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Abstract. Learning preferences between objects constitutes a challenging task that
notably differs from standard classification or regression problems. The objective
involves prediction of ordering of the data points. Furthermore, methods for learn-
ing preference relations usually are computationally more demanding than standard
classification or regression methods. Recently, we have proposed a kernel based
preference learning algorithm, called RankRLS, whose computational complexity
is cubic with respect to the number of training examples. The algorithm is based
on minimizing a regularized least-squares approximation of a ranking error func-
tion that counts the number of incorrectly ranked pairs of data points. When non-
linear kernel functions are used, the training of the algorithm might be infeasible if
the amount of examples is large. In this paper, we propose a sparse approximation
of RankRLS whose training complexity is considerably lower than that of basic
RankRLS. In our experiments, we consider parse ranking, a common problem in
natural language processing. We show that sparse RankRLS significantly outper-
forms basic RankRLS in this task. To conclude, the advantage of sparse RankRLS
is the computational efficiency when dealing with large amounts of training data
together with high dimensional feature representations.

1. Introduction

Recently, learning preference relations has received a lot of attention in machine learning
research. Generally, the task can be cast as learning a function that is capable of rank-
ing data points according to some given preference relation. The ranking algorithms are
widely used in many areas such as information retrieval [6], natural language processing
[2], et cetera.

In many cases the preference learning problem is reduced to classification of data
point pairs, where one pair is preferred to the other one [5]. A major drawback associ-
ated with this approach is that the number of data point pairs grows quadratically with
respect to the size of the dataset, making the training of a preference learner too expen-
sive for large datasets. In [7], we proposed RankRLS whose computational complexity
is the same as that of the standard RLS regression [12], even though RankRLS takes
account of the data point pairs instead of the individual data points. A similar algorithm



was proposed independently by [3]. The computational complexity of the kernel version
of RankRLS is O(m3), where m is the size of the training set. In practise, also this may
be infeasible for very large training sets. In this paper, we propose sparse RankRLS, a
sparse regularized least-squares algorithm for learning preference relations. The compu-
tational complexity of sparse RankRLS is O(mr2). In fact, r can be selected to be much
smaller than m and in some cases it can be considered as a constant. Thus, our algorithm
can efficiently perform ranking using a large amount of training data together with high
dimensional feature representations.

Sparse RankRLS can be used to learn pairwise preferences from scored data. In our
setting, every data point provided to the algorithm consists of an input and its real valued
score. The algorithm can be used for both object ranking and label ranking tasks (see
e.g. [4] for in depth discussion about these types of tasks). However, in this paper we
consider only label ranking. Therefore, we define every input to consist of an object and
its label.

As an example, we consider the task of parse ranking, a common problem in natural
language processing. In this case, each input consists of a sentence and its parse. That is,
the sentence and the parse are considered as an object and a label, respectively. We are
given a set of sentences and each sentence is associated with a set of parses. The task is to
find the correct ordering of the parses of a sentence. We are not interested in preferences
between parses associated with different sentences. Thus, the only relevant input pairs are
the ones that are associated with the same sentence. As another example one can consider
information retrieval task where we are given a set of web-search results obtained with a
set of queries. The aim is to rank them according to the user preference. In this case, we
are not interested in the order of the web documents obtained from different queries.

Training of the existing kernel based ranking algorithms, such as RankSVM [5],
may be infeasible when the size of the training set is large. This is especially the case
when nonlinear kernel functions are used. In this study, we suggest that sparse RankRLS
makes it possible to take advantage of much more data in the training process than the
non-sparse kernel methods do.

2. Ranking Task

We construct a training set from a given set of m data points. A data point z = (x, y)
consist of an input x ∈ X and its score y ∈ R, where X , called the input space, can be
any set. We say that a data point z = (x, y) is preferred to z′ = (x′, y′) if y > y′ and
vice versa. We call data points tied if y = y′. In this paper, we consider label ranking (see
e.g. [4]), where every input consists of an object and its label. An input pair is considered
relevant if both inputs are associated with the same object. In parse ranking tasks, for
example, each object is a sentence and the labels associated with it are parses generated
for the sentence. The score of an input indicates how well the parse included in the input
matches the correct parse of the sentence.

Following [7], we define an undirected graph whose vertices correspond to the train-
ing inputs. Two vertices in the graph are connected with an edge if the corresponding
pair of inputs is relevant to the task. Let W ∈ Rm×m denote the adjacency matrix of
the graph. That is, Wi,j = 1 when the vertices indexed by i and j are connected, and
Wi,j = 0 otherwise. Further, let X = (x1, . . . , xm) ∈ (Xm)T be a sequence of inputs,



where (Xm)T denotes the set of row vectors whose elements belong to X . We also de-
fine Y = (y1, . . . , ym)T ∈ Rm to be a sequence of the corresponding scores. Finally, we
consider a training set to be the triple S = (X,Y,W ).

Let us denote RX = {f : X → R}, and let H ⊆ RX be the hypothesis space.
Further, let f(X) = (f(x1), . . . , f(xm))T . We measure how well a hypothesis f ∈ H is
able to predict the direction of preference for the input pairs that are relevant to the task
with the following function known as the disagreement or ranking error:

d(f(X), Y,W ) =
1
N

m∑
i,j=1

Wi,j
1
2

sign
(
yi − yj

)
− sign

(
f(xi)− f(xj)

), (1)

where N =
∑m
i,j=1Wi,j and sign(·) is the signum function.

3. Regularization

In order to construct an algorithm that selects a hypothesis f from H, we have to define
an appropriate cost function that measures how well the hypotheses fit the training data.
We would also like to avoid too complex hypotheses that overfit at the training phase and
are not able to generalize to unseen data. To give a formal representation of these aims,
we follow [13] and consider the framework of regularized kernel methods in whichH is
so-called reproducing kernel Hilbert space (RKHS) defined by a positive definite kernel
function k. The kernel functions (see e.g. [14]) are defined as follows. Let F denote
the feature vector space. For any mapping Φ : X → F , the inner product k(x, x′) =
〈Φ(x),Φ(x′)〉 of the mapped data points is called a kernel function. Using RKHS as our
hypothesis space, we define the learning algorithm as

A(S) = argmin
f∈H

J(f),

where

J(f) = c(f(X), Y,W ) + λ‖f‖2k, (2)

f(X) = (f(x1), . . . , f(xm))T , c is a real valued cost function, and λ ∈ R+ is a regu-
larization parameter controlling the tradeoff between the cost on the training set and the
complexity of the hypothesis. By the generalized representer theorem ([13]), the mini-
mizer of (2) has the following form:

f(x) =
m∑
i=1

aik(x, xi), (3)

where ai ∈ R. Using this notation, we rewrite f(X) = KA and ‖f‖2k = ATKA, where
A = (a1, . . . , am)T .

It would be natural to use the disagreement error (1) as a cost function, however, it is
well known that this leads to intractable optimization problem. Thus, following [7], we



use a least-squares approximation of (1), that is, regressing the differences yi − yj with
f(xi)− f(xj):

c(f(X), Y,W ) =
1
2

m∑
i,j=1

Wi,j((yi − yj)− (f(xi)− f(xj)))2. (4)

Note also that when using (4), not only the sign of yi − yj but also its magnitude is
included in the objective function (2).

Let L = D−W be the Laplacian matrix [1] of the graph W , where D is the degree
matrix of W . That is, D is a diagonal matrix whose entries are defined as

Di,i =
m∑
j=1

Wi,j . (5)

We observe that for any vector p ∈ Rm and an undirected weighted graph W with m
vertices, we can write

1
2

m∑
i,j=1

Wi,j(pi − pj)2 = pTDp− pTWp = pTLp.

Therefore, by selecting p = Y −KA, we rewrite the cost function (4) in a matrix form
as

c(f(X), Y,W ) = (Y −KA)TL(Y −KA).

The RankRLS algorithm can be presented in matrix form as

A(S) = argmin
A

J(A),

where

J(A) = (Y −KA)TL(Y −KA) + λATKA. (6)

As shown in [7], the minimizer of (6) is

A = (KLK + λK)−1KLY. (7)

The computational complexity of the matrix inversion operation involved in (7) is
O(m3). In practice, this makes the RLS training procedure infeasible when the amount
of data available is large. Next, we propose a solution for this problem.



4. Sparse RankRLS

In this section, we propose an algorithm that is based on a similar kind of idea as the
subset of regressors method [9,15] for the standard regularized least-squares regression.
For in depth discussion of this type of techniques, we refer to [11].

Let M = {1, . . . ,m} be the index set in which the indices refer to the examples
in the training set and let R ⊆ M , |R| = r. By ZRM we denote the submatrix of
Z ∈ Rm×m that contains only the rows indexed byR. Further, ZRR denotes a submatrix
of Z having only rows and columns indexed by R.

Now we consider instead of (3) a solution that allows only the training instances
indexed by R to have nonzero coefficient, that is,

f(x) =
∑
i∈R

aik(x, xi).

We call the training examples indexed by R basis vectors. The problem of finding this
type of hypothesis can be solved by finding the coefficients ai, where i ∈ R. We observe
that f(X) = KMRA and ‖f‖2k = ATKRRA, where a coefficient vector A ∈ Rr,
determines the sparse approximation of the minimizer of (2). Using these definitions, we
present a method we call sparse RankRLS:

A(S) = argmin
A∈Rr

J(A)

and

J(A) = (Y −KMRA)TL(Y −KMRA) + λATKRRA.

We take the derivative of J(A) with respect to A:

d

dA
J(A) = −2KRML(Y −KMRA) + 2λKRRA

= −2KRMLY + (2KRMLKMR + 2λKRR)A

We set the derivative to zero and solve with respect to A:

A = (KRMLKMR + λKRR)−1KRMLY. (8)

The calculation of the solution (8) requires multiplications with am×mmatrix L which
might be infeasible in practise. However, it can be performed efficiently using the fol-
lowing method.

Let B ∈ Rm×q , where q is number of objects in the training set. The value of Bi,j
is 1 when the ith input is associated with the jth object and 0 otherwise. Then matrix W
can be written as W = BBT . Now, the multiplication KRMLKMR can be written as

KRMLKMR = KRM (DKMR −B(BTKMR)),

where D is the diagonal degree matrix whose entries are defined in (5). The multiplica-
tion KRMLY can be done analogously. The computational complexity of the inversion



operation used on r× r matrices is O(r3). The complexity of the matrix multiplications
isO(mr2), becauseB contains onlym nonzero elements. Selecting r to be much smaller
than m, the overall training complexity of the sparse RankRLS algorithm is O(mr2).

Clearly, the selection of the index set R may have an influence on results obtained
by our method. Different approaches for selecting R are discussed, for example, in [12].
There, it was found that simply selecting the elements of R randomly performs no worse
than more sophisticated methods.

4.1. Efficient Training via Decompositions

One advantage of using sparse RankRLS instead of other ranking methods is efficient
selection of regularization parameter. Using Cholesky decompositions for KRR, we can
rewrite the solution (8) as follows:

A = (KRMLKMR + λCCT )−1KRMLY,

where KRR = CCT . Now,

(KRMLKMR + λCCT )−1 = (CC−1KRMLKMR(CT )−1CT + λCCT )−1

= (CT )−1(C−1KRMLKMR(CT )−1 + λI)−1C−1

= (CT )−1(V ΛV T + λI)−1C−1

= (CT )−1V Λ̂λV TC−1,

where V ΛV T is the eigen decomposition of C−1KRMLKMR(CT )−1 with V , Λ being
the eigenvector matrix and diagonal matrix containing the corresponding eigenvalues,
respectively, and Λ̂λ = (Λ + λI)−1. Therefore, we rewrite the solution (8) as follows:

A = (CT )−1V Λ̂λV TC−1KRMLY.

The decompositions and the inversion of C can be calculated in O(r3) time, and hence
the overall training complexity is not increased. The computational cost of calculating
Λ̂λ is O(r), since (Λ +λI) is a diagonal matrix. When the matrices V TC−1KRMLY ∈
Rr×1 and (CT )−1V ∈ Rr×r are stored in memory, the subsequent training with different
values of regularization parameters can be performed in O(r2) time.

5. Experiments

We evaluate the performance of sparse RankRLS on the task of ranking of the parses
of an unseen sentence. We use the BioInfer corpus [10] which consists of 1100 man-
ually annotated sentences. A detailed description of the parse ranking problem and the
data used in the experiments is given in [16]. Each sentence is associated with a set of
candidate parses. The manual annotation of the sentence, present in the corpus, provides
the correct parse. Further, each candidate parse is associated with a goodness score that
indicates how close to the correct parse it is. The correct ranking of the parses associated
with the same sentence is determined by this score. While the scoring induces a total or-



Basic RLS Regressor Sparse RLS Regressor Basic RankRLS Sparse RankRLS

0.27 0.24 0.23 0.21

Table 1. Comparison of the parse ranking performances of RLS regressor, sparse RLS regressor, basic
RankRLS, and sparse RankRLS using the disagreement error (1) as the performance evaluation measure.

der over the whole set of parses, the preferences between parses associated with different
sentences are not considered in the parse ranking task.

As a similarity measure for parses, we use the best performing graph kernel consid-
ered in [8]. The disagreement error (1) is used to measure the performance of the ranking
algorithms. The error is calculated for each sentence separately and the performance is
averaged over all sentences. We have previously shown that basic RankRLS significantly
outperforms the basic RLS regressor in the parse ranking task [7]. As shown in Sec-
tion 4, with sparse RankRLS it is possible to take advantage of much more training data
than with basic RankRLS only with a small increase in computational complexity. In
our experiments, we test how beneficial this is by comparing sparse RankRLS with basic
RankRLS. Furthermore, we make a comparison with basic and sparse RLS regressors.
As the basis vectors of the sparse algorithms, we use the training examples of the non-
sparse ones, while adding more examples as non-basis vectors. We select 500 sentences
for the training of rankers. For basic RankRLS we randomly select 5 parses per sentence,
and for sparse RankRLS we use additional 15 randomly selected parses per sentence as
non-basis vectors. Thus, m = 10000 and r = 2500 for the sparse methods.

The algorithms have the regularization parameter λ that controls the trade-off be-
tween the minimization of the training error and the complexity of the learned func-
tion. Further, kernel function has parameters too. We evaluate the performance of sparse
RankRLS as well as other baseline methods by performing a 10-fold cross-validation on
the sentence level so that all parses generated from the same sentence would always be
in the same fold. We use 500 sentences for the parameter estimation and the rest are re-
served for the final evaluation. The appropriate values of the regularization and the kernel
parameters are determined by grid search with 10-fold cross-validation on the parameter
estimation data. The parameter selection is performed separately for each experiment.

Finally, the algorithms are trained on the whole parameter estimation data set with
the best found parameter values and tested with the sentences reserved for the final val-
idation. The results of the validation are presented in Table 1. The results show that the
sparse RankRLS algorithm notably outperforms RLS regressor, sparse RLS regressor,
and basic RankRLS. Furthermore, to test the statistical significance of the performance
differences between the sparse RankRLS algorithm and the other methods, we conducted
Wilcoxon signed-ranks tests. The sentences reserved for the final validation are consid-
ered as independent trials. We observed that the performance differences are statistically
significant (p < 0.05).

6. Conclusion

We propose sparse RankRLS, a sparse regularized least-squares algorithm, for learning
preference relations. The computational complexity of the algorithm is O(mr2), where
m is the number of training examples, and r is much smaller than m. We formulate the
algorithm within the kernel framework. The key feature of the algorithm is the ability to
efficiently train the ranker with large amounts of data in high dimensional feature spaces,



thus improving the ranking performance. This is achieved by finding a sparse solution
to the regularized least-squares problem. In our experiments, we consider parse ranking
task. It is shown that sparse RankRLS significantly outperforms basic RLS regressor,
sparse RLS regressor, and basic RankRLS.

Acknowledgments

This work has been supported by Tekes, the Finnish Funding Agency for Technology and
Innovation. We would like to thank CSC, the Finnish IT center for science, for providing
us extensive computing resources.

References

[1] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, 1991.
[2] M. Collins. Discriminative reranking for natural language parsing. In Proceedings of the 17th Inter-

national Conference on Machine Learning, pages 175–182, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[3] C. Cortes, M. Mohri, and A. Rastogi. Magnitude-preserving ranking algorithms. In Z. Ghahramani,
editor, Proceedings of the 24th Annual International Conference on Machine Learning, pages 169–176.
Omnipress, 2007.

[4] J. Fürnkranz and E. Hüllermeier. Preference learning. Künstliche Intelligenz, 19(1):60–61, 2005.
[5] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression. In Proceed-

ings of the Ninth International Conference on Articial Neural Networks, pages 97–102, London, 1999.
Institute of Electrical Engineers.

[6] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining, pages 133–142, New York, NY, USA, 2002. ACM Press.

[7] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski. Learning to rank with pairwise
regularized least-squares. In T. Joachims, H. Li, T.-Y. Liu, and C. Zhai, editors, SIGIR 2007 Workshop
on Learning to Rank for Information Retrieval, pages 27–33, 2007.

[8] T. Pahikkala, E. Tsivtsivadze, J. Boberg, and T. Salakoski. Graph kernels versus graph representations:
a case study in parse ranking. In T. Gärtner, G. C. Garriga, and T. Meinl, editors, Proceedings of the
ECML/PKDD’06 workshop on Mining and Learning with Graphs (MLG’06), Berlin, Germany, 2006.

[9] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9),
1990.

[10] S. Pyysalo, F. Ginter, J. Heimonen, J. Björne, J. Boberg, J. Järvinen, and T. Salakoski. BioInfer: A
corpus for information extraction in the biomedical domain. BMC Bioinformatics, 8:50, 2007.

[11] J. Quinonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Approximation methods for gaussian
process regression. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel
Machines, pages 203–224. MIT Press, Cambridge, Ma, USA, 09 2007.

[12] R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares classification. In J. Suykens, G. Horvath,
S. Basu, C. Micchelli, and J. Vandewalle, editors, Advances in Learning Theory: Methods, Model and
Applications, volume 190 of NATO Science Series III: Computer and System Sciences, pages 131–154,
Amsterdam, 2003. IOS Press.

[13] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In D. Helmbold and
R. Williamson, editors, Proceedings of the 14th Annual Conference on Computational Learning Theory,
pages 416–426, Berlin, Germany, 2001. Springer.

[14] B. Schölkopf and A. J. Smola. Learning with kernels. MIT Press, Cambridge, Massachusetts, 2002.
[15] A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In P. Langley,

editor, Proceedings of the Seventeenth International Conference on Machine Learning, pages 911–918,
San Francisco, Ca, 2000. Morgan Kaufmann Publishers Inc.

[16] E. Tsivtsivadze, T. Pahikkala, S. Pyysalo, J. Boberg, A. Mylläri, and T. Salakoski. Regularized least-
squares for parse ranking. In A. F. Famili, J. N. Kok, J. M. Peña, A. Siebes, and A. J. Feelders, editors,
Advances in Intelligent Data Analysis VI, pages 464–474. Springer, 2005.


