterials, the associated challenges also encompass these areas. The
technical issues comprise the need for high resolution, increased speed, and acceptable
compatibility with biomaterials. The ultimate aim of 3D bioprinting is to design structures
recapitulating specific human tissues or organ structures. The complexity of biological
responses and gradients of ECM in tissues makes it even more challenging to construct
3D-bioprinted tissue-mimicking structures. In the current scenario, the choice of materials
used for bioprinting is based upon their compatibility with the cell function and growth, or
better extrusion performance, or better-cross-linking properties to provide a stable structure
after bioprinting. The optimal material should also meet the requirements of TME [102,103].
Some of the materials used are collagen, hyaluronic acid, alginate, photocurable acrylates,
and many more. For instance, a new group of plant-derived biomaterials, alginate and
wood nanocellulose, are found to be promising for scaffold construction [91,104], even
though in vivo biodegradability remains a concern. The range of compatible materials,
deposition methods, and cells can be extended in the future with better understanding and
advancement in the preexisting 3D bioprinting technologies.

5. Biomaterials for Organotypic 3D Cancer Models

The complexity and heterogeneity of tumors present the biggest challenge in modeling
the tumor and tumor microenvironment. Biomaterials can be used to create defined macro-
and microenvironments, which have the potential to manipulate cells and tissues in vitro
and in vivo. In the early 1980s, the concept to utilize biomaterials to study tumor biology
was attempted to know how and whether the signals from the extracellular material
regulate cellular behavior. The biomaterials based upon origin can be broadly classified
into natural, synthetic, and hybrid materials (Figure 3). The natural biomaterials can
be further classified into animal and not animal-based. The most used ECM-derived



Int. J. Mol. Sci. 2021, 22, 6225 9 of 27

biomaterials in cancer research are collagen, laminin, hyaluronic acid, and reconstituted
basement membrane or Matrigel®. These biomaterials have promising characteristics such
as cytocompatibility, the ability to be remodeled by cells along with intrinsic cell adhesion
properties. Still, there are associated challenges to study the influence of ECM on tumor
cells due to uncontrolled degradation of natural biomaterials, batch to batch variability, and
complex molecular composition [105–107]. Synthetic biomaterials can, therefore, provide
more precise control over biochemical and mechanical properties when modeling the ECM
of tumors. However, as the synthetic biomaterials lack natural cell adhesion sites, they
are not remodeled by cells [108]. In this section, we have discussed the most studied
biomaterials in epithelial cancer research and current progress in the area.

5.1. Animal Based Biomaterials
5.1.1. Matrigel

The first successful biomaterial used to study tumor biology was derived from
Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, also known by the tradename Ma-
trigel [109]. Matrigel is mainly composed of assorted ECM proteins such as laminin, type IV
collagen, heparin sulfate proteoglycans, and entactin, along with growth factors. It is mostly
used to support the formation of epithelial structures by partly mimicking the in vivo cel-
lular microenvironment thus, recreating in vitro biochemical and architecture, such as the
basement membrane. It has been very widely used for studies of both in vitro and in vivo
tumor growth and morphologies of various cancer cell lines and tumor types [110,111]. It
has also been used to study 3D co-cultures of tumor cells grown together with stromal cells,
e.g., fibroblasts, natural killer cells and T lymphocytes [60,66,112], investigation of cancer
cell migration and invasion [113], morphological changes [18,59,114], and differentiation
processes [115].

5.1.2. Collagen

Collagen I is the most abundant ECM protein in tumor stroma. Its major role is
to provide structural integrity and mechanical support to the tissues. The motifs in the
collagen fibers that allow cells to adhere and proliferate are composed of arginine-glycine-
aspartic acid (RGD) amino acid sequences. Physically cross-linked 3D collagen hydrogels
have been used to encapsulate prostate, breast, and lung cancer cells. The metastatic
MDA-MB-231 breast cancer cells displayed tissue-thickness dependent hypoxia and central
necrosis in collagen hydrogels as compared to standard 2D-cultured cells [116,117]. While
non-metastatic MCF-7 breast cancer cells showed increased cancer stem cell signatures and
epithelial-mesenchymal transition (EMT) markers when cultured in 3D collagen hydrogels,
which indicates tumor heterogeneity and malignant progression [118]. Collagen hydrogels
designed by enzymatic cross-linking using transglutaminase have also been studied to
culture prostate, breast, and bone cancer cells [119]. In a study, the cancer cell migration
was investigated utilizing the fibrillar nature of collagen hydrogels and the possibility of
tuning various properties such as cross-linking density, pore size, elastic modulus, and fiber
alignment. The increased stromal collagen density is generally an indication of malignant
invasion owing to higher tissue stiffness. Studies performed with in vivo mouse models,
in vitro mammary epithelial organoids, and self-aggregated tumor spheroids demonstrated
that enhanced stromal collagen content and fibrillar architecture promote tumor formation
and metastasis [120,121]. We can clearly conclude that the physiochemical properties of
the collagen in hydrogels regulate the fate of the cancer cells.

5.1.3. Hyaluronic Acid (HA)

Hyaluronic acid is a high molecular weight biomaterial present in various tissue ECM.
It is mainly composed of repeating units of D-glucuronic acid and D-N-acetylglucosamine.
Hyaluronic acid can be chemically modified with methacrylate groups or thiol groups,
which can be transformed into robust hydrogels for tumor modeling and bioprinting of
cellularized structures [122,123]. The molecular weight of the HA plays a crucial role in
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cancer progression and malignancy. It has been shown that prostate cancer cells cultured
within HA hydrogels (molecular weight: 0.5−1.3 MDa) resulted in cluster-like formation
with invadopodia suggesting 3D invasiveness through the activity of motility-associated
pathways and expression of hyaluronidases enzyme [124]. The enzyme hyaluronan syn-
thases (HAS1, HAS2, and HAS3) synthesize HA (low and high molecular weight) and thus
controls the HA molecular weight, while hyaluronidase enzymes (HYAL1, HYAL2) are
responsible for the degradation of high molecular weight HA into low molecular weight. It
has been shown that the increased levels of low molecular weight HA along with increased
expression of HAS2, HYAL1, and HYAL2 were responsible for breast cancer cell invasion
and metastasis [125]. Chemically modified HA hydrogel with reactive thiol and acrylate
groups was investigated with the LNCaP prostate cancer cells, which showed enhanced
pro-angiogenic activity as compared to 2D cultured cells [126]. Thus, we can conclude
that the macromolecular and biochemical characteristics of HA have a direct impact on
designed hydrogels, which correspondingly regulate the cellular response and cell-matrix
interactions in 3D cancer studies.

5.1.4. Fibronectin

Fibronectin (FN) is a glycoprotein having three repeating units named type I, II, and
III containing various binding sites for extracellular material components such as colla-
gen/gelatin, fibronectin, heparin, growth factors, and others [127]. It has been studied that
growth factor-fibronectin synergistic interactions have the potential to alter cell behavior,
such as improved cell migration, proliferation, and differentiation. It has been shown that
the fibronectin matrix deposited in TMEs promotes tumor progression but is contradic-
torily related to a better prognosis [128]. In the case of normal adult breast tissues, the
ECM is mainly devoid of FN, whereas high FN levels have been detected in the stroma of
breast tumors.

Since the role of FN in cancer is established, various FN-targeting approaches have
been proposed to study their promising role in cancer imaging and therapy [129]. It has
been proposed that the limitations of synthetic hydrogel matrices in cancer research, such as
poor cell attachment, absence of growth factors in the solid phase, and lack of cell-mediated
degradability can be addressed by designing FN-based hydrogels. These hydrogels can
also serve as an alternative to natural extracellular material-derived matrices. In a recent
study, full-length fibronectin-polyethylene glycol-based hydrogels of controlled stiffness
were designed to enable the solid-phase presentation of growth factors in a physiological
manner showing the potential to replace Matrigel [130].

5.2. Non-Animal Based Biomaterials
5.2.1. Alginate

Alginate is the most abundant marine biopolymer with a polyanionic character and
is extracted from various species of brown seaweed and bacteria, Pseudomonas, and
Azotobacter [131]. It occurs in the form of calcium, sodium, and magnesium salts of alginic
acid in the seaweed. Chemically it is composed of (1,4)-linked b-D-mannuronic (M block)
and a-L-guluronic (G block) acids [132]. The ratio between the G and M blocks depends
on the seaweed source from which it is extracted and the culture or growth conditions.
The high content of guluronic blocks (G block) has been reported in alginates derived
from seaweed stems, whereas alginates derived from seaweed leaves have shown higher
contents of mannuronic blocks (M block). Alginates with higher contents of GG blocks
are shown to form stronger gels than those with a high content of MM blocks due to
their greater ability to bind calcium [133]. The G blocks are known to provide rigidity
to the polymeric structure, and a higher concentration of G blocks in alginates results in
the formation of stronger gels [134,135]. Due to the polyanionic nature, alginate forms
complexes with positively charged species such as metal cations. It is believed that cations
prefer to bind the G blocks of the chains, but recent studies also suggest that the M block
also plays a crucial role in cross-linking the polymer chains [136]. The main difference at
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the molecular level between algal and bacterial alginates is the presence of O-acetyl groups
at positions C2 and/or C3 in the bacterial alginates [137]. Alginate has been explored for
cell encapsulation in many studies due to thermally stable gelation under cold conditions
and ion exchange reactions [138]. Alginate hydrogels have been explored for the 3D
encapsulation of breast cancer cells [139], human leukemia cells [140], and enrichment of
cancer stem cells from human hepatocarcinoma cells [141,142]. Recently a hybrid hydrogel
of Alginate and Matrigel was investigated with breast cancer cell lines MDA-MB-231 to
design 3D material to be successfully used as a substrate for breast cancer cell culture [143].

5.2.2. Nanocellulose

Cellulose is the most abundant biopolymer on earth and acts as the main structural
support in plants. The para-crystalline microfibrils and nanofibrils have a major role to play
in providing structural strength. Nanocellulose can be categorized into (1) bacterial nanocel-
lulose (BNC), (2) cellulose nanofibrils (CNFs), and (3) cellulose nanocrystals (CNCs). BNCs
are synthesized via a bottom-up approach where glucose is transformed into cellulose via
an enzymatic process [144], while CNFs and CNCs are prepared via top-down approaches
such as mechanical, chemical, or enzymatic treatment [145]. The major difference between
CNFs and CNCs is that CNFs are composed of both crystalline and non-crystalline re-
gions in the fibers, whereas CNCs have only crystalline regions. The presence of only
crystalline regions in CNCs is attributed to the process of manufacturing, which involves
hydrolysis. During hydrolysis, the non-crystalline regions are the first to be attacked by
acid leaving behind the crystalline regions. Owning to the intrinsic characteristics, such as
biocompatibility, non-cytotoxicity, tunable 3D architecture, and porous microstructures,
and desired mechanical properties, nanocellulose is currently under intensive study in
tissue engineering applications. The good biocompatibility of wood-derived nanocellulose
has been verified with respect to crucial cellular processes involved in the growth and
proliferation of fibroblasts [146]. Lou et al. successfully cultured human pluripotent stem
cells in 3D nanocellulose hydrogels [147]. Nanocellulose hydrogel was formulated into
3D printing inks for fabricating 3D platforms with different cross-linking strategies for
cell culture studies towards various medical application possibilities [148–150]. Recently
a nanofibrillated cellulose-based hydrogel available by the trade name GrowDex® [147],
with a successful commercialization breakthrough has been shown to mimic the ECM and
support cell growth and differentiation with various cell lines. There are various other
natural materials, such as chitosan [151] and agarose [152], which have shown the potential
of mimicking ECM and supporting cell growth and differentiation.

5.3. Synthetic Polymers
5.3.1. Poly (Lactic Acid)

Poly (lactic acid; PLA) is a product of the polyesterification reaction of lactic acid [153–156].
PLA has characteristics of non-toxicity, thermal stability, biocompatibility, and biodegrad-
ability. PLA is a thermoplastic polymer that is derived from renewable resources such as
corn starch and sugar cane. There are many various types of PLA, including poly (L-lactic
acid; PLLA), poly (D-lactic acid; PDLA), and poly (D, L-lactic acid; PDLLA), which result
in a PLA group with a broad range of physiochemical properties [154,156]. PLA has been
approved by the FDA as a hydrophobic aliphatic polyester in different biomedical and
clinical applications as it degrades to the physiological product lactic acid [154,157,158].
The PLA could successfully be printed in a 3D scaffold, which provides sufficient me-
chanical integrity, biodegradability, and the metabolic activity and cell viability of bone
mesenchymal stem cells (BMSCs) cultured on the scaffold were not affected [154]. The
results of the detection of osteosarcoma cells showed that PLA scaffolds are non-cytotoxic
and could promote cell growth, cell viability, and osteogenic gene expression [154].
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5.3.2. Poly-ε-Capro-Lactone

Poly-ε-capro-lactone (PCL) was widely used in biomedical fields due to its easily
manipulable mechanical properties, biocompatibility, biodegradability, and non-toxicity,
and was approved by the FDA as an implantable polymer material [154,159]. PCL is a
saturated aliphatic polyester composed of hexanoate repeated units. It has a semicrystalline
structure and a low glass transition temperature (−60 ◦C), giving it flexibility and softness
at body temperature. The low melting point (about 60 ◦C) of PCL is advantageous for its
use in extrusion-based 3D printing [155]. Due to their ability to be completely degraded
by fungal and bacterial enzymes, PCL-based materials are of particular interest in the
application of biodegradable materials. In addition, PCL-based formulations, whether as
blend or copolymer with synthetic or other biopolymers, have attracted great interest in the
applications in controlling drug delivery systems, cell cultures, and regenerative medicine
implants as tissue engineering materials due to their remarkable permeability, non-toxicity,
and excellent biocompatibility [160].

5.3.3. Polyglycolic Acid

Polyglycolic acid (PGA) is a semicrystalline polymer with a high tensile modulus,
which is insoluble in water and most organic solvents, but can be hydrolyzed in the pres-
ence of water, degraded in vivo to oligomers or glycolic acids, and eventually participates
in the tricarboxylic acid cycle or is excreted in the urine [154,155]. PGA allows diffusion
of nutrients upon implantation and subsequent neovascularization due to its high poros-
ity [161]. In addition, PGA can be fabricated into different shapes and easily handled.
PGA was the first synthetic polymer approved by the FDA for use in the production of
absorbable sutures [162]. However, due to the rapid absorption of PGA, the degradation
products such as glycolic acid and other acidic products can cause a strong inflammatory
response limiting its application in biomedical applications. In order to adjust the degrada-
tion rate and mechanical property, PLA and PGA are often synthesized as the copolymer
poly lactic-co-glycolic acid (PLGA). PLGA is a linear copolymer, which has great potential
in biomedical applications due to its safety, good mechanical properties, good cell adhesion,
and controllable degradation rate. PLGA has also been approved by the FDA for clinical
use because it alleviates the shortcomings of the PLA and PGA. By changing the ratio of
the two monomers of lactic acid and glycolic acid, the degradation rate of PLGA products
can be tailored. Therefore, PLGA is preferred over PGA for use in a variety of biomedical
applications, such as sutures and cancer drug delivery systems [156].

5.3.4. Polyethylene Glycol

Polyethylene glycol (PEG) is a synthetic polymer widely used in the formation of
multicellular tumor spheroids (MCTS) [163]. PEG is a versatile polymer that is resistant to
protein adsorption, biocompatible, degradable, and hydrophilic, and PEG encourages cell-
to-cell adhesion [164]. PEG has been largely used as a 3D support for tissue engineering,
also because of its adjustable mechanical properties that allow easy regulation of the scaf-
fold structure [164,165]. Covalently cross-linked PEG-based scaffolds can be synthesized
by chain growth, step-growth, or mixing, and the cross-linking mode affects the number
of structural defects and subsequent mechanical properties [166]. Compared with many
natural biomaterials, PEG-based hydrogels have the advantages of easy adjustment, good
stability, low cost, and good repeatability. PEG hydrogels are commonly used to form
hepatocellular carcinoma MCTS because hepatogenic cells must be cultured in MCTS to
maintain the liver-specific function, and PEG-based hydrogels maintain a high level of this
function [165]. PEG-based hydrogels have also been used to form several other types of
MCTS, including breast cancer and lung adenocarcinoma [157,162,163].

There are various other synthetic polymers for 3D culture such as poly (vinyl alcohol)
(PVA) [162], poly hydroxyalkanoates (PHA), and their copolymers [167], which can be
used in regenerative medicine for stem cell progenitor cell differentiation experiments.
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5.4. Composites

The use of various materials in the biomedical field has recently experienced rapid
growth. Single-class materials may not be able to satisfy all of the requirements for a
given implant application. Therefore, many researchers combine two or more classes of
composites with multiscale structures, and the desired properties for specific applications
are thereby achievable, such as enhanced biocompatibility and biomechanical proper-
ties [153,168,169]. Some examples are given to reveal the applicability of biocomposites.

A new electrohydrodynamic jet 3D printing technology was developed by combining
the effect of electrohydraulic force and thermal convection and verified the feasibility
of preparing the controllable fiber composite scaffold. The method introduced an effec-
tive thermal field under the needle and improved the viscosity of the ink, the control of
the injection morphology, and the solidification of the printing structure. Through theo-
retical analysis and experimental characterization, the formation mechanism of thermal
convection on jet morphology and print structure characteristics was studied. Under the
optimized conditions, a stable and finer jet was formed. Using this jet, various 3D structures
can be printed directly under the condition of a large aspect ratio of ~30. Furthermore, the
PCL/PVP composite scaffolds with the controllable filament diameter (~10 µm), which
is close to living cells, were printed. Cell culture experiments showed that the printed
scaffold had good cell biocompatibility and promoted cell proliferation in vitro. The de-
velopment of electrohydraulic jet 3D printing technology provides a new way to directly
print synthetic biopolymers into tissue engineering structures with a flexible scale [170].

A polylactic acid-hydroxyapatite (PLA-HAp) composite that can be processed by a
3D printer was demonstrated and developed. This material has proved to be a viable
option for the development of implants for therapeutic bone regeneration. Biocompatibility
in vitro was confirmed by cell viability studies, using osteoblasts MG63 cell lines, and the
presence of polymer matrix HAp in enhanced cell attachment and osteogenic ability. This
study lays the foundation for further research into the possibility and safety of 3D printing,
polymer-based, absorbable composites for bone regeneration [153].

Wang et al. constructed a novel drug delivery system with targeted and controlled
release capabilities [169]. The environmentally friendly polymer (CMC-G-PLA) obtained
by grafting polylactic acid onto carboxymethyl cellulose biopolymer is amphiphilic and
easy to form micelles, which can be used as a hydrophobic drug carrier. To achieve the
effect of targeted therapy, anti-EpCAM antibodies were anchored to the polymer chain of
carboxymethyl cellulose through amidation reactions. Adriamycin and HepG2 cells were
used as model anti-tumor drugs and tumor-targeting cells, respectively. The core and shell
structure, critical micelle concentration, drug loading rate, and encapsulation rate were
studied by transmission electron microscopy, pyrene fluorescence probe, and UV standard
curve. In addition, pH-induced release function test, cytotoxicity test, and in vivo tumor
treatment test were carried out in mice. The results showed that the prepared antibody drug
carrier could effectively deliver hydrophobic drugs to specific tumor sites and improve
the therapeutic effect of the tumor. This versatile design provided new solutions for future
cancer treatment [169].

Bishi et al. studied the liver trans-differentiation potential of human mesenchymal
stem cells (MSC) on a biocomposite poly(l-lactic acid)-co-poly(ε-capro-lactone; PLACL) and
prepared PLACL/collagen nanofibrous scaffolds [168]. PLACL is a highly hydrophobic
polymer that is preferred for a variety of tissue engineering applications when mixed
with collagen. Their results showed that PLACL/collagenous nanofibrous scaffolds
are potentially biogenic and enhance the transformation and differentiation of human
MSCs into functional hepatic globules under the induction of hepatogenic growth fac-
tors/cytokines. In another study, Shim et al. obtained PCL/PLGA/collagen scaffolds by a
solid freeform fabrication method [171]. It was found that the activity and albumin secre-
tion capacity of rat primary hepatocytes were mostly retained for more than 10 days in the
PCL/PLGA/collagen scaffold but not in the PCL/PLGA scaffold. The results showed that
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the addition of collagen improved the cellular compatibility of the scaffold and promoted
the proliferation and differentiation of hepatocytes [168].

6. A Niche for Nanoparticles in Epithelial Cancer Research

As exemplified above, by combining two or more types of multi-scale structural
materials, e.g., natural ECMs and synthetic polymers, the resulting composite materi-
als can achieve ideal properties for specific applications, such as biocompatibility and
biomechanical properties. Among the composite scaffold designs, attention has also been
drawn to material groups of polymers and nanoparticles, taking advantage of each in-
dividual material to promote their medical applications. During the past two decades,
nanotechnology has been rapidly advancing, and thus various types of nanoparticles such
as carbon, polymeric, lipid-based, ceramic nanoparticles, and metal-based materials have
further opened up the untapped potential in composite design [172]. In general, improved
mechanical properties and bioactivity of the final binary systems have been claimed. For
example, mesoporous bioactive glasses (MBGs) as carriers for the delivery of biomolecules
in the physiological processes have been incorporated into biopolymer-based hydrogels
to provide multifunctional biocomposites, finding promising potential in constructing
tissue engineering scaffolds [173,174]. Nanotechnology utilizes bottom-up or top-down
approaches to engineer nanoparticles (NPs) from single groups of atoms, molecules, or
molecular aggregates, or reducing large materials, respectively, combining interdisciplinary
fields of science such as chemistry, physics, biology, and engineering. In anti-cancer ther-
apeutics, targeted nanotechnology-based drug delivery systems are advantageous over
conventional treatments and allow for administration of both hydrophilic and hydrophobic
substances, as well as enable improved biodistribution of anti-cancer drugs via various
administration routes with enhanced therapeutic efficacy and reduced side effects [175].

A few examples of US FDA and European Medicines Agency (EMA) approved
nanotechnology-based drug-delivery systems are albumin-bound paclitaxel-loaded NPs
from Abraxis Bioscience, PEGylated liposomal daunorubicin from Diatos, PEGylated lipo-
somal doxorubicin from Ortho Biotech and Schering-Plough, and liposomal doxorubicin
from Elan Pharmaceuticals [21,176]. The first two COVID-19 vaccines to gain emergency-
use approval by Moderna and Pfizer/BioNTech were lipid NPs carrying mRNA [177] and
are regarded as a huge advance by the nanomedicine field in gaining widened public
acceptance of nanomedicine-based technologies [177].

After the first approval of Doxil® in 1995, cancer therapeutics has remained the main
“beneficiary” of nanomedicines, and thus, the extensive research in this field have yielded
different types of nanoparticle systems useful for cancer therapy and diagnostics such as li-
posomes, polymeric, micellar, protein, viral, metallic, and lipid NPs [176,178,179] (Figure 4).
Similarly, various types of mostly inorganic nanoparticles, such as (super)paramagnetic
iron oxides and gold nanoparticles, are being used as magnetic resonance imaging contrast
agents for intraoperative imaging in cancer diagnostics to visualize tumors. As for the
biomaterials discussed above, composite or hybrid nanomaterials can be constructed that
render them multifunctional, thus being able to simultaneously provide imaging activity
and targeted drug delivery (so-called “theranostic agents”) [22,180–183]. Although the ad-
vancement of nanotechnological approaches for anti-cancer therapeutics have come a long
way during the past two decades and today provide a new ray of hope for personalized
medicines, grand challenges remain related to biocompatibility, tumor-targeting potential,
chronic toxicity, biodegradability, cost-effectiveness, and so forth, all of which need to be
rationally addressed in preclinical and clinical research [184,185].



Int. J. Mol. Sci. 2021, 22, 6225 15 of 27

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 15 of 27 
 

 

structed that render them multifunctional, thus being able to simultaneously provide im-

aging activity and targeted drug delivery (so-called “theranostic agents”) [22,180–183]. 

Although the advancement of nanotechnological approaches for anti-cancer therapeutics 

have come a long way during the past two decades and today provide a new ray of hope 

for personalized medicines, grand challenges remain related to biocompatibility, tumor-

targeting potential, chronic toxicity, biodegradability, cost-effectiveness, and so forth, all 

of which need to be rationally addressed in preclinical and clinical research [184,185]. 

 

Figure 4. Overview of different types of nanoparticles used in drug delivery and imaging for epithelial cancer research. 

6.1. NPs Evaluated on 2D Cell Cultures 

Nanomedicine refers to a wide range of applications of nanotechnology in medicine, 

including drug delivery, therapeutics, imaging, diagnostics, and the construction of active 

implants [175]. To date, the 2D cell culture system still is routinely used as an initial tool 

in vitro for nanomedicine evaluation in cancer biology research for its simple and low-

cost maintenance. The 2D cell culture systems always require cells with adherent ability 

to the plastic of culture flask or Petri dishes, on which single-cell layers could be formed 

for drug development testing and cell biology studies [186]. Although 2D cell culture 

models could support the drug safety and efficacy assessment, it is not biologically repre-

sentative of the in vivo TME and tissue structure [186]. In conventional 2D models, many 

complex biological responses, such as receptor expression, cell signaling, cell morphogen-

esis, polarization, differentiation, and invasion to either differ significantly or lack com-

pletely [187]. For example, adherent cells would express enough surface receptors to rec-

ognize cell attachment motifs that are adsorbed onto the culture surface, while in tissues, 

multiple functions such as physical, mechanical, biochemical properties of cells are regu-

lated by discrete interactions with ECM [188]. Standard 2D culture systems also lack the 

interaction between different cell types, therefore, responses to nanomedicines could be 

significantly altered in 2D cell cultures when compared to organotypic 3D cell culture or 

tissues in vivo [187]. 

The simplest limitation in the context of nanomedicines is the effect of gravity. Unlike 

drug molecules that are dissolved in the cell media, nanomedicines are macroscopic ob-

jects (materials) that may likely be affected by gravity when suspended in media. Thus, 

when adding NPs to cell media where the 2D cell culture lays on the bottom of the dish, 

sooner or later, the NPs will sink on top of the cells. This may lead to misrepresentation 

of the extent of cellular uptake both in terms of detection method and extent of exposure 

(“where else would they go”). NPs that end up on top of cells as a result of gravitational 

Figure 4. Overview of different types of nanoparticles used in drug delivery and imaging for epithelial cancer research.

6.1. NPs Evaluated on 2D Cell Cultures

Nanomedicine refers to a wide range of applications of nanotechnology in medicine,
including drug delivery, therapeutics, imaging, diagnostics, and the construction of active
implants [175]. To date, the 2D cell culture system still is routinely used as an initial
tool in vitro for nanomedicine evaluation in cancer biology research for its simple and
low-cost maintenance. The 2D cell culture systems always require cells with adherent
ability to the plastic of culture flask or Petri dishes, on which single-cell layers could be
formed for drug development testing and cell biology studies [186]. Although 2D cell
culture models could support the drug safety and efficacy assessment, it is not biologically
representative of the in vivo TME and tissue structure [186]. In conventional 2D models,
many complex biological responses, such as receptor expression, cell signaling, cell mor-
phogenesis, polarization, differentiation, and invasion to either differ significantly or lack
completely [187]. For example, adherent cells would express enough surface receptors
to recognize cell attachment motifs that are adsorbed onto the culture surface, while in
tissues, multiple functions such as physical, mechanical, biochemical properties of cells are
regulated by discrete interactions with ECM [188]. Standard 2D culture systems also lack
the interaction between different cell types, therefore, responses to nanomedicines could
be significantly altered in 2D cell cultures when compared to organotypic 3D cell culture or
tissues in vivo [187].

The simplest limitation in the context of nanomedicines is the effect of gravity. Unlike
drug molecules that are dissolved in the cell media, nanomedicines are macroscopic objects
(materials) that may likely be affected by gravity when suspended in media. Thus, when
adding NPs to cell media where the 2D cell culture lays on the bottom of the dish, sooner or
later, the NPs will sink on top of the cells. This may lead to misrepresentation of the extent
of cellular uptake both in terms of detection method and extent of exposure (“where else
would they go”). NPs that end up on top of cells as a result of gravitational descent and
thus adhere to the cell membrane may be erroneously detected as cellularly internalized
in fluorescence-assisted cell sorting (FACS). First, NPs may adhere strongly to the cell
membrane and not easily be washed away during the washing steps used in the FACS
preparation of cells. Even if fluorescence quenching is used to eliminate the extracellular
fluorescence, the protocols developed for the quenching of molecules may not prove
effective for quenching of NPs. Fluorescence quenchers also exist for a very limited number
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of dyes (most commonly trypan blue is used for the quenching of fluorescein), while
any fluorescent dye may be used to fluorescently label NPs – unless they are inherently
fluorescent, which also most likely would render the quenching mechanism completely
different that that of molecular dyes. Fluorophores embedded inside the NP matrix may
also not be accessible for the quencher, even if one would exist. NPs sinking to the bottom
of a cell culture dish also do not correctly represent the exposure of NPs in 3D. Since one of
the foremost advantages of nanomedicines in cancer therapy is the ability to cross biological
barriers, the physiological representation of which does not exist in 2D models (except for
when the barrier is a monolayer of cells). As already outlined above, several physiological
barriers exist in tumor tissue, and thus, a successful anti-cancer nanomedicine would be
able to bypass these with deep tumor penetration and drug delivery as a result, all of which
have to be recapitulated with the aid of 3D models.

6.2. NPs Evaluated on 3D Cell Cultures

3D culture models, including both 3D non-scaffold-based cell cultures and 3D scaffold-
based cell cultures, have been proven to mimic certain parts of the microstructure, dynamic
mechanical properties, and biochemical functionalities of whole living organs, offering
an attractive application value in nanomedicine assessments [189,190]. The 3D spheroids
and organoids deposit ECM constituents, such as collagen, fibronectin, tenascin, thus
mimicking different epithelial cancer types in vitro. Currently, the techniques for pro-
ducing a large number of spheroids at a low cost allow the application of spheroids to
optimize a nanomedicine’s physicochemical properties such as size and surface charge
distribution, shape, and surface chemistry to meet the criteria of the foreseen applica-
tion [189,191]. Moreover, the 3D cultures present enormous potential in the screening of
therapeutic efficacy in the field of chemotherapy [192,193], radiotherapy [194,195], pho-
tothermal therapy [196,197], photodynamic therapy [198,199], and gene delivery [200,201],
since various available fluorescence microscopy detecting techniques, confocal laser scan-
ning microscopy, light-sheet-based fluorescence microscopy, two-photon/multiphoton
microscopy, and single (or selective) plane illumination microscopy could be used [191].
Organ-on-a-chip 3D models with microfluidics, cells/tissues/organs, stimulation, and
sensor systems present a unique platform for the screening of nanomedicines in terms of
hemo- and biocompatibility, toxicity, and uptake, accumulation, and targetability [199–201].

In general, 3D cell culture systems provide excellent preclinical screening tools when
transferring nanomedicines into clinical practice. Conversely, NPs can also constitute
excellent long-term cellular labeling agents for distinguishing and tracking different cell
types in 3D models or in vivo [202]. It is first necessary to test NPs in 3D cultures that
mimic the TME found in tissues, allowing assessment of NP penetration across multicellular
structures such as the basement membrane, and elucidating their interaction with different
stromal cell types (Figure 5). In addition, it is critical to further validate the relationships
between NP properties and their behavior in tissue-like environments, including natural
ECMs, synthetic polymers, or composite materials. Here, a screening platform would
function as a tool to select NP preparations that show the best tumor-specific delivery.
Thus, the specific functionality of NP preparations could systematically be tested using a
high-content screening platform based on 3D cell cultures.

6.3. High-Content Imaging and Nanotechnology in 3D

One advantage of high-content screening over other high-throughput screening plat-
forms is that it provides information about functional data points together with spatial
information in 3D [203]. This allows cell-based screening to progress towards more com-
plex, 3D mono- and co-culture models. In order to have a functional high-content screening
platform compatible with complex culture systems, the platform should allow simultaneous
automated imaging, segmentation, and quantification of different cell compartments. This
is particularly important when the role of tumor-stroma interactions is investigated [60].
The integration of high-resolution imaging will be especially useful for the evaluation
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and functional testing of distinct NPs. Including robotic and liquid handling equipment
can also be an effective addition to the high-content screening platform when there is a
need for higher throughput. Furthermore, the screening approach should allow a precise
efficacy association of drug action with representative tumor morphology, such as changes
in tumor cell invasion or increased epithelial differentiation. Phenotypic changes should
be easily quantified by automated image analysis and provide a simplified readout for
changes in tumor growth, morphology, and invasive properties.
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New and better-targeted therapies are needed for epithelial cancers, in particular
for the advanced and metastatic stages. It would be extremely important to develop
3D spheroid/organoid platforms for high-content drug discovery in oncology, especially
with the focus on late-stage disease [204]. The main focus should be on mimicking and
capturing dynamic processes involved in cancer progression and therapy resistance. The
platform should recapitulate not only tumor architecture but also dynamic processes and
heterogeneity, which are observed in the patient tissues, a more complete, tissue-like
composition of organoids, supported by the structurally defined ECM or scaffold. At least
one or the other of these components are often missing in 3D screening platforms, or the
readout is not informative enough for predicting drug effects in humans. However, there
are examples of successful studies that have demonstrated the practical implementation
of 3D cultures and high-content screening platforms [60,205–208], even if their adoption
into preclinical routine screening has been slow, partly due to technical problems. A major
challenge is, for example, in retaining the resolution of the cellular details and performing
simultaneous imaging and analysis of multicellular 3D structures at a larger scale.

In parallel, nanotechnology tools for drug delivery and cell labeling should be inte-
grated into a standardized and automated platform to support high-content screening
applications. With such combined solutions, it should be possible to provide novel tools for
personalized medicine and chemosensitivity testing in vitro. A spectrum of nanoparticle-
based imaging probes could be used to study the different cellular components of the
TME, to target certain cell populations over others in 3D co-culture settings, and also for
long-term labeling and monitoring of cell populations. The NPs used in the screening
platform would serve as a carrier for fluorescent dyes that can be released specifically
inside target cells [209,210], or the NPs are themselves fluorescently labeled to serve as an
imaging probe or even both simultaneously. After the NPs have been used to optimize
and characterize the 3D cultures of the screening platform, the same platform and readout
(intracellular delivery of active compounds) could be utilized to gain critical information
for designing novel nanoformulations for drug sensitivity tests. Only a few reports have so
far shown successful development and use of NPs in high-content screenings. For example,
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Cutrona and Simpson developed a confocal microscopy-based screening platform that
enabled quantitative morphological profiling of colorectal cancer spheroids. The platform
was used to demonstrate a quantitative dissection of the penetration of synthetic NPs in
3D spheroids [211]. In the future, the complex 3D culture models in combination with
quantitative imaging approaches have the potential to be adopted more often for eval-
uations of cytotoxic and phenotypic effects based on NP-mediated drug delivery. With
such in vitro 3D high-content screening strategies, better and more biologically relevant
information would be gained on how therapeutics can cross different ECM types and cell
compartments in epithelial tumor tissues.

7. Conclusions

In epithelial cancer research, the synergy between basic research and technological
advancement has provided substantial information about the cancer origin, TME, and
cellular mechanisms involved in tumor progression. There is a tremendous potential for
3D in vitro models that very closely mimic the in vivo model situation and recapitulate the
cellular mechanisms involved in tumor progression. The possibility to design cell models
by combining patient-derived cells and biomaterials utilizing 3D bioprinting technology
has provided hope and motivation when studying cancer genetics and invasion mecha-
nisms, but also facilitating the screening of anti-cancer drugs. In anti-cancer therapeutics,
the crucial role of targeted nanotechnology-based drug delivery systems has proven ad-
vantageous over conventional treatments, thus enabling the improved biodistribution of
anti-cancer drugs via various administration routes with enhanced therapeutic efficacy and
reduced side effects. However, the translation from bench to bedside has not been as rapid
as initially hoped for, partly due to a lack of suitable platforms for nanomedicine evaluation
in a relevant setting. Therefore, the greatest potential relies on using high-content imaging
combined with complex 3D culture models including ECM and the generation of a platform
that not only addresses the TME combined with physiologically relevant ECM but is also
suitable for screening and testing of NP delivered drugs on larger scale.

Nevertheless, the chosen biomaterial has to meet several categories for TME in terms
of mechanical and biochemical properties. New materials need to be developed in order
to create relevant 3D platforms. The selection of material substrates and further chemical
design approaches should keep those categories as prerequisites. One single material can-
not meet all the required properties, and thus composites with dual- and multicomponent
structures could be applied to tailor optimal systems. The advancement of bioprinting
techniques enables the extended possibility to tailor materials in a customized manner
and create biomimetic 3D environments. However, the design of biomaterials for ink
formulation is still a challenge and thus requires active dialogues between cell biologists
and material scientists.

Miniaturized and standardized high-content screening platforms for the investiga-
tion of NP behavior are still very rare. In the future, quantitative high-content imaging
approaches will most likely be utilized more for the profiling of the effect of drug-loaded
NPs and the evaluation of anti-tumorigenic effects, and better information on how thera-
peutics interact with ECM or scaffold and different cell types in tissues. The technological
development enabling such in-depth studies tandem with higher throughput capacity
has been exceptionally rapid during recent years, spurring high hopes of the likewise
rapidly developing 3D models to be utilized to their full potential in the development of
new medicines.

In summary, 3D cell models have unique advantages compared to 2D models since
they mimic the TME and recapitulate the cellular and ECM crosstalk. In addition, (targeted)
nanotechnology-based drug delivery systems have proven advantageous over conventional
anti-cancer treatments. Therefore, it is crucial that complex 3D models combined with high-
content imaging platforms also will be suitable for screening and testing of NP delivered
drugs and evaluation of their anti-tumorigenic effects.
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