

Abstract — A framework for analysing the sustainability of a
community in four dimensions – social, cultural, legal and
economical – is presented. The framework is further
differentiated by taking into account the different types of
open source software communities, particularly with regard to
their work ethics: voluntary or salary-based. In conclusion,
the framework is tentatively applied to two communities,
Debian and Eclipse.

Keywords — open source software, communities,
sustainability, hackers, work ethic, Debian, Eclipse

I. INTRODUCTION
Most of the contemporary open source software
communities are by nature hybrid, consisting of actors with
both commercial and non-commercial interests, motivations
and backgrounds. The goals of different groups of
collaborators, be they hobbyists, volunteers or paid
workers, diverge while there is also considerable
convergence with regard to the technical goals of a project
(see, e.g. [1]). It is therefore good that the old image of a
community full of voluntary hackers has ceded for a more
realistic approach, which takes into consideration the
strongly increasing corporate interest and participation. The
work ethic of the corporate world is entering open source
communities.
 Company participation and the work ethic it implies in
communities presents both dangers and opportunities for
long-term sustainability. A company needs to be able to
identify the systematic variation in motivation, values,
ideology and practices between different communities in
order to optimize its approach to each of the community
intensive projects. A wrong approach may easily prevent
the company from reaching its chosen goals and – in the
worst case – also severely harm the community itself.
Consequently, a general framework for assessing the
sustainability and conditions of success of a community of
open collaboration will be useful in generating a strategy
for interaction between companies and volunteers.

II. FOUR ASPECTS OF SUSTAINABILITY
Free and open communities such as Debian and Eclipse are
by nature hybrid, consisting of actors with divergent goals
and motivations and from both commercial or non-
commercial cultural backgrounds. Companies have
increasing interest in collaborating with these communities,
which presents both dangers and opportunities for long-

term sustainability of a community. In the following, we
analyse four aspects of community sustainability: 1) social,
2) cultural, 3) legal, and 4) economical.

A. Social sustainability
The social sustainability of a community depends on the
individual characteristics of its members, on its size and
form, and the division of labor and power in the
community.
 Surveys on free/open source software developers show a
variety of backgrounds, motivations and values. Multiple
motivations are suggested in the literature, including
hedonism (“just for fun”), software politics (free software
ideals), altruism, identification with a community, peer-
recognition, personal technological needs, reputation,
learning and working for hire [2], [3]. Different community
ideologies can be identified in different projects like
Debian, Linux, Eclipse, OpenBSD, Creative Commons and
Wikipedia.
 Although in the big picture developers seem to be a
heterogeneous group, there is more detail when looking at
particular projects. For instance, in a recent survey on
Debian and Eclipse developers [1], we identified some clear
differences between these two communities. Largest
differences were that a majority of Eclipse developers are
paid to work on free/open source software while for almost
all Debian developers it is a hobby; Eclipse developers are
on average older than in Debian, and Debian developers are
more aware and care about political issues such as
copyright and software patents.
 The variety of personal characteristics can be either a
benefit or risk for sustainability. Eric Raymond's rule
“Given enough eyeballs, all bugs are shallow” [4] assumes
a large, diverse tester and developer base. In the ideal case,
this group includes a whole range of users from less skilled
to those with very specific skills, and a wide variety of
different use cases, environments and equipment. Variation
in aspects like socio-economical status, level of education
and geographical location may increase the effectiveness of
the group.
 Ye & Kishida [5] describe free/open source community
participant roles using an onion model. According to the
model, at the the heart of the community is often a single
person, a project leader, with several supporting core
developers around him or her. In middle layers of the onion
are active developers, peripheral developers and bug fixers,
and on the outer layers users who participate in the

Company Participation in Open Source Software
Communities: Measuring Sustainability

Niklas Vainio1; Ville Oksanen2; Tere Vadén3
1 Researcher, Hypermedia Lab, University of Tampere, niklas.vainio@uta.fi

2 Researcher, SoberIT, Helsinki University of Technology, ville.oksanen@hut.fi
3 Assistant Professor, Hypermedia Lab, University of Tampere, tere.vaden@uta.fi

community only by reporting bugs or following and trying
to understand the software.
 The outer layer of the onion is the largest group and the
group size gets smaller as we approach the center. A well-
known rule of thumb in sociological research on voluntary
organisations is the so-called 20/80-rule (derived from the
so-called Pareto Principle), according to which 20 % of the
volunteers do 80 % of the work. It seems that software
communities roughly follow this rule, with the number of
active members drastically reducing with each step towards
the core [6]-[9]. Naturally, in a complex or broad project
(such as the GNOME), the developer group is divided into
several subgroups roughly corresponding with different
subtasks.
 Krishnamurthy [10] found that 71 percent of hundred
most active projects on Sourceforge had five or less
developers and 51 percent of the projects had only one
project administrator. Projects like these are probably
highly dependent on the project leader. The project leader
plays an important role also in larger projects such as the
Linux kernel. Although Linus Torvalds writes only a minor
portion of the new code, he is important for the project as a
charismatic leader. The Linux community respects
Torvalds' power partially for historical reasons, but also for
his skills, and developers see him as essential. In 2002, the
community had a “Linus doesn't scale” problem when
Torvalds couldn't anymore handle the flow of modifications
to the kernel, and a system of trusted “lieutenants” had to
be build. Before that, social sustainability of the kernel
community was low because of too centralized power and
knowledge. With the lieutenant system, (tacit) knowledge is
distributed more evenly which makes it easier and more
probable for developers lower in the hierarchy to take
certain responsibilities if the project leader has to step down
for any reason.
 Equally important for social sustainability is the system
of decision-making and conflict resolution. As a small
project grows in time, the diversity of developer opinions
and views increases, creating more potential conflicts over
technical decisions. The “benevolent dictator” approach
chosen by communities like the Linux kernel has been
accepted by most, although conflicts have arisen from time
to time around issues like the use of proprietary version
control system and licensing issues of binary modules. The
Apache Software Foundation calls its system “meritocratic”
and has a voting system but aims for consensus, which they
consider “a very important indication of a healthy
community” [11]. It seems that not one system of
governance is more sustainable than others – one model
does not fit all – but it is important to have a system and it
must be suitable for the size and culture of community and
do it's job; not too bureaucratic, not too antidemocratic.
 In sum, the following heuristics can be used for
evaluating the social sustainability of a community:

 Increases sustainability:
 diverse user and developer base
 large number developers
 large number of users and contact with the users
 developers in different roles (project leader, core

group, bug fixers, bug submitters) with dynamics
that encourage learning

 moderately decentralized communication or power
structures

 a system of decision-making and division of
labour

Decreases sustainability:

 user and developer base with unified background,
skills and use contexts

 small number of developers
 small number of users
 no prospective developer base or closed

development process
 very centralized communication or power

structures
 bureaucratic system of decision-making and

division of labour

B. Cultural sustainability
The distinction between social and cultural sustainability is
not clear-cut: cultural meanings and artefacts have their
effect only as embedded in social practices. However, for
the purposes of analysis we may differentiate between the
two by noting that the cultural sphere exists, first, on a
higher level of abstraction. Cultural aspects of interaction
depend on interpretation, language, and coherent patterns of
behaviour. Second, the cultural level is temporally different
from the social. While some cultural artefacts and meanings
may change rather rapidly, there are cultural layers that
change little, if at all, during the lifetime of a generation or
an individual.
 Cultural sustainability of a community is defined by its
traditions and history that create and shape its social and
ethical norms and practices. While social sustainability is a
matter of interaction between individuals, cultural
sustainability is something that is created during a longer
time period as the community matures. Communities have
created documents fixing their position on certain
philosophical or technical issues, such as the Debian Social
Contract and the related Debian Free Software Guidelines.
Changes in practices, such as decreasing openness and
transparency, will have a feedback effect on the cultural
sustainability.
 One of the most famous and important cultural
formations discussed in the context of open collaboration is
the so-called hacker culture or hacker ethics [4], [12]-[14].
The hacker ethic is thought to contain a loosely
interconnected set of values and beliefs that hackers
internalize in the acculturation process of becoming active
members and contributors of the community. While
different author present the tenets of hacker culture in
different ways, it seems that the credo "information wants
to be free" and the various temporally changing
technological ways of promoting this credo ("the Internet

treats censorship as damage and routes around it", "we
make the Internet not suck") crystallizes the basic pillar of
hacker culture. "The hands-on principle" and a mistrust of
all authority and concentration on what is fun or "scratching
one's own itch" are other hallmarks of the cultural ethos.
 However, since the end of the '90s the paradigmatic form
of open collaboration, free and open source software
development, has seen a radical change in its cultural
environment. Through the launch of the open source
movement – the explicit motivation for which was to
increase the business friendliness of free software – the
motivations and institutional background of developers, and
consequently, the developer culture, have shifted. In many
influential and important OS communities, a significant
portion if not a majority of the developers are paid to do the
job. On one hand, this has increased the stability and
credibility of the communities, thus increasing
sustainability, but on the other hand it has brought the
traditional hacker culture in contact with the culture or
ethics of the "salaryman" who, in the worst case "just works
here." For instance, Pekka Himanen has described the
hacker culture as a direct opposite of the protestant work
ethic ([13], relying on [15]), where stable working hours
and hierarchical structures and a clear division of labour
with extrinsic motivations for working dominate.
 In large and well established communities the clash of
the different cultures does not necessarily materialize, as
different social arrangements, such as foundations or
councils (Eclipse Foundation, Gnome Foundation), can be
set for taking care of the interplay of interests. The tension
is more eagerly felt in smaller communities in which
developers working under the assumptions of hacker
culture may – with or without good reason – feel threatened
or exploited by a company taking part in and harvesting
fruit from the collaborative development work.
Correspondingly, a company taking part in open
collaboration may consider the unpredictability and
uncontrollability of the hacker contingent of the community
at least an unpleasant unknown if not an actual risk in itself.
 In cases where the company involvement is intense and
clear, such as the MySQL community, the risk for
sustainability this tension creates is minimal, as practically
all responsibility is carried by the company. Mark
Shuttleworth has reported of an interesting cultural clash,
which involves importing the protestant ethic on hacker
culture [16]. In the attempt to boost the development of a
software called SchoolTool, Shuttleworth hired a group of
hackers for the project. The idea was that given the
economical possibility to work exclusively on the software,
the team would rapidly augment and enrich the software for
which a clear and urgent need was felt. However, the
development was slow, if not stalled, because given free
hands and ample resources, the hackers did not concentrate
on keeping schedules and delivering updates, but started,
quite well in line with the hacker culture, to find the best,
most robust and sustainable basic structures and
architectures for the software. The two cultures did not
initially gel in a beneficial way: the logic of paid work did
not function in the context of hacker culture.

 Over time, communities have developed practices and
codified their key principles in documents like the Social
Contract of Debian. These documents are often referred to
in debates and they produce and maintain the ideological
basis of developers. These documents maintain project
ideals in the long term and provide common ground for
decision-making, and therefore probably have important
meaning for the cultural sustainability of the community.
(Cf. [17].)
 Schematically, then, the evaluation of cultural
sustainability of open collaboration may be done along the
following heuristics.

Increasing sustainability:

 large volunteer organisation with hacker culture
(for example Debian, Wikipedia, GNU, etc.) -
well-funded and planned "protestant work ethic"
culture (size does not matter so much, for example
MySQL)

 explicit foundational documents providing a
common ethical ground for developers

Medium sustainability:
 unclear and/or unstable mix of hacker culture &

"protestant work ethic" culture (Shuttleworth's
story on SchoolTool, the tension between Ubuntu
and Debian developers)

Decreasing sustainability:
 small volunteer organisation with hacker culture

(risk of losing principal developers; e.g., a
majority of dormant sourceforge projects)

 tension between hacker culture and "protestant
work ethic" culture (suspicions of being exploited,
risk of forking)

 competing ideologies or no common ethical
ground.

C. Legal sustainability
In ideal world, legal sustainability should not be an issue
for free and open source communities. Unfortunately, the
importance of legal risk management has risen sharply
during the last decade. The economic significance of
software has drawn also the attention of the legal
community and as the result the risk of getting sued is today
very real. Also the governments are monitoring Internet
with closer scrutiny, which means that the questions like
taxation and work legislation has to be addressed by the
projects.
 The “environmental situation” is especially worsened by
the fact that both criminal and civil sanctions for IPR-
violations have dramatically increased. This is mainly due
to IPR-holder's successful lobbying efforts in World Trade
Organization (e.g. TRIPS-agreement), EU (e.g. IPR
enforcement directive) and the U.S. (e.g. No Electronic
Theft (NET) Act) [18]-[20].
 To survive in this environment, free and open source
communities have to have developed processes and
strategies, which minimize the legal risks. Välimäki and
Oksanen [21] have developed a framework for risk
mitigation, in which five possible options were identified
(Table I.)

TABLE I. COMPARISON OF DIFFERENT DEFENSE OPTIONS FOR OPEN SOURCE
DEVELOPERS [21]

 Scope Effectivity Speed Price
Disclaimer
s

Licensees Low Fast Low

Insurance Market Medium Fast Medium to
High

Patenting Market High Slow High
Avoidance Market Medium Fast Varies
Lobbying Regulatory Medium to

High
Slow Medium to

High

The most simple and widely used method is the legal
disclaimers. These can be found from virtually all free and
open source licenses. However, they offer protection only
against claims from the licensees i.e. they offer no
protection against 3rd party claims, which are most
common in IPR cases.
 Insurance is one of the oldest options for risk
management. It has been slow to take on in the software
sector. Even today, very few companies offer insurance
services for the free and open source environment. This is
understandable as there would be very few customers i.e.
the insurances are typically so expensive that only the
richest projects could afford them. On the other hand, there
have been some examples of legal defense funds, which are
in effect close to mutual insurances. For example, Open
Source Development Labs created a special defend fund
for:

The Linux Legal Defense Fund was created to defray
legal expenses of Linux end users who may become
involved in litigation with The SCO Group on issues
that affect the Linux community and industry. The
Fund also covers the legal expenses of Linus
Torvalds, Andrew Morton and OSDL in connection
with the pending SCO/IBM litigation. [22]

Also patenting can be seen as a way to mitigate risks -
defensive use of patents is generally useful against patent
claims from competitors. Since software patents are
typically despised among free and open source developers -
and secondly - are very expensive to get and maintain, this
option is used rarely. However, certain open source
companies like Redhat and Novell have somewhat explored
this option.
 Another way to reduce risks is avoidance, which covers
actually wide set of actions. A very basic example of this
could be consulting an attorney for legally unclear matters
before making decisions. A strict control on persons, who
contribute code, is another typical example, which benefit
comes limiting the chance that 3rd party code would added
illegally. One quite used strategy is limiting project’s scope
or innovativeness to avoid liabilities e.g. project may decide
that developing p2p-features to its product is currently too
risky. Cynically speaking, staying decentralized and poor
belongs also to this category, since it make it hard to make
profit from legal actions.
 The final option in our framework is lobbying for “less
hazardous legal environment”. This option has been
realized recently in certain high-profile campaigns e.g. in

the fight against software patents in European Union. The
free and open source activists were instrumental in the
fight, which ended – against all odds – to the dismissal of
the directive, which would have legalized software
patenting in Europe.
 This more pro-active attitude has been demonstrated also
in the more active enforcement of free and open source
licenses. In addition to Free Software Foundation (which
has been enforcing the GNU GPL), projects like gpl-
violations.org have arisen against commercial misuse. Gpl-
violations.org defines its goal as:

 Raise public awareness of the infringing use of
free software, and thus putting pressure on the
infringers.

 Give users who detect or assume GPL-licensed
software is being misused a way to report them to
the copyright holders. This is the first step in
enabling the copyright holders to push for license
compliance.

 Assist copyright holders in any action against GPL
infringing organizations.

 Distribute information on how a commercial entity
using GPL licensed software in their products can
comply with the license.

This enforcement is essential for the health of free and open
source movement since it helps those companies, which
adheres to the rules, against the “bad apples”. Indeed, we
believe that this enforcement will be even more paramount
in the future as the countries with little or no tradition for
license compliance turn into biggest development centers of
software. However, too rigid control of licensing may also
raise the general costs of using free and open source
licenses and thus be counter-productive.
 Yet another factor for legal sustainability is the choice of
free and open source license. A badly chosen license
prevents other projects from benefiting from the code,
which lessens their interest to contribute. For example,
there has been arguments that SUN made a mistake because
it did not choose GPL for Open Solaris, which prevented
direct code contributions from Linux and vice versa. (e.g.
[23]) Furthermore, the compatibility issues may arise also
in GNU-world since GPLv3 won’t be compatible with GPL
version 2.
 In summary, the following attributes add to legal
sustainability:

 The project uses risk mitigation strategies
 The project’s economic footprint is small
 The project is not dealing with legally hot

questions like p2p
 The project enforces its rights against misuse
 The license is compatible with the mainstream

licenses.
and the following reduce sustainability:

 The project does not have any policies on risk
management

 The project has either financial resources or it is
causing economic harm to somebody else

 The project is dealing with a legally risky topic

 The project does not care if its rights are being
violated

 The license is not compatible with the mainstream
licenses.

D. Economical sustainability
The very large majority of free and open source projects do
not use any other financial resources than the time of their
participants. It is therefore natural that most of the early
articles on the economics of open source were focusing on
the personal motivating factors of the developers. ([24]-
[25]). The main theory was that the developers are
investing their time because they could get better reputation
among their peers – and also among possible future
employees. The empirical studies somewhat verified this
theory but also found other reasons like personal learning
and supporting the goals of free software movement [26].
 The most recent economic literature is dealing with the
companies’ motivations to invest in free and open source
projects. The change is very understandable since the
projects, which are either started by a company (e.g.
MySQL, Maemo) or heavily supported by a company
(Mozilla, Google) have become more common and
important. It would be fair to say that no firm conclusions
exist yet in this area as the companies are still
experimenting the co-operation with the community. Ari
Jaaksi, Nokia’s leader of 770 Internet Table development,
lists following reasons for Nokia to use open source:

 Availability of good quality code
 Availability of well-thought architecture and

integrated subsystems
 Licensing rules have been decided by the licensee
 No need to execute complex licensing negotiations
 Saving can be up to 6- 12 months in real projects
 The work and credentials of a developer or a

subcontractor are open for analysis
 The quality of the people and the components can

be analyzed from the source code
 Their willingness to help is easy to verify – just

ask
 The activity and direction of the component or

product can be analyzed through the project
discussions.

 When everything goes wrong – you can take the
code and run with it

 Even branch to meet the deadlines (Jaaksi 2006)

In conclusion, the following elements increase economical
sustainability:

 The project helps its developers' careers
 The project survives without financial support e.g.

volunteers can operate it
 The project is financed by a company, which has a

business model.

Similarly, the elements, which most likely decrease the
sustainability, are:

 The project does not bring reputation benefits to
its developers

 The project is so large/complicated that it requires
professional support

 The project can’t get support from companies.

III. APPLYING THE FRAMEWORK
We have described above the sustainability framework
created based on our experiences with free/open source
software communities. In the following, we use the
framework to examine two different open source
communities, Debian and Eclipse. Debian
(www.debian.org) is one of the largest Linux-distributions.
It has strong cultural traditions tied to the hacker culture,
including a hacker type work ethic [13] and heightened
sense for Free Software values. Eclipse (www.eclipse.org)
is an extensible development platform and application
framework for building software. In contrast to Debian, it
has a strong corporate background having been launched by
a group of companies including IBM, Borland, SuSE and
Red Hat.
 Through an analysis of the characteristics of different
open source communities, several “ideal types” of
communities can be identified. In the survey described
above we could recognize two distinct types of community
ideology and work ethic. What we call the hacker ideology
is the traditional FOSS work ethic of freedom, fun and
sharing of information, while the opposing ideology is the
traditional, salary-based work ethic. These two types of
ideologies both correspond to certain kind of structures of
power and authority. Therefore by “volunteer community”
we mean those communities where the hacker work ethic is
dominant, and by “company-based communities” we mean
the communities where companies and business objectives
have more importance and a large percentage of developers
are paid for their contribution. In company-based
communities traditional hacker values or freedom and
sharing have much less importance and participants may
not be interested in issues like copyright, software freedom
or software patents (identified as “the ideological factor”
above).
 More detailed analysis and a typology of communities
can be created by combining the voluntary/company axis
with some other variables. Based on our observations, we
provide a preliminary typology of FOSS communities. Four
elements are investigated in tandem with the
voluntary/company axis: the size of the community, its age
and history (in other words maturity), the centrality or
decentrality of communication and decision-making in the
community and the strength of chosen license.
 1) Size of the community. We assume that a larger
community is always more efficient and sustainable but
potentially increases problem complexity for company
participation. The size of the community must also reach a
certain minimum size in order to make the open source
effect work.
 2) Maturity of the community. By maturity we mean the
strength of the social and cultural ties, traditions and
practices. A mature community is often old in age, and has
developed common guidelines and best practices.
 3) Communication and decision-making structures of the

http://www.eclipse.org/

community. Different systems of governance exist in
free/open source software communities, including
democracy, meritocracy and dictatorship. Here we look at
how centralised communication is. This tells something
about the governance structure, hierarchy and bottlenecks.
 4) License. The type of free/open source software license
chosen by the community potentially affects who will
participate in the community. We classify licenses based on
how strong copyleft effect they have. GNU General Public
License, for example, is a strong copyleft license, while
Eclipse Public License gives more freedom, and licenses
like the BSD license are not copyleft at all.
 When we combine these four elements with the
volunteer/company axis, differences between communities
can be identified as can be seen in table II (with examples).

TABLE II. COMMUNITY TYPOLOGY
size /

hybridity
volunteer mixed company

small Wordpress MySQL, Laika

medium OpenBSD Mozilla OpenSolaris

large Debian Linux (kernel),
GNOME

Eclipse

maturity /
hybridity

volunteer mixed company

young Gnash Laika

developing Wordpress Mozilla OpenSolaris, Darwin

established GNU,
Debian

Linux (kernel) MySQL

decision-
making /
hybridity

volunteer mixed company

decentraliz
ed

Debian Eclipse

balanced Linux (kernel)

centralized GNU Mozilla MySQL

license /
hybridity

volunteer mixed company

non-
copyleft

OpenBSD Apache

weak
copyleft

 Mozilla Eclipse, OpenSolaris,
Darwin

strong
copyleft

GNU Linux (kernel),
GNOME

MySQL

In the classification above, we can see both differences and
similarities between communities. Based on this analysis,
some “ideal types” can be identified which characterise
some of the most prominent differences between
communities. Four ideal types could be identified:
 a) Centralized, company-driven, small community (e.g.
MySQL)
 b) Large community, several companies, business work
ethics (e.g. Eclipse)

 c) Large community, several companies, hacker
background (e.g. Linux kernel)
 d) Volunteer, decentralized, large (e.g. Debian)
 Correspondingly Eclipse and Debian have different
bottlenecks with regard to sustainability.
 To start with Debian, the size and age of the community
point out that from the social and cultural perspectives it is
very mature. It is very improbable that the community
would vanish overnight. On the cultural side, Debian has
one of the most developed and explicit guidelines for
conduct, The Debian Free Software Guidelines. For
Debian, the biggest challenge is that of leadership and
decision-making. The community is very large and
sometimes the ultra-democratical or anarchic decision
making system is felt too slow or otherwise ineffective. On
the other hand, it may be precisely this “slow and
ineffective” modus operandi that has guaranteed Debian's
longevity in the turbulent distro jungle. The hacker
volunteers are motivated by group-enriching motivations,
and get satisfaction from working together, This binds the
community together even in glitches in decision making are
sometimes experienced.
 On the legal side, Debian has been consistently relying
on the GPL, and the principles of free software. This has
been one of its hallmarks and may be expected to continue
to be so. This formalism has alienated some developers,
which have moved to less orthodox projects. In addition,
this limits the software the project is capable to offer. For
example, the project may not carry the official version of
Firefox-browser in the future if the trademark-issues
Mozilla foundation are not settled [28]. The project is also
in favor of several large companies with big patent
portfolios like Nokia, which offers at least implied
protection from patent litigation. The project has also well-
defined processes for handling alleged IPR-problems.
 From the economic perspective Debian also seems well
set, as work is mostly volunteer-based. However, the
combination of the social and economic perspectives
provides a glimpse of the issue that may prove to be most
challenging to the sustainability of Debian. Currently the
community is dominated by the hacker ethic, but as
companies increasingly start using Debian software in their
products, they also increasingly employ developers in the
salary-based mode. The developers of Debian expressed
very positive attitudes towards company participation in our
survey, but this may change as the clash between the work-
ethics becomes more visible.
 Eclipse, on the other hand, is economically sustained by
the presence of several large companies. This seems to
provide a firm ground in the reasonably foreseeable future.
The project has well defined legal guidelines available,
dedicated person for legal matters and their license is
optimized for the purpose of the project. On the social side
the community is fairly heterogeneous, and the project
thrives on technological progress. If a rival technology
would provide better possibilities, the Eclipse community
could face a difficult time.

IV. CONCLUSION
In this article, we developed a framework for examining the
sustainability of open collaboration communities. Based on
our experiences from free/open source software
communities, we presented four aspects of sustainability
which are 1) social, 2) cultural, 3) legal and 4) economical.
Using this framework, we looked at two open source
communities, Debian and Eclipse. Strengths and potential
bottlenecks were identified. In the case of Debian the
maturity and established culture of the community are a
great asset, as well as a clear legal policy. However, a clash
between hacker ethic and salary-based ethic can be
predicted in the near future. In the case of Eclipse, the
social and cultural heterogeneity of the community makes it
more vulnerable to erosion. The promise of technological
superiority and progress are the main things keeping the
community together, and if the project's progress change,
e.g., because of a rival technology, the community may
dissolve over time.

REFERENCES
[1] T. Mikkonen, N. Vainio & T. Vadén, “Survey on four OSS

communities: description, analysis and typology”, in Empirical
Insights on Open Source Business, N. Helander & M. Mäntymäki,
eds. Tampere: Tampere University of Technology and University of
Tampere, 2006. http://ossi.coss.fi/ossi/fileadmin/user_upload/
Publications/Ossi_Report_0606.pdf

[2] M. A. Rossi, “Decoding the “Free/Open Source (F/OSS) Software
Puzzle. A survey of theoretical and empirical contributions”, 2004.
http://opensource.mit.edu/papers/rossi.pdf

[3] N. Vainio & T. Vadén, "Sociology of Free and Open Source
Software Business: Motivations and Structures", in Multidisciplinary
Views to Open Source Software Business, N. Helander & H. Martin-
Vahvanen, eds., Tampere: Tampere University of Technology and
University of Tampere, 2006.

[4] E. Raymond, The Bazaar and the Cathedral. Sebastopol: O'Reilly,
1999.

[5] Y. Ye & K. Kishida “Toward an Understanding of the Motivation of
Open Source Software Developers”. Proceedings of the 25th
International Conference on Software Engineering. Portland, Oregon,
2003.

[6] B. Dempsey, D. Weiss, P. Jones & J. Greenberg, "Who is an Open
Source Software Developer?" Communications of the ACM, vol. 45,
no. 2, 2002.

[7] A. Mockus, R. Fielding & J. Herbsleb, “A Case Study of Open
Source Software Development: The Apache Server”, 2000.
http://opensource.mit.edu/papers/mockusapache.pdf

[8] S. Koch, & G. Schneider, “Effort, co-operation and co-ordination in
an open source software project: GNOME”. Information Systems
Journal, Vol. 12 Issue 1, 2002.

[9] G. von Krogh, S. Spaeth, K. R. Lakhani, “Community, joining, and
specialization in open source software innovation: a case study”.
Research Policy, 2003, vol. 32, issue 7.

[10] S. Krishnamurthy, ”Cave or Community? An Empirical Examination
of 100 Mature Open Source Projects”. First Monday, volume 7,
number 6 (June 2002), http://firstmonday.org/issues/issue7_6/
krishnamurthy/

[11] Apache Software Foundation, “How the ASF works”, 2006.
http://www.apache.org/foundation/how-it-works.html

[12] S. Levy, Hackers. Heroes of the Computer Revolution. London:
Penguin, 1984.

[13] P. Himanen, The Hacker Ethic. New York: Random House 2001.
[14] R. M. Stallman, Free Software, Free Society: Selected Essays of

Richard M. Stallman. Boston: GNU Press, 2002.
[15] M. Weber, The Protestant Ethic and the Spirit of Capitalism.

London: Routledge, 1930.
[16] M. Shuttleworth, “Funding free software projects”, 2006.

http://www.markshuttleworth.com/archives/4

[17] E. Coleman, ”Three Ethical Moments in Debian”, 2005.
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=805287

[18] P. Drahos, & J. Braithwaite, Information feudalism: Who owns the
knowledge economy? London: Earthscan, 2002.

[19] M. Pugatch, The International Political Economy of Intellectual
Property Rights. Edward Elgar, 2004.

[20] A. Bartow, A. “The Hegemony of the Copyright Treatise”, 73 U.
CIN. L. REV., 2004.

[21] . Välimäki, & V. Oksanen, “Minimizing IPR Infringement Risks in
Open Source Projects”, in Software Development - Proceedings of
the International Conference on Software Development, May 27 -
June 1, 2005, University of Iceland. University of Iceland Press.

[22] Linux Legal Defence Fund, “Linux Legal Defence Fund FAQ”,
http://www.osdl.org/about_osdl/legal/lldf/lldf_faq.html/
document_view

[23] B. Carver, B. “OSI Shake-Up and Sun's Big Mistakes”, 2005.
http://sharealike.org/index.php?title=osi_shake_up_and_sun_s_big_
mistakes&more=1&c=1&tb=1&pb=1

[24] J. Lerner, & J. Tirole, “The Simple Economics of Open Source”.
Journal of Industrial Economics 52, 2002.

[25] M. Mustonen, “Copyleft – the economics of Linux and other open
source software”. Information Economics and Policy 15(1), 99-121,
2003.

[26] R. Ghosh, R. Glott, B. Krieger & G. Robles, “Survey of Developers.
Free/Libre and Open Source Software: Survey and Study, FLOSS,
Final Report”, International Institute of Infonomics, Berlecom
Research GmbH, 2002.

[27] A. Jaaksi, “Building consumer products with open source
communities – the Maemo and 770 experiences”. Presentation at
Linuxworld, Boston, 2006.

[28] M. Gervase, “Firefox Trademark and Debian”, 2006
http://weblogs.mozillazine.org/gerv/archives/008347.html

http://weblogs.mozillazine.org/gerv/archives/008347.html

	I. INTRODUCTION
	II. FOUR ASPECTS OF SUSTAINABILITY
	A. Social sustainability
	B. Cultural sustainability
	C. Legal sustainability
	D. Economical sustainability

	III. APPLYING THE FRAMEWORK
	IV. Conclusion

