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Summary Autoclave heating (AH) has been applied to modify the dietary fibre composition of dried brewers’ spent

grain (BSG) flour, which required multiple drying processes. The current study aimed to investigate the

influence of the thermal levels and water ratio on AH, as an alternative, in altering the chemical composi-

tions, antioxidant properties, and functionality of undried fresh BSG. The results showed that AH con-

verted the saturated fatty acids into polyunsaturated fatty acids. AH reduced ketones and furans

regardless of the water ratio while the amounts of aldehydes, alcohols, alkenes, and fatty acids depended

on the water ratio. The elimination and formation of several volatile compounds were identified due to

the AH depending on the water ratio. The total flavan-3-ols, antioxidant activities, and water-holding

capacity of BSG were improved as an impact of thermal elevation and regardless of the water ratio. In

conclusion, AH treatment on fresh, undried BSG showed a beneficial performance in improving the qual-

ity of BSG for further valorisation as a value-added by-product.

Keywords Agroindustrial by-products, fatty acids profile, oil-holding capacity, polyphenolic quantification, volatile compounds, water-

holding capacity.

Introduction

Brewers’ spent grain (BSG) has been reported for its
nutritional value as well as biological properties due to
the presence of polyphenolic compounds, protein, fatty
acids, and dietary fibre (Lynch et al., 2016; Naibaho &
Korzeniowska, 2021a). The presence of polyphenolic
compounds, protein, fatty acids, and dietary fibre is
responsible for immunomodulatory properties as well
as antimicrobial and anti-inflammatory activity. In
addition to that, BSG possesses antioxidant activities
such as lipid peroxidation, deoxyribose scavenging
activity, superoxide dismutase, catalase, glutathione,
DPPH, FRAP, and ABTS (Lynch et al., 2016; Naibaho
& Korzeniowska, 2021a). Although BSG possesses high

potential as a food and nutraceutical ingredient, the
majority of BSG still remains unused as land waste and
a small fraction is used as animal/fish feed and fertiliser
(Skendi et al., 2018; Lao et al., 2020). BSG is a com-
plex material which is dominated by insoluble dietary
fibre (Naibaho et al., 2021). However, the biological
properties of BSG are mostly studied due to the pres-
ence of phenolic compounds, followed by protein (Wen
et al., 2019; Naibaho et al., 2022a, 2022b). Phenolic
compounds exist in a hydroxyl group of dietary fibre
while protein is entrapped in the vacuole cell wall of
BSG materials, which consists of dietary fibre (Naibaho
& Korzeniowska, 2021a). Besides the fact that BSG
increased the nutritional value of BSG-added food
products, BSG tended to inversely impact food process-
ing aspects such as technological processing and
mechanical properties which consequently diminished
the physical appearance of the final products, as well as
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sensory acceptability (Naibaho & Korzeniowska,
2021a).

Aiming to improve the yield of targeted compounds
as well as its biological properties, several studies have
also been conducted including solid-state fermentation
(Cooray & Chen, 2018; Tan et al., 2019), pulsed elec-
tric field (Mart�ın-Garc�ıa et al., 2020), pH elevation
(Connolly et al., 2021), enzyme treatments (Connolly
et al., 2019), and the combination of thermal and
enzyme treatment (Budaraju et al., 2018). One of the
most common physical treatments on BSG is thermal
exposure such as steam explosion, microwave super-
heating, and autoclave treatment (Coelho et al., 2014;
Kemppainen et al., 2016; Naibaho et al., 2021, 2022b).
Temperature elevation improved the yield and
enhanced the functionality of arabinoxylans and
arabinoxylan-oligosaccharides as well as the availabil-
ity of phenolic compounds (Budaraju et al., 2018).
Furthermore, involvement of high pressure and tem-
perature such as steam explosion, autoclave heating,
high-pressure homogenisation, extrusion, and mechani-
cal treatment improved the fibre functionality (Xie
et al., 2017; Kieserling et al., 2019; Yan et al., 2019; Li
et al., 2019a, 2019b). Furthermore, the addition of
BSG in food products was limited due to its insoluble
dietary fibre in disrupting the food matrix formation.
Therefore, dietary fibre modification of BSG was
emphasised (Naibaho & Korzeniowska, 2021a).

Autoclave heating treatment (AH) on rehydrated
dried BSG was reported for its ability to degrade
insoluble dietary fibre and convert it into soluble diet-
ary fibre (Naibaho et al., 2021), thus improving the
biological properties and polyphenolic composition
(Naibaho et al., 2022b). Moreover, AH improved the
functionality of dietary fibre from soybean curd resi-
due (Li et al., 2019b), increased the resistant starch
content in rice grains (Zheng et al., 2020), and
enhanced the solubility-related properties and stability
of the colloidal suspension (Nawaz et al., 2020). Usu-
ally, BSG is dried at a high temperature and/or stored
at freeze temperature before it is used for certain treat-
ments that require energy consumption. Treatment on
fresh BSG is seemingly challenging due to its more
practical use for several stakeholders and low-cost pro-
duction. Treatment on wet or fresh BSG has been con-
ducted in order to improve the protein and dietary
fibre composition (He et al., 2019) (He et al., 2019).
AH is a simple, easy-to-operate, and low-cost instru-
ment; it is thus promising in BSG treatment, which
involves high temperature and pressure elevation. AH
has never been applied on wet BSG, particularly its
impact on functionality, chemical constituents, and
biological properties due to the different ratio of sludg-
ing. Most of the studied treatments were evaluated on
phenolic compounds and/or protein composition in
addition to dietary fibre composition. The influence of

the energy input such as temperature and pressure on
the fatty acid profile and volatile compounds of BSG
has never been investigated. Volatile profile is an
important parameter due to its direct impact on food
product application, in terms of the valorisation of
BSG as a food ingredient.
This study aimed to evaluate the influence of AH at

different thermal exposures on undried fresh BSG
properties including its functionality, polyphenolic
composition, fatty acid profile, aromatic compounds,
and in vitro antioxidant activities. Based on pre-
experiments, the addition of water in AH on BSG is
technically needed to allow a homogenous thermal
exposure. However, different amounts of water in fresh
BSG generated different viscosities, thus impacting the
mixing process and energy. Minimising water use in
industries is suggested in order to achieve more sus-
tainable treatments and implement cleaner processing
methods (Bailone et al., 2022). Therefore, the current
study investigated different levels of water addition
into BSG slurry on AH. It was hypothesised that ther-
mal decomposition of the BSG matrix directly altered
the hydroxyl groups, which are polyphenolic com-
pounds, as well as its antioxidant properties due to the
degradation of dietary fibre. Previous studies investi-
gated the influence of thermal degradation on protein
extraction. However, degradation of the vacuole cell of
BSG might release fatty acids, which has never been
evaluated. Therefore, the current study evaluated the
fatty acid composition of BSG in addition to volatile
compounds as well as water-holding capacity and oil-
holding capacity as a function of dietary fibre degrada-
tion.

Materials and methods

Materials

Fresh BSG with a moisture content of approximately
70–75% was supplied by a local brewery in Wroclaw,
Poland. BSG was ground to pass 0.2 mm and kept in
a polyethylene bag. BSG then was stored at a freezing
temperature prior to the experiment.
UPLC-grade water was prepared by using the HLP

SMART 1000s system (Hydrolab, Gdansk, Poland).
Immediately, before use, the water was filtered using a
0.22 lm membrane filter. Trolox (6-hydro-2,5,7,8-
tetramethylchroman-2-carboxylic acid) was purchased
from Sigma-Aldrich (Steinheim, Germany). All the
chemicals used were analytical grade.

Experimental design

BSG was allowed to defrost at room temperature just
before the treatment. BSG was mixed properly with
distilled water at two different ratios 1:1 and 1:2

� 2022 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd
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(BSG:distilled water, w/v). Different time exposures on
BSG by autoclave treatment identified that 12 min
treatment generated a medium impact on the degrada-
tion of dietary fibre (Naibaho et al., 2021), a higher
impact on polyphenolic content at 90 °C, and a med-
ium impact at 110 and 130 °C (Naibaho et al., 2022b).
Therefore, the current study was conducted at 12 min
time exposures at different temperatures (90, 110, and
130 °C) and different water ratios. Untreated fresh
BSG was provided for comparison. Therefore, seven
samples were obtained. The BSG was then dried by
oven drying at 75 °C for 16 h to reach a moisture
below 6% (Table 1). The sample was ground using a
lab scale blender for 5 min with a 10-s pause every
1 min. Samples were packed into aluminium foil and
kept at 10 °C for further analysis.

The impact of the water ratio during the AH was
evaluated on volatile compositions. The analysis per-
formed only represented the water ratio, instead of the
temperature level. The sample was chosen as the med-
ium temperature treatment, which is 110 °C at two dif-
ferent ratios in comparison to the untreated BSG.
Therefore, three different samples were compared for
their volatile profiles.

Measurement of fatty acids composition by GC-MS

Total lipid was extracted following the procedures as
described previously (F�arcas� et al., 2015). Lipid was
derivatised into fatty acid methyl esters (FAMEs) fol-
lowing procedures described in a previous study (Now-
acki et al., 2017). After that, the fatty acid profile was
analysed by using a gas chromatograph (GC6890) cou-
pled with a mass spectrometer 5983 MS (Agilent Tech-
nologies Inc., Santa Clara, CA, USA) equipped with a

quadrupole mass detector. Separation was performed
in a capillary column HP-88 (0.25 mm 9 100 m) filled
with an 88:12 cyanopropyl-aryl poly-siloxane bed with
a grain size of 0.2 lm. Helium (flow rate 1 mL min�1)
was used as the mobile phase and the sample was
injected in the split mode at 4:1. The program was set
with an initial temperature of 60 °C for 2 min, heating
at 20 °C min�1 to reach 180 °C and 3 °C min�1 to
reach 220 °C. The temperature was held for 15 min.
Heating continued to reach 250 °C at a rate of
5 °C min�1, and the temperature was held for 8 min.
The spectra were identified using the algorithm of
searching the National Institute of Standards and
Technology (NIST) library (2008 version).

Analysis of volatile compounds by GC–MS

Dried sample was mixed with distilled water at a ratio
of 1:2 and closed properly. The volatiles were isolated
by headspace solid-phase microextraction (HS-SPME)
following procedures described in previous studies
(Dong et al., 2013; Ktenioudaki et al., 2013; O’Shea
et al., 2017) by GC–MS 5975 C. The mixture was
heated at 60 °C and the fibre (50/30 lm DVB/CAR/
PDMS, Supelco) was exposed to the headspace for
30 min. The length of the fibre in the headspace was
kept constant. The fibre was exposed to the injector of
the gas chromatograph at 250 °C. The fibre was left at
the port injector for 5 min to remove the contami-
nants. Helium was used as the carrier gas
(1 mL min�1). Separation of compounds was per-
formed on a DB-5 column (30 m 0.25 mm,
df = 0.25 lm, Agilent J&W, USA). The injector, ion
source, and interface temperatures were set at 250,
200, and 260 °C, respectively. The mass spectrometer

Table 1 Fatty acids composition of autoclaved BSG

Fatty acids (%)

BSG treatments

Control 90 °C/(1:1) 110 °C/(1:1) 130 °C/(1:1) 90 °C/(1:2) 110 °C/(1:2) 130 °C/(1:2)

C15:0 – – – 29.28 � 0.00 – – –

C16:0 40.22 � 0.00 21.55 � 0.00 21.63 � 0.00 – 21.82 � 0.00 21.38 � 0.00 21.82 � 0.00

C17:0 4.93 � 0.00 – – – – – –

C18:0 – 3.07 � 0.00 2.67 � 0.00 – 3.11 � 0.00 3.07 � 0.00 3.11 � 0.00

C18:1 (n-9) 19.39 � 0.00 17.96 � 0.00 16.92 � 0.00 – 17.40 � 0.00 17.74 � 0.00 17.40 � 0.00

C18:2 (n-6) 32.81 � 0.00 48.84 � 0.00 51.67 � 0.00 70.72 � 0.00 48.92 � 0.00 49.06 � 0.00 48.92 � 0.00

C18:3 (n-3) 2.66 � 0.00 5.64 � 0.00 5.40 � 0.00 – 5.91 � 0.00 5.90 � 0.00 5.91 � 0.00

C20 – 0.86 � 0.00 – – 0.83 � 0.00 0.81 � 0.00 0.83 � 0.00

C20:1 – 2.09 � 0.00 1.71 � 0.00 – 2.01 � 0.00 2.04 � 0.00 2.01 � 0.00

Total SFA 45.15 � 0.00a 25.47 � 0.01e 24.30 � 0.00g 29.28 � 0.00b 25.76 � 0.00d 25.26 � 0.00f 25.76 � 0.00c

Total MUFA 19.39 � 0.00e 20.05 � 0.00a 18.63 � 0.00f 0.00g 19.41 � 0.00d 19.78 � 0.00b 19.41 � 0.00c

Total PUFA 35.46 � 0.00g 54.48 � 0.00e 57.07 � 0.00b 70.72 � 0.00a 54.83 � 0.00d 54.96 � 0.00c 54.83 � 0.00f

The data are shown as mean � standard deviation with at least duplicate analysis. Letters show the significant differences from other treatment in

the same row (P < 0.05).
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on behalf of Institute of Food, Science and Technology (IFSTTF).

International Journal of Food Science and Technology 2022

Autoclave treatment on sludged spent grain J. Naibaho et al. 3

 13652621, 0, D
ow

nloaded from
 https://ifst.onlinelibrary.w

iley.com
/doi/10.1111/ijfs.16042 by U

niversity of T
urku, W

iley O
nline L

ibrary on [12/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



was operated in the electron-impact mode with the
electron energy set at 70 eV and scan range of 40–
400 m/z. The oven temperature was elevated from 40
to 250 C at a rate of 4 °C min�1, and the temperature
was held constant for 5 min. The peak area was mea-
sured either by full scanning or by choosing specific
fragments. The volatile compounds were tentatively
identified using the spectra of reference compounds
from NIST.

Identification of polyphenolic by UPLC–MS/MS and
in vitro antioxidant activities

Methanol extracts of BSG were prepared following
the procedures as described previously (Turkiewicz
et al., 2020b) with duplicates. In vitro antioxidant capa-
bilities for ABTS and FRAP (Benzie & Strain, 1996;
Re et al., 1999) in triplicate for duplicate extracts. The
identification and quantification of flavan-3-ols and
phenolic acids were performed by liquid chromatogra-
phy–tandem mass spectrometry (LC–MS-MS) following
procedures as described in the previous studies (Turkie-
wicz et al., 2020a, 2021; Tkacz et al., 2021). The assess-
ment was performed in duplicate.

Analysis of techno-functional properties

The water-holding capacity (WHC) and oil-holding
capacity (OHC) were performed to represent the
techno-functionality of BSG following the procedures
as described in a previous study (Ktenioudaki
et al., 2013).

Statistical analysis

Statistical analysis was conducted using one-way anal-
ysis of variance (ANOVA) followed by Tukey’s post hoc
test in Statistica software version 13.5.0.17.

Results and discussion

Influence of AH on fatty acid compositions

The fatty acid composition of BSG is presented in
Table 1. In general, the AH treatment reduced the
amount of saturated fatty acids (SFA) and increased
the level of polyunsaturated fatty acids (PUFA). The
majority of AH improved the amount of monounsatu-
rated fatty acids (MUFA) except on the ratio of 1:1 at
110 and 130 °C. The study revealed that AH decreased
C17:0 at all temperatures and ratios. However, the for-
mation of C15:0 was identified at 130 °C (1:1), C18:0
and C20:1 were observed in all treatments except at
130 °C (1:1), and C20:0 was observed at a 1:2 ratio
and at 90 °C (1:1). Remarkably, the treatment at
130 °C (1:1) discharged the majority of fatty acid

compared to that in untreated BSG. The results
demonstrated that untreated BSG is dominated by
C16:0, which is SFA; meanwhile, AH-treated BSG is
dominated by C18:2 (n-6). However, in total, both
treated and untreated BSG is dominated by PUFA.
This result is aligned with the previous reports which
identified that fatty acid of BSG is dominated by
PUFA (F�arcas� et al., 2015; Balogun et al., 2017; Mal-
len & Najdanovic-Visak, 2018).
The results showed that AH allowed the rearrange-

ment and/or depolymerisation of SFA into UFA. The
modification of SFA into UFA in the current study
also might be due to the release of UFA from the
polysaccharides main chain due to the thermal expo-
sure as observed previously (Rahman et al., 2021). It
has been reported previously that higher temperatures
increased the amount of UFA and reduced the amount
of SFA (Mallen & Najdanovic-Visak, 2018) due to the
increasing transesterification rate, which consequently
improved the mass transfer from the matrix (Mallen &
Najdanovic-Visak, 2018). It is widely accepted that
PUFA benefits human health while SFA is recognised
to induce non-communicable diseases. Therefore, AH
on BSG improves the potential application of BSG in
nutraceutical and/or functional food.

Impact of AH on the profile of volatile compounds

The impact of AH on volatile compounds of BSG was
investigated in one of each ratio group (1:1 and 1:2) at
the medium temperature (110 °C), and the result is
presented in Table 2. In general, quantitative volatile
compounds on BSG are dominated by the aldehydes
group. The result showed that AH reduced the amount
of ketones, alcohols, and furans and increased the
levels of fatty acids and aldehydes. Furthermore,
besides the alteration of quantitative amounts of vola-
tile compounds, AT on BSG with different water
ratios discharged and formed several volatile com-
pounds on BSG.
AH with a water ratio at 1:2 increased the amount

of aldehydes significantly (P < 0.05), while a ratio of
1:1 generated the same level as in the control. AH
eliminated (E)-2-hexenal regardless of the water ratio,
while it presented in untreated BSG. (E)-2-hexenal has
been observed as a green leaf volatile, which has anti-
fungal properties and is responsible for an unpleasant
odour which deters fungi and insects (Kunishima
et al., 2016). This compound might be present in BSG
due to the application of pesticides during the planta-
tion and/or storage of the grain prior to the brewing
process. The present study demonstrated that AH is
able to remove (E)-2-hexenal as a sign of chemical
residue during the handling of grain. AH with a lower
amount of water addition (1:1) removed (Z)-2-heptenal
from BSG, while it was identified in untreated and 1:2

� 2022 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd
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ratio treated BSG. (Z)-2-heptenal represents green and
pungent odour perception in BSG (Dong et al., 2013;
Ktenioudaki et al., 2013; F�arcas� et al., 2015). This
demonstrated that a lower amount of water (1:1) elimi-
nated the unpleasant odour perception of BSG. AH
with a higher water amount (1:2) destroyed the pres-
ence of undecanal, while it presented in untreated and
1:1 ratio treated BSG. Undecanal has never been
reported on BSG; however, 2-undecenal has been
reported in cells immobilised by BSG (Mallouchos
et al., 2007) and undecane was observed in grain
(Bu�sko et al., 2010). Undecanal is formed by the
hydroformylation of decene (Kohlpaintner et al.,
2013). It has a pleasant odour, which is often found in
perfumes (Kohlpaintner et al., 2013). In other words,
higher amounts of water (1:2) eliminated the pleasant
odour of BSG.
The formation of octanal and (E,E)-2,4-decadienal

in BSG was identified due to AH at both levels of

Table 2 Volatile compounds (%) of autoclave heating treated
BSG (percentage of peak area)

Compounds

Treatments

Control 110 °C/(1:1) 110 °C/(1:2)

Aldehydes

Butanal, 3-methyl- 4.48 � 0.01 4.29 � 0.23 4.23 � 0.08

Pentanal 1.19 � 0.01 1.33 � 0.01 2.39 � 0.03

Hexanal 17.30 � 0.08 11.91 � 0.06 16.18 � 0.10

2-Hexenal, (E)- 0.55 � 0.00 – –

Heptanal 1.26 � 0.01 1.62 � 0.02 1.24 � 0.06

2-Heptenal, (Z)- 1.13 � 0.01 – 0.55 � 0.03

2,4-Heptadienal, (E,E)- 0.53 � 0.01 0.31 � 0.03 0.22 � 0.01

Octanal – 1.34 � 0.01 1.92 � 0.07

2-Octenal, (E)- 3.63 � 0.01 1.79 � 0.11 2.42 � 0.04

Nonanal 11.13 � 0.15 6.17 � 0.07 10.68 � 0.06

2-Nonenal, (E)- 3.06 � 0.01 0.99 � 0.04 2.04 � 0.02

2,4-Nonadienal, (E,E)- 0.88 � 0.01 0.51 � 0.02 0.49 � 0.03

Decanal 1.92 � 0.02 1.58 � 0.04 1.74 � 0.00

Dodecanal – 0.21 � 0.01 –

2,4-Dodecadienal, (E,E)- – – 0.36 � 0.01

2,4-Decadienal, (E,E)- – 2.75 � 0.05 1.97 � 0.07

Undecanal 0.36 � 0.00 0.20 � 0.01 –

Benzaldehyde 4.93 � 0.03 5.57 � 0.07 2.38 � 0.02

Benzeneacetaldehyde 7.11 � 0.09 4.47 � 0.00 4.27 � 0.07

Ketones

2-Hexanone, 5-methyl- – – 0.51 � 0.01

2-Heptanone 1.24 � 0.05 1.30 � 0.02 0.62 � 0.01

5-Hepten-2-one,

6-methyl-

0.61 � 0.05 0.38 � 0.02 0.21 � 0.01

3-Octen-2-one, (E)- 1.96 � 0.14 0.70 � 0.01 –

3,5-Octadien-2-one, (E,E)- 7.52 � 0.47 3.41 � 0.04 4.72 � 0.05

5,9-Undecadien-2-one,

6,10-dimethyl-, (E)-

0.44 � 0.02 0.48 � 0.01 –

2(3H)-Furanone, 5-

heptyldihydro-

0.62 � 0.02 0.43 � 0.02 0.22 � 0.01

Alcohols

Ethanol, 2-phenoxy- – 0.32 � 0.01 0.55 � 0.01

2,4-Hexadien-1-ol – – 0.56 � 0.03

2-Hexyn-1-ol – – 0.49 � 0.01

1-Octen-3-ol 1.80 � 0.14 1.57 � 0.02 0.59 � 0.03

2-Octen-1-ol, (Z)- 0.43 � 0.02 – 0.22 � 0.01

3,5-Octadien-2-ol – – 0.51 � 0.03

Nona-3,5-dien-2-ol 0.56 � 0.02 – –

Hept-2-en-1-ol 0.39 � 0.01 – –

4,4,6-Trimethyl-

cyclohex-2-en-1-ol

1.10 � 0.06 0.29 � 0.00 –

2-Butyl-2,7-octadien-1-ol 0.57 � 0.04 – –

1-Tetradecanol 0.38 � 0.03 0.23 � 0.00 –

1-Hexadecanol 1.11 � 0.09 1.66 � 0.02 –

2-Methoxy-4-vinylphenol – 0.18 � 0.00 –

Furans

Furan, 2-pentyl- 7.60 � 0.46 6.85 � 0.08 6.07 � 0.01

Furfural – 0.31 � 0.02 0.90 � 0.03

Alkane

Tridecane 4.72 � 0.05 5.72 � 0.07 4.18 � 0.02

1-Tridecene – 0.36 � 0.02 –

Tetradecane, 2,6,10-

trimethyl-

1.98 � 0.04 0.45 � 0.03 0.21 � 0.00

Table 2 (Continued)

Compounds

Treatments

Control 110 °C/(1:1) 110 °C/(1:2)

Tetradecane 1.12 � 0.05 1.23 � 0.01 0.81 � 0.03

1-Pentadecene – 1.38 � 0.01 0.73 � 0.01

3-Heptadecene, (Z)- – 0.19 � 0.01 –

Nonadecane 0.41 � 0.01 0.45 � 0.02 –

Dodecane 3.39 � 0.09 3.66 � 0.02 3.37 � 0.01

Octadecane, 3-ethyl-

5-(2-ethylbutyl)-

– 0.40 � 0.02 –

Undecane – 0.25 � 0.00 0.46 � 0.01

Fatty acids

Acetic acid, cyano- – – 0.88 � 0.01

Hexanoic acid 0.95 � 0.05 1.09 � 0.01 –

Hexanoic acid, 1-

cyclopentylethyl ester

– 0.18 � 0.01 –

n-hexadecanoic acid – – 1.18 � 0.06

Other

D-Limonene 1.61 � 0.09 2.17 � 0.03 1.53 � 0.01

Benzene, 1-methyl-

3-(1-methylethyl)-

– 0.52 � 0.01 0.38 � 0.02

Benzene, 1,3-bis

(1,1-dimethylethyl)-

– – 0.24 � 0.01

1R-a-Pinene – 0.72 � 0.01 0.65 � 0.01

Total

Aldehydes 59.47 � 0.07b 63.14 � 0.23ab 69.24 � 0.22a

Ketones 12.39 � 0.63a 6.7 � 0.01b 6.27 � 0.07b

Alcohols 6.35 � 0.11a 4.24 � 0.04b 2.91 � 0.08c

Furans 7.60 � 0.46a 7.17 � 0.08b 6.97 � 0.01b

Alkene 11.62 � 0.02b 14.06 � 0.01a 9.75 � 0.07c

Fatty acid 0.95 � 0.05c 1.28 � 0.04b 2.06 � 0.05a

Others 1.61 � 0.16c 3.41 � 0.05a 2.79 � 0.08b

The data are shown as mean � standard deviation with at least dupli-

cate analysis. Letters show the significant differences from other treat-

ment in the same row (P < 0.05).
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water addition. Dodecanal was formed at a lower
water ratio (1:1) and (E,E)-2,4-dodecadienal was
formed with a higher water addition (1:2). Octanal, (E,
E)-2,4-decadienal, dodecanal, and (E,E)-2,4-
dodecadienal has never been identified in BSG. How-
ever, octanal is present in barley and malt (F�arcas�
et al., 2015), demonstrating fat, soap, lemon, and
green odour perception (Dong et al., 2013). AH may
have reformed the octanal as in its original form. (E,
E)-2,4-decadienal was present in bread prepared with
dried distilled grain, which was responsible for its ran-
cid odour (Roth et al., 2016). This formation might be
due to the high thermal exposure in the current study.
(E,E)-2,4-decadienal has an odour activity value at
23.4% (Roth et al., 2016), which is much higher than
the observed amount in the current study (maximum
3.34%). The influence of AH on the formation of ran-
cid compounds ((E,E)-2,4-decadienal) can be ignored
as the amount is much lower than the odour activity
value. Dodecanal may be synthesised from dodecanol
by dehydrogenation (Kohlpaintner et al., 2013), which
demonstrated citrus oil odour perception; (E,E)-2,4-
dodecadienal was identified in virgin olive oil (Giuffr�e
et al., 2020).

AH significantly (P < 0.05) reduced the amount of
ketones to the same level at which both water level
additions had no significant (P > 0.05) difference to
each other. The addition of water on AH treatment
eliminated 2-methyl-3-octanone. Furthermore, higher
levels of water addition induced the formation of 5-
methyl-2-hexanone and removed (E)-3-octen-2-one and
(E)-6,10-dimethyl-5,9-undecadien-2-one. Those com-
pounds have never been reported in BSG. 2-methyl-3-
octanone was reported in processed meat products
(Xia et al., 2020), which might be responsible for its
meat-like odour perception; 5-methyl-2-hexanone was
identified in black tea (Yan et al., 2022); (E)-3-octen-2-
one is an aliphatic ketone, which was identified in pea
protein isolate (Xu et al., 2020) and might represent
rose, green and nut odour perception; (E)-6,10-
dimethyl-5,9-undecadien-2-one or geranylacetone was
observed as a flavour compound in mango (Pino
et al., 2005). These results might demonstrate the abil-
ity of AH in eliminating meat-related odour perception
and forming a green and fruity smell.

AH significantly reduced the amount of volatile
alcohol in BSG. Regardless of the water level, AH
eliminated nona-3,5-dien-2-ol, hept-2-en-1-ol, and 2-
butyl-2,7-octadien-1-ol and induced the formation of
2-phenoxy-ethanol. All these eliminated alcohols were
responsible for the essential oil flavour, as has been
reported previously (Bannour et al., 2016; Vasan-
thakumar et al., 2019; Hota et al., 2022). However, 2-
phenoxy-ethanol, as a new formed compound, has
been observed in cereal grain (Bu�sko et al., 2010).
Lower water addition (1:1) discharged (Z)-2-octen-1-ol

and formed 2-methoxy-4-vinylphenol, which are
responsible for a vinegar smell and flavouring agent
compounds, respectively (Jeong et al., 2011; Le
et al., 2012), while higher water addition (1:2)
discharged 1-tetradecanol, 1-hexadecanol, and 4,4,6-
trimethyl-cyclohex-2-en-1-ol and induced the
formation of 2,4-hexadien-1-ol, 2-hexyn-1-ol, and
3,5-octadien-2-ol. The eliminated compounds are
responsible for a fatty odour while the formed com-
pounds are responsible for fruity and herbal percep-
tion (Noweck & Grafahrend, 2006; Feng et al., 2015;
Wang et al., 2015; El-Tantawy et al., 2016; Polat
et al., 2018; Ju et al., 2021). The results revealed that
AH potentially removed the essential oil odour percep-
tion and dominantly formed pleasant smells including
a grainy and desired flavour.
AH with a lower water addition formed several

alkane compounds such as 1-tridecene, Z-3-
heptadecene, and 3-ethyl-5-(2-ethylbutyl)-octadecane,
in addition to 1-pentadecene and undecane, which
were also formed at a higher water addition. All those
formed compounds were identified as responsible for
odour perception from medicinal plant extracts (Wang
et al., 2015; Borgohain et al., 2022). In untreated
BSG, only hexanoic acid was identified as a fatty acid,
while AH (1:1) formed hexanoic acid and hexanoic
acid 1-cyclopentyl-ethyl ester. AH (1:2) eliminated
hexanoic acid and formed cyano-acetic acid and
n-hexadecanoic acid. Furthermore, AH induced the
formation of 1-methyl-3-(1-methylethyl)-benzene, 1R-
a-pinene, and furfural. 1-methyl-3-(1-methylethyl)-
benzene and 1R-a-pinene were identified in ginger
(Ding et al., 2012), while furfural was reported due to
the Maillard reaction in BSG-added bread (Kte-
nioudaki et al., 2013).
Seeing the significant modification in the profile of

volatile compounds in BSG due to AH treatment, fur-
ther investigation with the electronic nose is important.
The identification of key odour compounds is sug-
gested for further investigation to strengthen the find-
ings in the current study.

Tentative quantification of polyphenolic compounds

The polyphenolic composition of BSG is presented in
Table 3. The results revealed that the water ratio had
no significant (P > 0.05) influence on the total flavan-
3-ols and total polyphenolic composition. The higher
the temperature, the higher the amount of flavan-3-ols
and total polyphenol content, although 90 °C exposure
led to the same level as that in control. A different pat-
tern on the total phenolic acids was observed. The
majority of the treatments increased the amount of
total phenolic acids significantly to a certain level at
which there was no significant difference among the
treatments. These results suggested that AH at 110

� 2022 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd
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and 130 °C is capable of increasing the release of
flavan-3-ols and thus total polyphenols content up to
5–8-fold and 4–7-fold, respectively. This phenomenon
might be due to the degradation of dietary fibre and/
or vacuole cell disruption of BSG matrix.
The impact of thermal exposure on dried, untreated

BSG by autoclave has been reported previously (Nai-
baho et al., 2021), reporting that AH transformed the
insoluble dietary fibre into a soluble one. This trans-
formation might be aligned with the increase in flavan-
3-ols and total polyphenols in the current study. Ther-
mal exposure has been identified for disrupting the cell
vacuoles and/or cleaving the covalent bonds (Rahman
et al., 2021), thus allowing the modification of lignin
solubility (Ohra-aho et al., 2016). As a consequence, it
might lead to the release of certain functional groups
including flavan-3-ols and total polyphenols. The
improvement of phenolic acid in BSG has been identi-
fied due to the pulsed electric field treatment and ther-
mal exposure (Budaraju et al., 2018; Mart�ın-Garc�ıa
et al., 2020), which intensified up to 1.7–2.7-fold
(Mart�ın-Garc�ıa et al., 2020). The increase in the quan-
titative compounds in the current study due to the
thermal exposure might be concomitant to the forma-
tion of certain compounds, as has been identified pre-
viously. Caffeic acid was absent at a lower
temperature (<100 °C) but present at a higher temper-
ature, while the presence of sinapic acid was observed
at 160 °C oven heating (Rahman et al., 2021).
AH at 90 °C generated the same level of polyphe-

nols content as in the control due to its inefficiency in
rupturing the crosslinking bond between polysaccha-
rides and phenolic compounds (Sibhatu et al., 2021).
Meanwhile, high temperature is able to discharge
ester-linked ferulic acid from polysaccharides func-
tional groups, as reported previously (Sibhatu
et al., 2021). The results demonstrated that the cross-
link between polysaccharides and phenolic acids seems
to be more stable compared to that in flavan-3-ols.
Different levels of temperatures generated almost the
same amount of phenolic acids, although it is remark-
ably higher than untreated BSG. Of note is that none
of the treatments reduced the polyphenolic com-
pounds. A decline in phenolic acids by 4–6-times lower
occurred due to the extraction methods (Bonif�acio-
Lopes et al., 2020).

In vitro antioxidant capabilities

The results demonstrated that, the higher the thermal
levels, the higher the increase in antioxidant activities
of both FRAP and ABTS, regardless of the water
ratio. However, AH at 90 °C had the same level as
that in untreated BSG. This phenomenon might be
aligned with the trend in the amount of flavan-3-ols,
as mentioned in the previous section. ThermalT
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exposures at 110 and 130 °C released a higher amount
of flavan-3-ols, thus enhancing the FRAP and ABTS
properties of methanolic extracts from AH-treated
BSG. ABTS defines the capability of the extracts in
reducing the molecular oxygen and hydrogen peroxide
(Benzie & Strain, 1996), and FRAP demonstrates the
ability of the extracts in alleviating lipid oxidation
(Rahman et al., 2021). By this, the current study
revealed the ability of AH in improving the ability of
BSG as a healthy ingredient, both as functional food
and nutraceutical ingredient.

According to the previous studies, other compounds
in BSG which play an important role in antioxidant
capabilities of BSG include fatty acids such as palmi-
tic, linoleic, oleic, and stearic acid (F�arcas� et al., 2015;
Parekh et al., 2017; Tan et al., 2019). This might be
slightly related to the fat content in the current study,
although statistical significance was not observed.
However, notably, the fat content was observed to be
higher as the temperature was raised. Furthermore, as
was mentioned in Influence of AH on fatty acid com-
positions Section, AH reduced the amount of SFA
and concomitantly improved the amount of PUFA.
This phenomenon might suggest an indirect link to the
increase in the antioxidant activity, as discovered in
this section. The improvement in antioxidant activity
has also been observed previously (Budaraju
et al., 2018). It was emphasised that the improvement
in antioxidant activity had no correlation with the
amount of bound phenolic compounds (Budaraju
et al., 2018). Therefore, the improvement of antioxi-
dant activity in the current study might be a result of
free phenolic compounds. Furthermore, coumaric acid
had a crucial impact on antioxidant properties of BSG
(McCarthy et al., 2013). The specific phenolic com-
pounds were not investigated in the current study.
However, this might suggest that the antioxidant activ-
ity observed in the current study might only be due to
certain compounds, which is seemingly important to
investigate in the near future. Hydroxycinnamic acid is
the most abundant phenolic acid from BSG including
ferulic acid (FA), p-coumaric acid (p-CA) derivatives,
FA derivatives, p-CA, caffeic acid (CA), and CA
derivatives (McCarthy et al., 2013).

Impact of AH on the techno-functionality of BSG

The results showed that AH significantly (P < 0.05)
enhanced WHC regardless of the water ratio. Statisti-
cally, the highest WHC was given by the higher temper-
ature in both water ratios, while the lowest WHC was
obtained in untreated BSG. This result demonstrated
that AH improved the WHC of BSG as a sole impact
of the temperature levels. The treated BSG had a range
of 3.3–4.1 g/g WHC, while untreated BSG obtained

WHC at 2.9 g/g. This number is aligned with the previ-
ous studies which reported that the WHC of BSG ran-
ged from 2.9 to 4.3 g/g (Naibaho et al., 2021; Naibaho
& Korzeniowska, 2021b). AH on dried BSG was
observed to decrease the WHC of BSG (Naibaho
et al., 2021), while the current study, which increased
the WHC, was conducted on undried fresh BSG. In
contrast, the majority of AH treatment decreased the
OHC level of BSG. OHC in the current study appeared
at the same range as previously reported, at a range of
1.9–2.2 g/g (Naibaho & Korzeniowska, 2021b). How-
ever, AH on dried BSG reduced the OHC level (Nai-
baho et al., 2021). Therefore, AH treatment on fresh
BSG slurry benefits the techno-functionality of BSG.
The ability of BSG in binding water is influenced by
the presence of arabinoxylans (Steiner et al., 2015). By
this, AH might have modified the polysaccharides com-
position of BSG, as mentioned earlier, in addition to
the arabinoxylans profile. Techno-functional properties
can be altered due to energy exposures. A reduction in
WHC and OHC was observed due to the particle size
reduction, while an increase was obtained as an impact
of high-pressure treatment (Yan et al., 2019). The fluc-
tuation of WHC and OHC was emphasised due to the
exposure of hydrophilic groups as an impact of losing
the dietary fibre structure (Yan et al., 2019). Improving
the WHC benefits the texture and viscosity of food
products (Benitez et al., 2019; Kieserling et al., 2019).
Therefore, AH showed a beneficial performance in
improving food structure formation.

Conclusion

The results revealed that AH is capable of reducing
SFA, increasing PUFA and slightly altering the
amount of MUFA. Quantitatively, AH reduced the
amount of ketones, alcohols, and furans, while it
intensified the aldehydes and volatile fatty acids,
regardless of the water ratio. The alteration of the
volatile compound profile was followed by the elimina-
tion and formation of several volatile compounds in
BSG matrix depending on the water ratio. Further-
more, AH enriched the amount of total flavan-3-ols
and, thus, the total polyphenolic compounds, and
enhanced the antioxidant activities (ABTS and FRAP)
and improved the WHC of BSG as an impact of ther-
mal elevation and regardless of the water ratio. The
study demonstrated that AH improved the quality of
BSG as a functional food and nutraceutical ingredient
from the perspective of bioactivity and functionality.
Further investigation on polysaccharides composition,
protein and amino acids profile as well as free fatty
acids and storage stability related is seemingly impor-
tant in order to understand the mechanisms and effi-
ciency of AH in disrupting BSG matrix.
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