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A B S T R A C T   

Sustainable city planning requires detailed information on spatial temperature variations. 
Remotely sensed land surface temperature (LST) is known to differ substantially from air tem-
perature (AT) causing misinterpretations of the ambient conditions. We demonstrate a reliable 
and cost-efficient method for AT modelling in urban environments using open data and few 
temperature observations. The study area is the city of Turku SW Finland, where we have a dense 
in situ AT observation network of 64 Onset Hobo temperature loggers as a reference. Landsat 8 
thermal data from different seasons were used to extract pixel-based LST by employing MODIS 
and ASTER emissivity libraries and CORINE land cover classification. The LSTs were analysed 
against the in situ AT first with the correlation analysis. Except for December, the Pearson’s 
correlation coefficients were statistically significant (0.449–0.654, p ≤ 0.001). Seasonally 
adjusted linear regression models were applied to predict spatially continuous air temperatures 
(ATp) based on the extracted LST. Our results demonstrate that it is possible to predict urban ATs 
reliably - within ca. half-a-degree accuracy (MAE 0.36–0.62 ◦C). The prediction works best in 
spring, summer and autumn. It improves the capacity to produce reliable high spatial resolution 
AT information even if in situ observations are sparse.   

1. Introduction 

In the era of global change, accurate weather data of urban areas are needed to support management and planning purposes, and 
for the benefit of city dwellers. Temperature is often the most important weather parameter influencing our activities. It is considered 
in urban planning, selection of structural materials and architectural designs (Leyre et al., 2016; Lee and Oh, 2019). It has an impact on 
our health conditions (Shahmohamadi et al., 2011; USEPA, 2021). It also has a strong impact on the ecosystems (Grimm et al., 2008; 
USEPA, 2021). Considering the substantial influence of temperature on many aspects of our everyday life, accurate and easily available 
information of its spatio-temporal characteristics is important. The constraint of traditional thermometer-based temperature obser-
vations is that they provide information at fixed points only. Hence, a very dense network of thermometers would be needed to 
encompass the large spatial variation in temperature in and around urban environments. However, installing a dense network of 
weather stations in a region is not always economically and practically possible. 

A common shortcut to overcome this information gap is to use remotely sensed land surface temperature (LST) data instead of air 
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temperature (AT) (Jin, 2012; Chen et al., 2006; Tsou et al., 2017). There are several satellite platforms that carry thermal infrared (TIR) 
sensors (Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer (ASTER) and Landsat, see USGS, 2021a; NASA, 2021a), and even ready LST data products (NASA, 2021b; ESA, 2021), but these 
are often of rather coarse resolution for detailed urban mapping. Of the openly available satellite products, ASTER and Landsat offer 
currently the best spatial resolution with 90 m and 100 m resolution, respectively. The ASTER products distributed from LP DAAC are 
produced from on-demand data acquisition requests and are not categorized by regular temporal ranges (USGS, 2021b) unlike Landsat, 
which offers regular acquisition. For the delivered product, Landsat TIR data are resampled into a 30 m grid. 

The problem with the employment of LST in describing ambient thermal conditions in high spatial resolution is the large difference 
between the LST and the AT (Unger et al., 2009; Schwarz et al., 2012; Nichol and Pui, 2012; Azevedo et al., 2016). Hence, considering 
the LST as representing the temperature experienced by a city dweller may lead to inappropriate conclusions. We also demonstrate this 
temperature discrepancy in our study and provide a cost-efficient method to transform the remotely sensed LST into ambient AT using 
open data. 

2. Urban temperatures and their derivation 

One specific feature of urban climate is the temperature difference between the built-up areas and their neighbouring non built-up 
areas. This is called the Urban Heat Island (UHI). It has been a focus of research for many decades (Oke, 1987; Gallo and Owen, 1998; 
and Ng, 2015) and is a well-established phenomenon. Large scale urbanization produces urban heat (Pichierri et al., 2012) that could 
influence health and socio-environmental conditions (Alavipanah et al., 2015), and global warming (Chen et al., 2006). There are 
different main types of UHI: Surface UHI originates from different heat storing capacities of urban materials and refers to surface 
temperatures (Stathopoulou and Cartalis, 2007); Atmospheric UHI, caused mainly by the same factors than surface UHI, refers to air 
temperatures and is most intense at night (Oke, 1987; Voogt and Oke, 2003). Atmospheric UHI is further divided into two more 
categories: boundary layer UHI that is caused by anthropogenic forcing (Oke, 1995) with a scale of up to 100 km (mesoscale) (Sta-
thopoulou and Cartalis, 2007; Barlow, 2014). Second is the canopy layer UHI, which is the air present between urban infrastructure 
(Oke, 1976). The canopy layer UHI extends up to roof top height and is affected by the nature of materials in the surroundings, shapes 
of urban structures and other anthropogenic causes (Oke, 1995). The surface and canopy layer UHIs are closely related, and this paper 
aims to produce new information on this relationship by developing a cost-efficient method to predict urban air temperature using 
open GIS data. The method could be cost-effectively applied also beyond the study area in predicting AT regardless of lacking or few in- 
situ observations. 

Usually, UHI research is based on traditional weather stations (Tsou et al., 2017) but the scarcity of observation sites narrows down 
the measurement of UHI to low spatial resolution (Streutker, 2003). Few efforts have been made to solve these issues, and they come 
with pros and cons. Measurement of AT from batteries of smartphones using Android application (Overeem et al., 2013) is an example 
of collecting large temperature data. It proved to be difficult to confirm the reliability of those measurements, as many factors were 
involved including impacts of air temperature, location of the mobile phones (indoor and outdoor), impact of human body temper-
ature, etc. (Overeem et al., 2013). Further examples have combined various statistical methods and traditional in situ temperature 
measurements in predicting spatially continuous air temperature (ATp) maps from observed air temperature (ATo) data (Hjort et al., 
2011; Hjort et al., 2016). 

One means to ease the collection of climatic data with high spatial resolution is to gather data under one platform in collaboration 
with different institutions or departments, as demonstrated in the Helsinki Testbed network in Finland. The effort focuses on the 
phenomena typical at meso-gamma-scale (1–10 km) that are difficult to observe with normal meteorological networks (Koskinen et al., 
2011). Research infrastructure like this requires a large budget and is, therefore, not common. A combination of mobile measurements 
(Nichol and Wong, 2008; Schwarz et al., 2012) and fixed weather stations’ measurements enables higher spatial resolution but lacks 
concurrency and is laborious for long-term data collection. 

To address these issues, the use of remote sensing data for UHI studies has been suggested and applied. As remote sensing thermal 
sensors detect temperatures of surfaces rather than that of the air and therefore, they do not provide information directly comparable 
to ATs detected with thermometers (Unger et al., 2009; Caihua et al., 2011; Nichol and Pui, 2012). However, due to the lack of direct 
AT observations, it is common to refer to remotely sensed LST when estimating the thermal conditions of a region (e.g., Streutker, 
2003; Jin, 2012; Feizizadeh and Blaschke, 2013; Mirzaei et al., 2020; Monteiro et al., 2021), potentially leading to misinterpretations. 

We hypothesize that there is a semi-universal relationship between the surface temperature and the overlying air temperature over 
different land use/land cover (LULC) types on a 10–100 m scale. Such a relationship - when resolved - would allow determining air 
temperatures based on remotely sensed LSTs. A key aspect in the process of transforming the remotely sensed LSTs to ATs is to consider 
the emissivity properties of the particular surface type. This information is available in open spectral emissivity libraries if one knows 
the respective surface types. High-resolution openly available LULC datasets, such as CORINE (Coordination of information on the 
environment), can be used for resolving the surface types. Establishing such relationships between surface and air temperatures would 
allow estimating ATs through statistical modelling by employing remote sensing data alone, or with only few reference temperature 
observations. This would be beneficial in urban environments worldwide. We present here a model that can transform satellite-based 
surface temperatures to air temperatures, which are more relevant to human comfort. 

3. Research aims 

The rationale of this research is to develop and demonstrate a cost-effective, accessible, and easily deployable procedure whereby 
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continuous ambient AT could be estimated reliably using remotely sensed, openly accessible data without an extensive observation 
network. For this, we analyse and compare remotely sensed LSTs with data logger temperatures at 3-m elevation in an urban 
environment. 

A combination of satellite based remotely sensed thermal infrared data, LULC data, and spectral libraries for emissivity information 
are employed for this purpose. All the data are open, consistent, and widely used, and therefore considered reliable. 

In summary, the paper has the following research objectives:  

• To produce a detailed urban surface temperature dataset at 20 m resolution by using Landsat 8 thermal infrared data, CORINE land 
cover data, and emissivity information from ASTER and MODIS spectral libraries.  

• To compare and analyse the relationship between the calculated surface temperatures and observed air temperatures in different 
seasons and over varying land cover types.  

• To produce a statistical relationship and model for estimating and predicting air temperatures based on Landsat-CORINE- 
emissivity-derived surface temperature, without a need for extensive in situ reference data. 

4. Study area 

The study area is Turku, a coastal city in the southwest of Finland with around 190,000 inhabitants (Fig. 1, see also Fig. 2). Located 
in northern Europe between latitudes 60◦ and 70◦N, Finland belongs to the Dfb and Dfc climate types in the Köppen-Geiger climate 
classification system (Peel et al., 2007). The southern coastal region along the Gulf of Finland of the Baltic Sea, where Turku is located, 
belongs to type Dfb (Peel et al., 2007). In southern Finland, summer arrives in late May, when the daily mean temperature exceeds 
+10 ◦C. In Turku, the highest temperature in 1981–2010 was measured on the 13th of July 2010, when temperature reached +32.1 ◦C 
at the Turku airport. The lowest temperature (− 34.8 ◦C) was recorded on the 10th of January 1987 (Pirinen et al., 2012; FMI, 2020a). 
In southern Finland, heat waves occur typically for 10 to 15 days, during which the daily maximum temperature exceeds +25 ◦C. 
Autumn starts roughly at the end of September in the southwestern region when daily mean temperature falls permanently below 
+10 ◦C. Winter starts roughly in November in southwest Finland, when mean temperatures stay below 0 ◦C. Spring starts in April, 
when snow melts, daily mean temperature exceeds 5 ◦C, and the growing season commences (FMI, 2019). 

Based on the data from the climate period 1981–2010, the mean annual precipitation in Turku is 720 mm. August is the wettest 
month with a rainfall of 80 mm, while April is the driest one with 30 mm of precipitation (Pirinen et al., 2012). Thirty percent of the 
annual precipitation falls as snow, and continuous snow cover lasts for three months, on average (Suomi and Käyhkö, 2012). The 
average wind speed is 3.4 m/s with dominating directions from the SW (17%) and S (14%) (Pirinen et al., 2012). During winter, the sea 
ice cover limits water vapor and heat transfer onto land, turning the climate in the region to a more continental mode (Suomi et al., 
2012). 

The land cover of the research area comprises manifold surface types, e.g., urban fabric including the port and light industrial area, 
the shore region of the Baltic sea with the complex archipelago with its numerous islands that exhibit many forest types from Boreal 
coniferous and mixed forest to rare oak forest of Ruissalo (Käyhkö and Skånes, 2008). Surrounding the city, there are agricultural lands 
and occasional lakes, the biggest of which is Littoistenjärvi (Fig. 1c). A rectangular study area of 216 km2 was selected for the research, 
with Aura River flowing diagonally through the center of the research area to the Baltic Sea. The Turku Urban Climate Research Group 
(TURCLIM) of the Department of Geography and Geology of the University of Turku has set up a network of 75 temperature-humidity 
data loggers covering the region. The network, whose temperature observations are used in this study, is densest in the city center and 
gets gradually sparser further away (Fig. 1). 

Fig. 1. The study area. (a) The location of the city of Turku on the coast of the Baltic Sea. (b) Turku city in the southwestern Finland with an 
extensive archipelago. (c) Research area on RGB (band combination 4 3 2) image of Landsat 8 on 3 July 2015 with red dots indicating the TURCLIM 
temperature logger sites. Built-up areas appear in pale colours. The city centre is in the middle. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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5. Material and methods 

The data consists of land cover data, satellite thermal infrared data representing different seasons of the year 2015, air temperature 
observations from the temperature-humidity sensors at 3-m elevation, and spectral libraries for emissivity corrections (Fig. 3). 

5.1. Land cover data for emissivity mapping 

Emissivity is the ratio of the energy radiated from a material’s surface to that radiated from a blackbody. It is a dimensionless 
number between 0 and 1. The emissivity of a surface depends on the material and nature of the surface. The LULC emissivity infor-
mation plays an important role in extracting LST, as even a minor error (0.01) in the emissivity value could cause a substantial in-
accuracy in the extracted LST (see e.g., Sobrino et al., 2012). There are several methods available for emissivity correction for LST and 
e.g., the method based on the Normalized Difference Vegetation Index (NDVI) is in common use (Avdan and Jovanovska, 2016; 
Sobrino et al., 2004; Stathopoulou et al., 2007). For the current study, CORINE land cover (CORINE, 1994) Level 4 dataset (2012) with 
a grid size of 20 m was used Fig. 2). Based on independent field sample analyses (Härmä et al., 2015), the overall accuracy of CORINE 
LULC in Finland has been estimated at 61–93% depending on the number of classes and the reference data. The CORINE data originally 
have 48 classes, of which 42 were present in the study area. The most abundant classes in the study region were Small houses (class 2; 
17%), Coniferous forests (class 24; 12%), Sea (class 48; 11%), and Fields (class 16; 10%) (Table 1). We assigned emissivity values to 
each class by interpreting the corresponding surface types from ASTER and MODIS spectral libraries (Meerdink et al., 2019; MODIS 
UCSB Emissivity Library, 1999). On Band 10 wavelength, different surface types may have the same emissivity value in the spectral 
library. Subsequently, the total number of different emissivity values for the 42 CORINE classes was 23. 

5.2. Remote sensing data 

In order to have as high spatial resolution as possible, we used data from Landsat 8 band 10, the thermal infrared sensor (TIRS 1), 
with a wavelength range of 10.60–11.19 μm. We resampled the delivered 30 m grid (acquired at 100 m resolution) with nearest 
neighbour resampling to a 20 m grid to have a spatial match with the CORINE data. In order to minimise the risk of substantial changes 
in the urban structure during the studied time window, we selected the images from one calendar year. Due to the large seasonal 
differences in illumination and phenology in the study area, we considered it necessary to cover all seasons. However, as snow cover 
homogenizes the spatial differences in LSTs, we selected images from days without snow cover even during the cold season. Year 2015 
meets this prerequisite well, as both March and December were snow-free. The preceding week prior to the acquisition was to be 
practically precipitation-free in all cases. This minimizes the possibility of moist land surface and ill-defined temperatures. The wind 
speed during the data acquisition time had to be low, as air flow causes blending of ATs through air mixing from the neighbouring areas 
(Suomi and Käyhkö, 2012). With these preconditions, five cloud-free images were available (Table 2). Later in the text, we refer to the 
images with the month of the image-specific satellite overpass time. By doing so, we are aware of the fact that the images represent the 
conditions of the moments they were taken, and only partly the conditions of the respective months as a whole. The data were at level 
L1T, orthorectified and radiometrically calibrated and best suitable for pixel level analysis. Landsat 8 OLI/TIRS has a 12-bit 

Fig. 2. CORINE land cover classification (2012; Level 4) of the study area. Of the total of 48 CORINE classes, 42 are present in the study area and are 
listed in the legend. 

Fig. 3. Schematic diagram presenting the research flow, with data (in orange colour), processes/methods (blue) and outcomes/results (green). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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radiometric range and consequently, 4096 levels of representation of the surface temperature conditions, and the delivered data 
products were scaled to 55,000 grey levels (USGS, 2017a). Therefore, it was well suited for calculating surface temperatures, as even 
minor differences in temperature could be detected as compared to the 8-bit data of TM and ETM+ (USGS, 2017b). 

5.3. TURCLIM air temperature data 

Air temperature measurements were recorded as a part of TURCLIM project; a total of 64 out of 75 logger sites were used for the 
year 2015 (see Fig 1). Temperatures were measured with Hobo Pro U23-001 temperature / relative humidity loggers at the interval of 
30 min. The accuracy of the device is ±0.2 ◦C at 0–50 ◦C. The T/RH loggers were installed 3 m above the ground with radiation shield 
protection. Three-meter elevation (instead of a standard 2 m elevation) is used in order to reduce the risk of vandalism as the loggers 
are located in public places. The overall type of the environment at each logger site has been classified as urban/semi-urban/rural. The 
number of available observation sites between the acquisition times varied slightly due to occasional gaps in the data (Table 2). 

Table 1 
Emissivities determined for each CORINE class based on the ASTER and MODIS spectral libraries, plus the areal coverage (%) of the classes in the 
study area.  

Class Class name Emissivity Coverage % 

1 Block of flat areas 0.953969 3.37 
2 Small house areas / one-family house areas 0.959578 17.04 
3 Commercial units / commercial areas 0.953969 5.02 
4 Industrial units / industrial areas 0.953969 4.68 
5 Road and rail networks and associated land 0.954243 5.29 
6 Port areas 0.96507 1.56 
7 Airports 0.969625 0 
8 Mineral extraction sites 0.967516 0.37 
9 Mines 0.967516 0 
10 Dump sites 0.972071 0.34 
11 Construction sites 0.954284 0.19 
12 Leisure time house areas 0.960385 0.69 
13 Other sport and leisure time activity areas 0.960385 0.81 
14 Golf course areas 0.983186 0.31 
15 Trotting-track areas 0.975351 0.08 
16 Fields 0.975351* 10.21 
17 Fruit trees and berry plantations 0.973057 0.06 
18 Pastures 0.983186 0.26 
19 Natural pastures 0.983186 0.19 
20 Disused agricultural lands 0.975351 1.95 
21 Agro-forestry areas 0.980839 0.01 
22 Broad-leaved forest on mineral soil 0.973057 1,44 
23 Broad-leaved forest on peat soil 0.973057 0.005 
24 Coniferous forest on mineral soil 0.983433 11.61 
25 Coniferous forest on peat soil 0.983433 0.12 
26 Coniferous forest on rocky soil 0.983433 4.45 
27 Mixed forest on mineral soil 0.980839 5.70 
28 Mixed forest on peat soil 0.980839 0.05 
29 Mixed forest on rocky soil 0.980839 0.41 
30 Natural grassland 0.983186 0 
31 Moors and heathland 0.982013 0 
32 Transitional woodland/shrub, cc (crown cover) <10% 0.978122 5.33 
33 Transitional woodland/shrub, cc (crown cover) 10–30%, on mineral soil 0.978122 3.40 
34 Transitional woodland/shrub, cc (crown cover) 10–30%, on peat soil 0.978122 0.02 
35 Transitional woodland/shrub, cc (crown cover) 10–30%, on rocky soil 0.978122 0.55 
36 Transitional woodland/shrub, under power line 0.978122 0.39 
37 Beaches, dunes, and sand plains 0.96105 0.005 
38 Bare rock 0.956742 0.08 
39 Sparsely vegetated areas 0.982013 0 
40 Inland marshes on the ground 0.987921 0.06 
41 Inland marshes on the water 0.987921 0.03 
42 Swamps 0.981119 0.04 
43 Peat bogs 0.981119 0 
44 Salt marshes on the ground 0.988129 0.64 
45 Salt marshes on the water 0.988129 0.74 
46 Rivers 0.992657 0.57 
47 Lakes 0.992657 0.82 
48 Sea 0.993072 11.10  

* This emissivity value refers to July with an estimated 50/50 proportion of soil/grass. For August and October, an estimated 75/25 proportion of 
soil/grass gave an emissivity value of 0.970167, while 100% soil exposure for March and December gave a value of 0.967516. 
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5.4. CORINE LULC data and emissivity mapping 

For emissivity data, CORINE class information and emissivity values for different materials from MODIS and ASTER libraries were 
analysed in detail. The emissivity values were assigned to the CORINE classes to convert them into emissivity maps representing 
different seasons. Some classes consisted of only one surface material, while others represented a combination of different surface 
materials. Consequently, some classes were assigned a single surface material emissivity value, while others were assigned a com-
bination of values from different materials. Thereby, a lookup table (LUT; Table 1) was constructed for the CORINE based emissivity 
classification at the wavelength of 10.60–11.19 μm (for Landsat 8 band 10). 

Continuous urban fabric, commercial and industrial buildings were assigned the average value of different kinds of building 
materials: brick, tile, lumber, masonry, pavement, stone, asphalt, and aluminum grate. Discontinuous urban fabric was assigned the 
average of building materials, grass, and trees. The inclusion of grass and trees in the discontinuous urban fabric was appropriate as the 
presence of a substantial proportion of vegetation is a typical property of Finnish landscape; in regional land use planning, envi-
ronmental sustainability is considered important (Environment, 2016). 

As there were no separate classes for different types of roads (such as small, unpaved, and main roads), urban transportation 
infrastructure that included roads, rail network and associated land was assigned with a single emissivity value as a combination of 
asphalt, soil, and dark metal. For the harbour area, an average emissivity value of concrete, black asphalt, bricks and masonry was 
used, while the airport class assigned an average of concrete and black asphalt. Crop fields were assigned different emissivity values in 
different seasons based on the varying proportions of soil and vegetation due to growth, harvesting and tillage (see Table 1). All other 
classes including vegetation were considered having equal emissivity independent of the season, as the forests in the study area consist 
mostly of coniferous trees. 

5.5. Extracting land surface temperatures (LST) 

For extracting LST, the radiative transfer equation was used (Sobrino et al., 2004). The data were in the form of raw DN values and 
rescaled to top of atmosphere (TOA) radiance L by using the rescaling factors provided with the delivered data product, using the 
(Alavipanah et al., 2015) (USGS, 2019). 

Lλ = ML(Qcal)+AL (1) 

Where: Lλ = Top of atmosphere radiance, ML = Band specific multiplicative rescaling factor, Qcal = pixel value (Digital Number) 
and AL = Band specific additive rescaling factor. 

Atmospheric correction was performed using the following expression (Sheng et al., 2017): 

B(Ts) =
Lsensor − L ↑

ετ −
1 − ε

ε L ↓ (2) 

Where: B(Ts) = Radiance of the blackbody target, Lsensor = At sensor radiance, ε = Emmivity, τ = Atmospheric transmittance, L↑ 
= Upwelling radiance and L↓ = Downwelling radiance. 

Above mentioned atmospheric parameters were calculated with the online atmospheric correction parameter calculator (ACPC, 
2019; Barsi et al., 2003; Barsi et al., 2005), Finally LST was calculated using the Planck’s equation (Sheng et al., 2017; Barsi et al., 
2005). 

LST =
K2

ln
(

K1
B(Ts) + 1

) (3) 

Where: LST = Land surface temperature, K1 and K2 = Band specific calibration constants, B (Ts) = Atmospheric and emissivity 
corrected radiation. 

Table 2 
Parameters describing the conditions during the satellite overpass. Landsat data acquisition dates (2015) and times, and the sun elevation were 
extracted from the Landsat metadata files. The meteorological parameters were acquired from the Finnish Meteorological Institution’s Turku 
Artukainen weather station, including wind speed (average from sunrise to data acquisition time), precipitation (the latest 7 days), and temperature at 
the time of acquisition. Also included are the air temperature acquisition time and the number of observations from the TURCLIM network plus the 
sunrise time (Auringon nousu- ja laskuajat Suomessa, 2019).   

13 March 3 July 20 August 7 October 24 December 

Satellite observation time (UTM + 2) 11:35 11:35 11:35 11:36 11:48 
Sun elevation (degree) 26.0 51.7 41.4 24.0 5.9 
Wind speed (m/s) 1.7 2.7 0.6 1.4 2.1 
Precipitation (mm) 4.5 0.9 0.1 0 17.7 
Temperature (◦C) 4.9 27.2 21.4 6.1 4.4 
Air temperature observation time (UTM + 2) 11:30 11:30 11:30 11:30 12 
Air temperature observation points 63 61 61 62 64 
Sunrise time (UTM + 2) 6:55 3:10 4:54 6:50 9:38  
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5.6. Statistical methods 

For analysing the characteristics of the correlation between surface and air temperature, both Spearman’s rank correlation and 
Pearson’s correlation were used. Pearson’s correlation coefficient tells about the linear relationship between the variables, while 
Spearman’s correlation explains both linear and nonlinear correlations (Schwarz et al., 2012). For the regression analysis, we tested 
two potential and relevant explanatory variables that are easy to produce from open data regardless of the location, namely the LST, 
and the Area Solar Radiation derived with the aid of Digital Elevation Model (DEM). The Area Solar Radiation did not show statistically 
significant correlation with the surface temperature nor with the air temperature, probably due to the gentle topography and the 
disturbing effect of the urban structure, and hence, only the LST was included as the explanatory variable in the regression analysis (see 
Supplementary data). For the surface temperature, the pixel values at the TURCLIM logger sites were used without utilizing any buffer 
as Landsat 8 TIRS 1 (band 10) is acquired at 100 m (30 m in the delivered data product) resolution, functioning itself as a 100 m buffer. 
These LST values and the respective logger ATs for all the five satellite acquisition days were separately analysed for correlations. 
Based on the high Pearson’s correlation coefficients (see Table 3), we used a linear regression model for predicting AT with the LST. 
The ENTER option was selected, i.e. the explanatory variable was automatically included in the model regardless of its statistical 
significance. To easily understand the thermal behaviour of the land cover types on the logger sites, the point locations were classified 
into three categories in the scatter plot: urban, rural and semi-urban. This classification was based on the field visits and visual 
interpretation of the high resolution images of Turku city. 

6. Results 

6.1. Emissivity mapping and land surface temperatures 

Land surface temperature (LST) maps highlight the substantial spatial temperature variations of different land surfaces, especially 
in summer months (Fig. 4). In July, the range between the lowest and highest surface temperature was 31 ◦C. The highest surface 
temperature of 47.3 ◦C was observed on dark coloured roof of a large building near the sea. Hence, sea proximity did not seem to lower 
the surface temperature. Highest surface temperatures were generally observed on large asphalt areas and dark flat roofs. The lowest 
surface temperature in July was observed on the sea. 

Compared with July, August had a similar kind of temperature pattern on land surfaces but with a smaller temperature range and 
lower maximum and minimum temperature. Towards the end of summer, the temperature difference between the sea and land started 
to diminish as land temperatures were gradually dropping. However, the sea still kept mostly cooler than the land surface. An 
interesting high temperature anomaly was spotted in a small open field area on the island of Ruissalo (see the arrow in Fig. 4). We 
interpreted this as a local anthropogenic influence due to abrasion of vegetation on the site of the Ruisrock festival (held on 3–5 July), 
and the subsequent high LST of bare soil. 

In March and October, the highest observed temperatures were 15.3 ◦C and 16.6 ◦C, respectively. In both of these months, tem-
perature hotspots remained the same as in summer months, but with smaller temperature range. In October, the sea surface was 
warmer than the majority of the land areas. The shallow water close to the shore was cooler than deeper water with higher heat 
capacity. Similarly, in March, some sheltered bays exhibited the lowest sea surface temperatures (SST), as they may have been partially 
ice-covered at times. 

The lowest LSTs were observed in December. In early winter, SST was much higher than the LST and high temperatures were 
observed along the edges of the Islands and Turku city shorelines. During all the studied months, lake and river water temperatures 
deviated somewhat from the seasonal temperature trend of the sea water due to small specific heat capacity; in August and July, 
surface water in lakes and rivers was warmer than the SST, while in March, October and December, this pattern reversed. 

To corroborate the validity of the results, the extracted SST was compared with a reference SST from a research buoy located near 
the Archipelago Research Institute on Seili island (60◦15.35 N 21◦57.11E, WGS84). The data are available for ice-free months and 
hence, can be used as a reference for the July, August and October cases. The extracted temperatures correspond very well with the 
reference temperatures (Table 4). The 1.5 h time difference between the Landsat overpass and the buoy temperature reading is not a 
substantial source of error, as buoy data from the wave observation site Baltic Sea Proper (59◦15′ N 21◦00′ E) (FMI, 2020b) with hourly 
sampling frequency indicate that the sea surface temperature on the respective days changed only by 0.1 ◦C between 11:30 and 13:00 
h. 

Table 3 
The results of the correlation and linear regression analyses.   

13 March 3 July 20 August 7 October 24 December 

n 63 61 61 62 64  

Spearman’s rho correlation coefficient 0.612*** 0.469*** 0.447*** 0.428*** 0.261* 
Pearson’s correlation 0.654*** 0.578*** 0.529*** 0.449*** 0.207  

Linear regression r2 0.4281 0.3338 0.2798 0.2017 0.0426 

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).; *** Correlation is significant at the 
0.001 level (2-tailed). 
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Fig. 4. Land surface temperatures (LST) at 20 m spatial resolution produced with Landsat 8 band 10 and emissivity information derived from 
MODIS and ASTER emissivity libraries adjusted to CORINE land cover classes. The arrow on the August map refers to a hotspot high LST anomaly 
not visible in other months (see text). Notice that the different moments in time cannot be compared directly with each other due to the different 
temperature scales (for highlighting the spatial pattern). For comparison between the seasons, see Fig. 8. 

Table 4 
Comparison of the in-situ temperature observations with Sea Surface Temperature (SST) values extracted from Landsat data.   

3 July 20 August 10 October 

Buoy temperature ◦C (2 m depth) at 1300 h (UTM + 2) 16.94 19.3 13.22 
Extracted SST ◦C at 11:30 (UTM + 2) 15.74 19.33 13.03 
Temperature difference ◦C (observed – extracted) +1.2 − 0.03 +0.19  
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For corroborating the validity of the extracted LST in land areas, FMI road temperature data points Turku and Kaarina were 
employed. The data are from the FMI open data service. The surface temperature data acquired with a sensor sitting inside the asphalt 
represents solely the road surface temperature while the Landsat 100 m pixel value is a combination of road surface temperature and 
the temperature of other land cover types on the road sides. Therefore, the differences between the two temperature values can be large 
especially in the warm season with high solar irradiance and should be used with careful sites-specific consideration as a reference for 
satellite LST (Table 5). 

6.2. Relationship between land surface temperatures and air temperatures 

The strongest Spearman’s correlations between the surface and air temperature were observed in March followed by July, August, 
October (p ≤ 0.001) and December (p ≤ 0.05). Pearson’s correlation test results showed the same pattern, but the correlation for 
December was not statistically significant. In summary, the correlation results indicated a linearly increasing function with statistically 
very significant correlation (p ≤ 0.001) in all months apart from December, when only a monotonic statistical relationship was 
observed (Table 3, Fig. 5). 

In the scatter plot (see Fig. 5), the urban, semi-urban and rural classes form quite separate clusters along the regression line 
especially in the summer months. Urban classes show high surface and air temperature, while rural classes typically have lower 
temperatures. The semi-urban class sits between the urban and rural classes. The cold AT outliers specifically in the cold season are 
interpreted to result from local cold air pooling into topographic lows. 

Using the linear regression equations (Fig. 5) for different months, spatially continuous ATp maps were produced (Fig. 6). The 
spatial distribution of temperature variation in the ATp was similar to the LSTs (Fig. 4), but the overall temperature range was radically 
smaller, being between 1.3 ◦C (Dec) and 3.3 ◦C (other months) in the area, as compared to ca. 9 ◦C (Dec), 15 ◦C (Mar, Oct) or 30 ◦C (Jul, 
Aug) observed in LSTs. In other words, the air temperature range was only ca. 1/5 to 1/10 of the surface temperature range, 
demonstrating the reliability challenges in using direct LSTs as an estimate of ambient regional temperatures. 

For testing the accuracy of the predicted air temperatures (ATp) calculated using the regression equation, we calibrated a linear 
regression model for each month with 51–54 observation sites, excluding ten observation points that were used for assessing the 
regression validity. The equations acquired in model calibrations were used to predict the values for the ten reference points. The Mean 
Absolute Error (MAE) of the ten predicted values was around half-a-degree (0.36–0.62 ◦C, see Fig. 6). The corresponding Root Mean 
Square Error (RMSE) values of the regression equations for the validation data were 0.39–0.57 ◦C. 

In addition to land areas, we tested the performance of our linear regression model also on the sea area and the archipelago by 
comparing the ATp with the ATo at the Seili buoy. The buoy ATs differ somewhat from the ATp, especially in July (Table 6). The 
probable reason for this is that the AT observation sites used in model calibration were located in the land areas and consequently, the 
model performance is better there. 

7. Discussion 

The current study aimed at assessing the capability of open data in predicting urban AT with high spatial resolution. The adjacent 
land surface temperatures (LSTs, based on Landsat and CORINE data) and ATo differ from each other by site characteristics and season 
(Fig. 5), calling for a model that takes into account this complex relationship. We were able to build a linear regression model for 
predicting air temperatures at any point in the area by employing Landsat thermal data, land use / land cover data and spectral 
emissivity libraries in conjunction with high-resolution temperature observations. This regression model is capable of predicting AT 
quite accurately, providing ca. half-a-degree accuracy. An important factor that allowed us to achieve good prediction accuracy was 
the dense network of TURCLIM observation sites. Hjort et al., 2011 suggest that for reliable modelling, all environmental conditions 
present in the region should be included in the coverage of the data network. In our study, the dense constellation of the logger network 
successfully covered the existing surface types, and different urban thermal environments and thus, allowed an analysis of the complex 
thermal nature of the area. In conjunction with this study, we developed a lookup table (Table 1) that gives the emissivity values for the 

Table 5 
Comparison of the Land Surface Temperatures (LSTs) extracted from Landsat data with the observed road surface temperatures by the Finnish 
Meteorological Institute (FMI).    

Extracted LST ◦C FMI Land Surface Temperature ◦C Temperature difference ◦C (Extracted – Observed) 

7 October Turku 10.0 12.1 − 2.1 
Kaarina 8.2 11.9 − 3.7 

20 August Turku 29.5 35.5 − 6.0 
Kaarina 25.2 35.7 − 10.3 

24 December Turku 1.0 2.6 − 1.6 
Kaarina 1.3 1.5 − 0.2  

13 March Turku 8.3 9.3 − 1.0 
Kaarina 7.4 8.9 − 1.5  

3 July Turku 37.6 44.0 − 6.4 
Kaarina 32.2 44.1 − 11.9  
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Fig. 5. a. Scatter plots showing the relationships between the Landsat-derived surface temperatures (LST) and observed air temperatures (ATo) of 
the three different types of environments at TURCLIM observation sites at five momentary situations in 2015. The different land cover types are 
located discordantly within the scatter cloud during summer, reflecting the impact of differential surface heating. During seasons of low sun angle 
(specifically in December), the differences between land cover types are subdued. b. Same as 5a, but with a common scale for x and y axes, and 
without land cover type information. During summer, the large deviation in LST values (due to high solar irradiance) as compared to air temperature 
variation is clearly visible in the elongated form of the respective scatter clouds. 
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Fig. 6. Air temperature predictions (◦C) at 3 m height with 20 m spatial resolution, based on Landsat 8 band 10 and CORINE land cover data. Notice 
that the different moments in time cannot be compared directly with each other due to the different temperature scales (for highlighting the spatial 
pattern). For comparison between the seasons, see Fig. 8. The mean absolute error for the ten predicted validation points, and the root mean square 
error values for the calibration data are also presented. 

Table 6 
Comparison of the predicted air temperature (ATp) with the observed air temperature (ATo) over the sea.   

3 July 20 August 10 October 

Buoy air temperature (◦C) at 12:30 (UTM +2) 20.8 18.7 6.2 
Predicted air temperature(◦C) at 11:30 (UTM + 2) 24.8 20.3 6.6 
Temperature difference (◦C) (predicted – observed) − 4.0 − 1.6 − 0.4  
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Fig. 7. Temperature differences between LST and AT by CORINE class and season (month). The bars illustrate the average value of LST minus ATp for all pixels in each CORINE class for the five studied 
moments in time. Notice the large positive difference values (LST much higher than air temperature) among the urban classes on the left end of the graph, and the anomalous (negative) behaviour of the 
December values with air temperatures higher than LST in all CORINE classes. See text for further discussion. 
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wavelength range of 10.60–11.19 μm (Landsat 8 band 10). In the table, emissivity values for each CORINE land cover class are assigned 
from the information of ASTER and MODIS spectral libraries. 

7.1. Air temperature modelling 

The season-specific and CORINE class-specific anomalies in the temperature differences between the LST and the AT (both observed 
and modelled) (see Figs. 5 and 7) clearly demonstrate that satellite-based LST cannot be directly used as a measure of ambient air 
temperature in urban areas. This challenge can be overcome by relating the LST to AT using statistical methods, as demonstrated 
earlier by e.g., Nicole and Pui Hang 2012 using ASTER data, and Schwarz et al., 2012 using airborne thermal data. These examples, 
however, include some shortcomings such as the case-specific limited availability of ASTER and airborne data. The Landsat data used 
in this study provide regular global coverage combined with rather fine spatial resolution. 

The results of our linear regression model also demonstrate the applicability of the statistical methods by being able to convert the 

Fig. 8. Ranges between land/water surface temperature (LST/SST) and predicted air temperature (ATp) in different moments in time (~seasons).  

U. Alvi et al.                                                                                                                                                                                                            



Urban Climate 42 (2022) 101123

15
(caption on next page) 

U. Alvi et al.                                                                                                                                                                                                            



Urban Climate 42 (2022) 101123

16

LST to ambient air temperature with ca. half-a-degree accuracy (see Fig 6). Compared to other studies (e.g., Flores and Lillo, 2010; Dos 
Santos, 2020; Yang et al., 2017), our methodology is more accurate as reflected by the clearly lower RMSE values. However, our results 
also demonstrate the impact of seasonality in model performance due to thermophysically different conditions between the seasons. 
The impact of seasonality on the model efficiency has also been found e.g., by Rodríguez-Lado et al., 2007. Their study, carried out in 
Sao Paulo, shows clearly lower fits in (austral) winter months, a phenomenon that was observed also in our study. In our study area, the 
potential temporal temperature differences are as their largest in winter. On a cloudless morning (a prerequisite for good quality 
Landsat data) in December, AT in Turku can vary between − 25 ◦C and + 7 ◦C depending on the synoptic weather situation (Heino and 
Hellsten, 1991). This large variability sets a challenge especially for developing a model that would fit for all potential winter 
conditions. 

The basis for the ATp consisted of the LST datasets that were generated using the radiative transfer equation and Planck’s equation 
(see Methodology section). As stated earlier, the correctness of the emissivity parameter is crucial for getting reliable LSTs (Sobrino 
et al., 2012). We are aware that there is a risk of inaccuracies when using the emissivity values from spectral libraries and assigning 
them to the CORINE classes. There are also other unknown factors in addition to LST affecting the AT that have not been retrieved with 
the current modelling. These deserve further analyses in future research. Despite the uncertainties, the ATp based on Landsat, CORINE 
and spectral libraries was found to be a cost-efficient and reliable method that can be employed widely, especially during warm 
seasons. 

7.2. General patterns of seasonal temperature differences 

In general, rather large differences between the LST and the ATo as well as between the LST and the ATp were detected in all months 
(see Figs. 5, 7 and 8). Spatially, the differences between LST and ATp also varied substantially depending on both the CORINE class (see 
Fig. 7) and the season (Fig. 8). The largest differences were found on urban surface types, where surface temperatures were typically 
clearly higher than the adjacent ATs, especially in summer months (see Fig. 7). On water bodies, the differences were almost as large, 
but the direction varied seasonally: in summer, the ATs were higher than the sea surface temperatures (SST). The range of temperature 
difference was largest in summer months and smallest in winter (Fig. 8). Contrary to the other months, air temperature in December 
was higher than the surface temperature on all CORINE classes (see Figs. 7 and 8). This is somewhat coincidental, as the image 
acquisition day was rather warm (4.4 ◦C) compared to the long term average of daily maximum temperature for December (− 0.1 ◦C, 
Pirinen et al., 2012). 

The histograms demonstrating the pixel by pixel distribution of differences between the LST and ATp show relatively normal 
distribution in October and December (Fig. 9). In March, the distribution is negatively skewed, whereas in July and August, the 
distributions are rather flat especially in the middle part of the value continuum. The secondary peaks in the lowest part of the value 
continuums of March, July and August represent the relatively cool surfaces of the water bodies. Fig. 9 also reveals that, similarly to the 
range (Fig. 8), summer months also had larger standard deviation than winter months in the differences between LST and ATp, 
reflecting the impact of high irradiance in summer. 

7.3. Season-specific temperature differences 

In late winter / early spring (March), urban areas were generally warmer than rural areas for both LST and AT. The magnitude of 
this spatial difference is larger in LST than in ATp (see Figs. 4 and 6). We interpreted the relative warmness of the urban areas as a result 
of the heat storage capacity and anthropogenic heat of urban infrastructure. 

In summer, the intensive solar irradiance has a strong influence on LSTs. Consequently, the different land cover types - urban, semi- 
urban and rural - show clear differences in LSTs, while the ambient air temperatures do not vary as much. This is clearly demonstrated 
in the scatter plots of the July and August data (Fig. 5). Vegetation cover and LST are known to be negatively correlated (e.g., 
Procházka et al., 2011) and the relatively low temperatures in the rural and semi-urban areas in our study were also interpreted as a 
result of vegetation cover (see Zaki et al., 2020) (see Figs. 4 and 6). A similar cooling effect of vegetation has been identified also in the 
study by Alavipanah et al., 2015 and Harun et al., 2020. The differences between LSTs of the surface types are enhanced by urban 
impervious surfaces that have good thermal conductivity and high solar heat storage capacity. 

In the autumn (October), there is a clear flip in the temperatures between sea and land areas in that the sea remains relatively warm 
due to the large heat storage capacity, while the land areas are getting cooler. The temperature difference range between LST and AT 
gets narrower compared to summer. In the scatter plot (Fig. 5), the temperature points of different surface types are getting more 
closely packed than in summer. We interpret this as a result of decreasing direct solar heating in the autumn and subsequently, smaller 
temperature differences between various surface types. UHI hotspots are yet clearly detectable. 

In early winter (December) the sea areas are still warmer than the land areas, but the difference is not as large as in October. UHI 
areas are hardly detectable. All in all, the temperature range across the area is smaller than in any other season for both LST and AT. 
The different surface type points in the scatter plot (Fig. 5) are mixed, indicating little difference between the classes due to low solar 
irradiance. This also means that the CORINE classes across the study area may not have as consistent temperature behaviour as in other 
seasons. Of all the studied moments of time (seasons), December stood out as an anomaly in that regardless of the CORINE class, the 
average values of the pixel-by-pixel temperature differences between LST and AT (LST - ATp) were always negative (see Fig. 7 and 8). 

Fig. 9. Distribution of pixels for different magnitudes of surface and air temperature difference (LST minus ATp) range.  
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We interpret this as a result of a mild surface inversion situation due to low solar irradiance. 

7.4. Open emissivity and temperature data 

Coarse spatial resolution remote sensing data such as MODIS (1 km) have been widely used for estimating LST (e.g., Flores and 
Lillo, 2010 and Georgiou and Akçit, 2017). Kilometer-level resolution, however, is not adequate to unravel spatial temperature 
variation in complex urban infrastructure. The use of high-resolution Landsat data with CORINE based emissivity of 20 m grid has 
lower pixel level land cover heterogeneity as compared to coarser spatial resolution MODIS data, which have been demonstrated to 
cause an overestimate of LST seasonal fluctuations over heterogeneous land cover (Georgiou and Akçit, 2017). 

With its 48 land cover types, CORINE offers detailed land cover information. It has numerous classes for different vegetation types 
and consequently, different emissivity values especially for forests, riversides and the coast. This property makes CORINE applicable 
for accurate temperature extraction also of non-urban green areas. 

CORINE classification is available for the whole of Europe (see Copernicus, 2021). However, different regions in Europe have 
different constellations of landscapes, environments and land cover material types. Therefore, when applying our method in other 
parts of Europe, this fact ought to be kept in mind, although the employed average values of different surfaces in the emissivity table 
probably compensate for most of the regional discrepancies. 

MODIS and ASTER emissivity libraries offer an open source of information for assigning wavelength specific emissivity values for 
different land surfaces. It is, however, not a straightforward process to compile the real-life CORINE class-specific emissivities based on 
the typically laboratory-based material-specific library entries. We have carefully considered the emissivities and their potential 
seasonal variations and produced a lookup table (Table 1) that serves to provide CORINE emissivity information for further use. 

The method applied in the current study will allow production of spatially continuous AT datasets also in cities with few tem-
perature observations. Together with local LST data (extracted from remotely sensed data), any seasonal regression equation in Fig. 5 
can be applied as such after replacing the constant value by locally observed air temperature value, serving as a baseline for the local 
temperature conditions. Should there be a large number of air temperature observations available from different land uses, one can 
also modify the present equation to better reflect the local conditions. 

This is valuable for versatile urban planning, and for a number of scientific and commercial applications. Continuous AT maps will 
provide an opportunity e.g., for human comfort and health based installation of green infrastructure. Mitigating the UHI hotspots with 
green surfaces could significantly decrease the negative impacts of climate change and urbanization (e.g., Corbum, 2009; Akbari et al., 
2016). 

8. Conclusions 

The challenge in acquiring detailed temperature information in urban areas arises from the fact that remotely sensed land surface 
temperatures are not necessarily reliable representations of ambient air temperatures. This is clearly demonstrated in our analyses, 
especially for the summer season with high solar irradiance. We have developed a reasonably simple method for improving high spatial 
resolution temperature information using open data. The present study demonstrated that it is possible to reliably (ca. half-a-degree 
accuracy; MAE 0.36–0.62 ◦C) predict urban air temperatures (AT) at 3-m elevation using satellite remote sensing data, land cover 
information, and emissivity libraries. We employed Landsat 8 thermal band 10, CORINE land cover classification, and MODIS & 
ASTER emissivity libraries to produce AT maps at 20 m spatial resolution. Our dense reference dataset of thermometer-based AT 
observations allowed us to evaluate the quality of the remote sensing based predictions. However, our method allows acquiring the 
temperature information without this kind of detailed reference, which is typically not available in cities. CORINE-based emissivity 
map proved to be a well-performing way to map emissivity indirectly through open access LULC classification. 

Correlation and regression analyses demonstrate that the relationship between surface and air temperature varies seasonally. 
Except for December, the Pearson’s correlation coefficients were statistically significant (0.449–0.654, p ≤ 0.001). The modelling 
accuracy was best in spring, summer and autumn months. Although the explanatory power of the model was weaker in the early winter 
time, the ATs were still predictable with little error. The method described here can be applied in no-snow conditions only. 

Through the spatially continuous AT maps, seasonal urban heat and cold islands are easily detectable. The predicted continuous air 
temperature clearly exhibited the dispersed nature of temperature differences in the city. Most of the high temperature hot spots were 
in the areas of large buildings with dark, low albedo roofs, or large asphalt surfaces such as parking lots. The relatively cool areas 
consisted of vegetation, or were located near water bodies, or a combination of the two, demonstrating the importance of green 
infrastructure as a cooling agent. Our method will support urban planning in mitigating urban heat island effect, for example in the 
form of tactical installation of green infrastructure in built-up areas. 

9. Software used 

Arc GIS 10.3.1, SPSS version 24 and Mendeley. 
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