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Abstract

Epigenetic mechanisms regulate osteogenic lineage differentiation of mesenchymal stromal

cells. Histone methylation is controlled by multiple lysine demethylases and is an important

step in controlling local chromatin structure and gene expression. Here, we show that the

lysine-specific histone demethylase Kdm1A/Lsd1 is abundantly expressed in osteoblasts

and that its suppression impairs osteoblast differentiation and bone nodule formation in

vitro. Although Lsd1 knockdown did not affect global H3K4 methylation levels, genome-wide

ChIP-Seq analysis revealed high levels of Lsd1 at gene promoters and its binding was asso-

ciated with di- and tri-methylation of histone 3 at lysine 4 (H3K4me2 and H3K4me3). Lsd1

binding sites in osteoblastic cells were enriched for the Runx2 consensus motif suggesting a

functional link between the two proteins. Importantly, inhibition of Lsd1 activity decreased

osteoblast activity in vivo. In support, mesenchymal-targeted knockdown of Lsd1 led to

decreased osteoblast activity and disrupted primary spongiosa ossification and reorganiza-

tion in vivo. Together, our studies demonstrate that Lsd1 occupies Runx2-binding cites at

H3K4me2 and H3K4me3 and its activity is required for proper bone formation.

Introduction

In undifferentiated pluripotent embryonic stem cells (ESCs), chromatin is in an open configu-

ration as visualized by electron microscopy [1], but chromatin becomes progressively packed

and reorganized into heterochromatin upon cell differentiation [2]. Regulation of chromatin

status is mediated through DNA methylation and post-translational modifications of histone

proteins [3]. The loss of pluripotency and chromatin accessibility is accompanied by increased

DNA methylation and deposition of suppressive histone marks [2, 4]. Yet, differentiation
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requires open state chromatin and gain of active histone marks on the loci for lineage specific

genes and their regulatory regions to allow appropriate gene expression and progression to ter-

minally differentiated cell types [2]. Histone methylation, which can occur on multiple lysine

and arginine residues in each of the histone proteins, controls both active and inactive chro-

matin states. For example, tri-methylation of H3K27 or H3K9 maintains repressive closed het-

erochromatin, whereas methylation of H3K4 is associated with permissive open euchromatin

[5]. Methylated histones regulate chromatin structure by providing a code for “reader” pro-

teins, which include chromodomain proteins [6] that have the capacity to recognize defined

methylation states to determine functional outcomes [7].

Adult somatic stem cells are distinct from ESCs and may have distinct chromatin states com-

pared to pluripotent and differentiated cells [8]. Osteoblasts originate from skeletal stem cells in

vivo [9, 10], but can also emerge from mesenchymal stromal cells (MSCs) that also give rise to

chondrocytes, adipocytes and myocytes [11]. The few studies that have examined the epigenetic

landscape during differentiation into specific mesenchymal lineages have shown that histone

modifications dynamically change during differentiation, whereas there are only modest

changes in the methylation of promoter DNA [12–14]. Expression screens for epigenetic regula-

tors in MSCs and osteoblasts have revealed that specific isoforms of both histone H3 and H4

lysine methyl transferases and the corresponding demethylases are robustly expressed during

osteoblast differentiation [15–18]. Chromatin state dynamics have been studied in primary

murine bone marrow-derived MSCs during osteoblast differentiation [19, 20], and even if the

suppressive H3K27me3 mark was found to decrease, only modest changes in the active

H3K4me3 mark were observed at gene promoters. This finding is consistent with previous data

showing that the deposition of H3K27me3 by methyltransferase Ezh2, the catalytic unit of the

polycomb repressive unit 2 (PRC2), regulates MSC commitment to osteogenic and adipogenic

lineages [16, 21–27]. Accordingly, downregulation of Ezh2 by pharmacological inhibition, RNA

interference or knockout permits transcription of osteoblastic genes, enhances osteoblast differ-

entiation in vitro and bone formation in vivo [25, 26, 28–33] as well as promotes mineralization

of dental tissues [34], while not affecting on tendon differentiation [35].

Histone lysine demethylases (KDMs) play a key role in regulating histone methylation (e.g.,

H3K27me3, H3K9me3 and H3K4me3). KDMs belong to two distinct enzyme families.

KDM1A/LSD1 and KDM1B/LSD2 are monoamine oxidases (MAOs), which utilize flavin ade-

nine dinucleotide (FAD) -dependent mechanism to demethylate H3K4 or H3K9 [36]. All

other histone lysine demethylases are members of the Jumonji (JmjC)–domain containing

2-oxoglutarate oxygenase family with various subfamilies (KDM2-8), which utilize a Fe(IV)-

oxoferryl species to catalyze demethylation reactions of various methylated states of H3K4,

H3K9, H3K27 and H3K36 [37]. Several JmjC-demethylases, including nucleolar protein 66

(NO66) [38, 39], Kdm4B/Jmjd2B [40], Kdm6B/Jmjd3 [40, 41], Kdm6A/Utx [22] and Kdm5B/

Jarid1B [42], have been shown to regulate osteogenic differentiation.

Within the MAO family, LSD1 has been extensively studied in stem cell biology and devel-

opment [43, 44], and has also been implicated in the differentiation of a number of cell types

including neurons [45, 46], adipocytes [47], chondrocytes [48, 49] and hematopoietic cells [50,

51]. In adipose tissue, LSD1 plays a major role in thermogenesis and in regulating brown adi-

pocyte phenotype [52, 53]. The complex role of LSD1 in cell differentiation has been demon-

strated in the pituitary, where LSD1 is involved in transcriptional repression and activation

complexes, leading to temporal control of genes regulating organogenesis [54]. Mechanisti-

cally, LSD1 demethylates H3K4, leading to transcriptional deactivation of genes in close vicin-

ity [55, 56]. In addition, LSD1 may act on H3K9, causing transcriptional activation when

forming a complex with androgen and estrogen receptors [57–59]. Importantly, LSD1 has also

been shown to act on non-histone substrates such as p53/TP53 in the DNA damage response
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[60] and the DNA methyltransferase DNMT1, through which LSD1 can regulate DNA methyl-

ation [23]. Temporal control of both LSD1 and its interaction partners are important for deter-

mining the genomic targets and context-specific action of LSD1.

In the present study, we identified Lsd1 among the most highly expressed KDMs in osteo-

blasts and studied its role in osteoblastogenesis, predominantly binding to promoters of geno-

mic targets with increasing occupancy during differentiation. We found that the

pharmacological inhibition of the intrinsic demethylation activity of Lsd1 decreased osteoblast

function and trabecular bone volume in vivo, possibly through modulating the chromatin sta-

tus of Runx2 target sites. Furthermore, the conditional loss of the Kdm1a gene encoding for

Lsd1 in limb bud mesenchyme in Lsd1� =�Prrx1
mice led to impaired bone maturation and bone

remodeling, as well as cellular disorganization in growth plate.

Materials and methods

Cell culture

Mouse MC3T3-E1 cells were purchased from ATCC (MC3T3-E1 Subclone 4, CRL-2593)

and maintained in αMEM supplemented with 100 U/ml penicillin-streptomycin, 10% fetal

calf serum and 2 mM L-glutamine (maintenance medium). For differentiation experiments,

the cells were plated on 6- or 12-well plates and at confluence stimulated by osteogenic

medium containing 50 μg/ml ascorbic acid and 10 mM β-glycerophosphate for 7,14 and 21

days. The medium was changed every 2–3 days. Primary calvarial osteoblasts were isolated

from newborn mouse calvaria by sequential digestions as described previously [61]. In

brief, osteoblasts were derived from newborn mouse calvariae with five consecutive 20 min

digestions with 1% collagenase and 2% dispase in αMEM at +37˚C. Fractions 2–5 were

pooled. After one passage, cells were plated on 6-well plates in αMEM supplemented with

100 U/ml penicillin-streptomycin and 10% fetal calf serum. Differentiation was induced at

confluence by 10 nM dexamethasone, 50 μg/ml ascorbic acid and 10 mM β-glyceropho-

sphate for 7,14 and 21 days. For Lsd1 inhibition studies, MC3T3-E1 cells were treated with

selective Lsd1 inhibitors RN-1 and GSK2780854A (GSK-LSD1) or vehicle (DMSO) supple-

mented medium. Proliferation studies were performed by plating 1000 cells/well in a

96-well plate in maintenance medium and imaging the confluence of the wells with Incucyte

S3 analyzer (Essen Bioscience, UK).

Alkaline phosphatase (ALP) and Von Kossa staining

Cell culture plate wells were fixed for 15 minutes in 10% phosphate buffered formalin. Fixed

wells were stained for ALP activity for 45 minutes in RT with freshly filtered ALP staining

solution (0,1mg/ml Naphtol AS MX-PO4; 0,6mg/ml Fast Blue RR salt; 0,4% DMF in 0,1M

Tris-HCl pH 8,3) and rinsed with water. For von Kossa staining, cell cultures were stained

with 2,5% silver nitrate in RT for 30 minutes.

shRNA silencing

Lentiviral particles containing Sigma TRCI library shRNAs against Lsd1 (TRCN0000071373–

71377) and control shRNA (shScrambled, SHC002) were obtained from the Functional Geno-

mics Unit at the University of Helsinki. Mouse MC3T3-E1 cells were transduced with 5 differ-

ent clones of shLSD1 lentiviruses and shScrambled control vector on 6-well plates with 8μg/ml

polybrene overnight. Transduction of cells was confirmed with 5μg/ml puromycin selection

for 5 days. The efficiency of Lsd1 mRNA and protein knockdown was confirmed using

RT-PCR and Western blotting, respectively.
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Reverse transcriptase quantitative PCR (RT-qPCR) and next generation

RNA-sequencing (RNA-seq)

RNA was extracted from cell culture samples with Nucleospin RNA Plus kit (Macherey-Nagel)

after homogenization in RNA lysis buffer using Ultra-Turrax T25 homogenizer (Janke&Kun-

kel, Germany) and eluted to 2x30μl aqua. From bone samples, RNA was extracted using

RNeasy Mini kit (Qiagen, USA) after pulverization of snap-frozen bones followed by homoge-

nization in RNA lysis buffer using Ultra-Turraz T25 homogenizer. RNA concentrations were

measured with NanoDrop OneC (Thermo Scientific) and the samples were stored at -80˚C.

For RT-qPCR, RNA was reverse transcribed to cDNA using the SensiFast cDNA synthesis kit

(Bioline, USA) with 500ng RNA per reaction. qPCR reactions were performed using SYBR

Green master mix (Thermo Scientific) with the Bio-Rad CFX96 or CFX384 Real-Time PCR

Detection System and software. Ct values were normalized to beta-actin (ACTB) levels and

ΔΔ-Ct method was used to analyze relative gene expression levels. Primer sequences are

shown in S1 Table. RNA-seq was performed on the Illumina2000 platform as 51 bp paired-

end reads and processed using a standardized bioinformatic pipeline as previously described

in detail [32, 62–64]. Gene expression is expressed in fragments/kilobase pair/million mapped

reads (FPKM). RNA-seq data were deposited in the Gene Expression Omnibus of the National

Institute for Biotechnology Information (GSE186832).

ChIP-seq and bioinformatics analysis

MC3T3-E1 cells (10,000 cells/cm2) were plated in 10 cm plates in maintenance medium. The

cells were harvested by trypsin and analyzed using a ChIP assay as described previously [21]

using Lsd1, H3K4me1, H3K4me2, H3K4me3, H3K27me3 and control IgG antibodies. Anti-

body information can be found in S1 Table. Sequencing libraries were prepared and massively

parallel high throughput DNA sequencing was performed on an Illumina HiSeq2000 system.

The alignment, quality assessment, peak calling, and visualization was performed with a stan-

dardized bioinformatic analysis pipeline (HiChIP) as described [21]. The mm10 reference

genome was used to align 50 base paired-end with a custom script that only retains pairs with

one or both ends uniquely mapped. The analysis was guided by the Burrows-Wheeler Aligner,

Picard and SAMTools and the SICER package [21]. ChIP-seq data were deposited with acces-

sion number GSE186665.

Peak data were read using custom R scripts, and exploratory analysis and peak annotation

was done using R package ChIPseeker [65]. Average profiles of ChIP-seq peaks binding to

transcription start site (TSS) regions were inspected and visualized, using 3kb upstream and

downstream TSS flanking sequences for the mapping. Peaks were annotated to the nearest

TSS, with TSS region defined from -3kb to +3kb (default). R package DiffBind [66] was used

for generation of the correlation heatmaps. The overlaps of the ChIP-seq peak intervals were

inspected using R package ChIPpeakAnno [67] with minimum overlap of 1 bp of the peak

intervals required. Further exploratory analysis was performed using DiffBind package.

Shortly, consensus peak sets were generated for each of the five ChIP-seq targets separately,

consisting of all peaks detected at one or more time points. Reads overlapping these consensus

peak sets were calculated and normalized using Trimmed Mean of M-values (TMM) method

with control read counts subtracted and using full library sizes for normalization. The resulting

ChIP-seq affinity data was used for principal component analysis using DiffBind functionality.

BEDTools [68] multiIntersectBed and merge tools were used for detecting peak overlaps

between the three time point samples, retaining the information on the peak existence in a

sample, and for merging the overlapping peak intervals into continuous peak regions. TMM

normalized read counts for the merged peaks were obtained using DiffBind. Log2 fold change
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of normalized read counts between day 7 and day 0 samples, day 14 and day 0 samples as well

as day 14 and day 7 samples were calculated.

HOMER (Hypergeometric Optimization of Motif EnRichment) software [69] was used for

analyzing enrichment of known transcription factor (TF) motifs in ChIP-seq peaks and anno-

tating the peaks with the known motifs.

Gene set enrichment of Gene Ontology Biological Process (GOBP) terms and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway terms was performed using R package CHi-

P-Enrich [70] with the gene locus definition set to 1 kb.

Integration of differential expression (DE) analysis data and ChIP-seq data was done using

custom Rscripts and package ggplot2 [71] for visualization.

Western blotting and co-immunoprecipitation

MC3T3-E1 cells were cultured on 10 cm dishes in maintenance medium or osteogenic

medium. Protein lysates were collected from preconfluent, confluent, 7, 10 or 14 days differen-

tiated cells after 10 minute incubation on ice in mRIPA lysis buffer (50mM Tris-HCl, pH 7.4;

0.5% NP-40; 0.25% sodium deoxycholate; 150mM sodium chloride; 1 mM sodium orthovana-

date; 0.5 mM phenylmethylsulfonyl fluoride) supplemented with Pierce Mini protease inhibi-

tors (Thermo Scientific). Cell lysates were homogenized by purging through a 27G needle and

cell debris discarded by centrifuging for 15 minutes at 16000G at 4˚C. Protein concentration

was measured using Bradford Protein Assay (Bio-Rad).

Protein samples were separated using 4–20% gradient SDS-PAGE gels (Bio-Rad Mini-PRO-

TEAN TGX) and transferred to 0.22μm nitrocellulose membranes (Maine Manufacturing

LLC). Membranes were blocked with either 5% non-fat dried milk in TBST (150mM NaCl,

0.05% Tween20, 10mM Tris pH 7.5) and incubated with primary antibodies against H3,

H3K4me1, H3K4me2, H3K9me1, H3K9me2 or with 5% BSA in TBST and incubated with anti-

Lsd1 primary antibody. Horseradish peroxidase conjugated anti–mouse (Lsd1) or anti-rabbit

(other antibodies) IgG was used as a secondary antibody. Proteins were visualized using Wes-

ternBright Quantum detection kit (Advansta). Antibody information can be found in S1 Table.

Lsd1 inhibition in vivo
Mouse studies were approved by the Finnish ethical committee for experimental animals

(license numbers 5186/04.10.07/2017 and 14044/2020), complying with the international

guidelines on the care and use of laboratory animals. Ten 6-week-old C57BL/6NHsd male

mice were treated with either 0.9% NaCl (vehicle) or 1.5mg/kg GSK-LSD1 delivered by intra-

peritoneal injections in a 4-on-3-off schedule for four weeks. The weight of the animals was

monitored biweekly and the overall wellbeing five times a week. The mice were injected intra-

peritoneally with calcein (20 mg/kg) and demeclocycline (40 mg/kg) (both from Sigma-

Aldrich) 7 and 2 days prior to sacrifice, respectively. The mice were euthanized with CO2-

asphyxiation followed by blood sample collection via cardiac puncture. Bone samples for μCT

and histomorphometry were fixed with 10% Neutral Formalin Buffer overnight and trans-

ferred to and stored in 70% ethanol.

Lsd1 conditional knockout mice

Mice embryos carrying the floxed Kdm1a/Lsd1 alleles (Lsd1fl/fl, stock #023969) were obtained

from the Jackson laboratory. Lsd1fl/fl mice were crossed with Prrx1-Cre to create limb bud

mesenchyme specific homozygous and heterozygous conditional Lsd1-knockout mice

(Lsd1� =�Prrx1
; Lsd1þ=�Prrx1

respectively). The mice were injected intraperitoneally with calcein (20
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mg/kg) and demeclocycline (40 mg/kg) (both from Sigma-Aldrich) 3 and 1 days prior to sacri-

fice, respectively. Histological samples were collected at 4 weeks of age as described previously.

Marrow-evacuated femurs were snap-frozen in liquid nitrogen and stored in -80˚C for RNA

extraction. Descriptive 2D X-ray images of the limbs were taken ex vivo using a MX-20 imag-

ing device (Faxitron, USA).

Histological analysis

EDTA-decalcified tibias were embedded in paraffin and 4-μm thick sections were collected.

Safranin-O staining was done using conventional staining protocols and imaged using the

Pannoramic 250 slide scanner (3d Histech). Collagen was visualized using the Picro-Sirius Red

Stain Kit for Collagen (Biosite), imaged using 90˚ polarized light visualizing thin collagen

fibers as green and thick collagen fibers as yellow-red, and analyzed using FIJI software.

For growth plate analysis, HE stained sagittal sections of proximal tibia epiphysis were

used. Average thickness of one medial and two marginal lines of the proliferative and hyper-

trophic growth plate (GP) zones were measured by ImageJ. Cell density of the proliferative

and hypertrophic zones of proximal tibia were analyzed by counting average cell number in

8 squares (each 10,000 μm2 in size) covering the entire zone. Cell column heights were mea-

sured from 10 representative columns in proliferative and hypertrophic zones across the

growth plate.

X-ray microcomputed tomography analysis

Femurs of the mice treated with Lsd1 inhibitor GSK-LSD1 were cleaned of soft tissue and ana-

lyzed with X-ray microcomputed tomography (μCT). Cortical and trabecular bone structure

of the distal femurs were analyzed using μCT (SkyScan 1070, Kontich Belgium) with 8,37μm

resolution. After scanning, images were reconstructed (NRecon 1.4, SkyScan) and reoriented

to ensure comparability (Dataviewer, SkyScan). The regions of interest (ROI) were drawn

(CTan 1.4.4, SkyScan) on every tenth layer from 120 layers, with a total height of ~1000μm for

trabecular bone, and from 100 layers with a total height of ~840μm for cortical bone and the

results were then quantified and analyzed. The ROIs were drawn blinded for the treatment

groups and quantified.

Tibias of the Lsd1cKO-mice were cleaned of soft tissue and their trabecular and cortical

bone structures were analyzed using 5μm resolution (Skyscan 1074, Kontich Belgium). Upon

scanning, the reconstruction (NRecon 1.7.5.6, SkyScan) and reorientation of images were

done as described above. The regions of interest (ROI) were drawn on every tenth layer from

100 layers 210 layers (1050μm) down from the distal end of the proximal growth plate for the

trabecular bone, and 1000 layers (5000μm) down for the cortical bone and subsequently ana-

lyzed (CTan 1.19.10.2, SkyScan). The ROIs were drawn blinded for all genotypes and the data

was then quantified.

Histomorphometric analysis

After fixation, tibias were embedded in methyl methacrylate (MMA) (Sigma-Aldrich, USA).

5μm sagittal sections were cut using a Leica RM2165 rotatory microtome and von Kossa, Tolu-

idine blue and Tartrate-resistant acid phosphatase (TRACP)-stainings were performed on

deplastified sections with standard protocols. In brief, TRACP-staining visualizes osteoclasts

using osteoclast-specific acid phosphatase activity. The slides were analyzed using Osteomea-

sure-histomorphometry workstation (OsteomeasureXP 3.1.0.1, Osteometrics, USA). The ana-

lyzed area of the tibias was defined as 1,30 mm x 0,84 mm, starting 200μm distally from the

growth plate, excluding the cortical border areas with a 100μm margin. Static parameters were
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measured from toluidine blue and TRACP stained slides and dynamic parameters from

unstained slides according to standardized protocols [72].

Subepiphyseal TRACP-staining and bone area were measured from an area defined as 1,00 mm

x 0,20 mm starting immediately distally from the proximal growth plate of the tibia using FIJI.

Bone turnover markers

Blood samples were collected at sacrifice via cardiac puncture. Blood samples were allowed to

clot and serum was collected after centrifugation and stored at -80˚C. Bone formation and

resorption were assessed using serum levels of N-terminal propeptides of type I collagen

(P1NP) and C-terminal telopeptides of type I collagen (CTX-1) using Rat/Mouse PINP EIA

and RatLaps CTX-I EIA kits (IDS, UK), respectively.

Statistical analysis

Results are presented as mean with standard deviation (SD). The results were tested for normal

distribution and outliers using suitable tests and changes between groups were analyzed using

Student’s two-tailed T-test, one-way ANOVA or Kruskall-Wallis test using Bonferroni’s multi-

ple comparison correction where applicable with the GraphPad Prism 8.3.0. Statistical signifi-

cance was set to p<0,05.

Results

Lsd1 is abundantly expressed in mouse osteoblastic cells

We performed whole transcriptome sequencing of MC3T3-E1 cells at different stages of differ-

entiation, ranging from proliferative cells to mature osteoblasts. Progression of differentiation

was verified by alkaline phosphatase (ALP) activity and formation of mineralized nodules at

the end of the 21-day culture (Fig 1A). Successful osteoblast differentiation was also confirmed

by the expression of osteoblast-related genes in the RNA-seq data set (Fig 1B). In the expres-

sion analyses of different epigenetic regulators, we found relatively abundant expression of sev-

eral Kdms (Fig 1C). Interestingly, there were significant changes in Kdm expression levels in

mature osteoblasts at 21 days compared to proliferating cells (Table 1). Of the MAO family of

KDMs, which is much less studied in osteoblasts than the larger JmjC-domain containing

KDM family, Kdm1a/Lsd1 expression was much more abundant than Kdm1b/Lsd2 mRNA,

suggesting a more prominent role for Lsd1 in these cells. Indeed, Lsd1 was one of the most

abundantly expressed Kdms in MC3T3-E1 cells throughout the 3-week differentiation time

course (Fig 1C). We confirmed the robust expression of Lsd1 mRNA in both MC3T3-E1 and

mouse primary calvarial cells by quantitative RT-PCR but did not did not observe significant

changes in the mRNA expression levels during osteoblast differentiation. Lsd1 protein level on

the other hand showed an increase in the differentiated osteoblasts compared to the proliferat-

ing cells, suggesting stabilization of Lsd1 protein in mature osteoblasts (S1 Fig). The relatively

stable expression of Lsd1/Kdm1a in mouse osteoblasts is consistent with previous observations

in human MSCs [15].

Lsd1 downregulation inhibits osteogenic differentiation

The prominent expression of Lsd1 in osteoblasts and its previously reported role in regulating

adipocyte differentiation prompted us to test whether Lsd1 controls osteoblast differentiation

and function. We first silenced Lsd1 expression in MC3T3-E1 cells by stable expression of

Lsd1 shRNAs. Of the five shRNAs we tested, two shRNA constructs (shLSD1-73 and shLSD1-

76) showed approximately 50% downregulation of Lsd1 mRNA levels (Fig 1D). Lsd1

PLOS ONE Lysine-Specific Demethylase 1 (LSD1) epigenetically controls osteoblast differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0265027 March 7, 2022 7 / 28

https://doi.org/10.1371/journal.pone.0265027


knockdown impaired osteoblast differentiation as demonstrated by reduced ALP activity and

formation of mineralized nodules (Fig 1E), as well as decreased expression of osteoblast related

genes (Fig 1F), suggesting an important role for Lsd1 in the regulation of osteogenic differenti-

ation and function. Because Lsd1 is a histone demethylase, we furthermore evaluated global

methylation levels of H3K4 or H3K9 in these cells. Lsd1 downregulation did not affect overall

H3K4/H3K9 methylation status (Fig 1G). This important observation indicates that reduced

levels of Lsd1 may interfere with osteoblastogenesis primarily through locus-specific chroma-

tin mechanisms rather than effects on bulk chromatin.

Fig 1. Lsd1 is abundantly expressed in osteoblasts and important for osteoblast differentiation. (A, B) RNA-seq analysis was

performed from MC3T3-E1 at different stages of differentiation. The differentiation was verified by Von Kossa (top) and ALP staining

(bottom) (A) and by expression profiles of osteoblast biomarkers in RNA-seq data (n = 2)(B). (C) mRNA expression of KDMs in

MC3T3-E1 cells at different stages of differentiation measured by RNA-seq. Average of FPKM normalized read counts from two replicate

samples for each time point are shown. (D) Knockdown of Lsd1 mRNA in MC3T3-E1 cells by stable shRNA expression shown by

quantitative qPCR. B-actin normalized Lsd1 mRNA expression relative to shScrambled cells from three replicate samples is shown. (E)

shLSD1 knockdown cell and control shScrambled were cultured in standard osteogenic conditions for 14 and 21d and fixed in 10%

formalin. Differentiated phenotype was demonstrated by ALP and Von Kossa staining and by (F) quantitation of osteogenic genes mRNA

expression at 14D differentiated cells by qPCR (n = 3). (G) Western blot showing Lsd1 protein and methylation state of histone H3 in

shLSD1 knockdown cells. (E, F) Results from a representative cell culture experiment from three independent experiments is shown. P-

values for statistically significant differences are marked � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pone.0265027.g001
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Pharmacological inhibition of Lsd1 suppresses osteogenic differentiation

in vitro

To test whether the effect of Lsd1 on osteoblast differentiation depends on its enzymatic activ-

ity, we treated MC3T3-E1 cells with selective Lsd1 inhibitors RN-1 and GSK2780854A

(GSK-LSD1). RN-1 is a tranylcypromine (TCP) derivative with reported IC50 value of 70 nM

for Lsd1 inhibition [73], while GSK-LSD1 has an IC50 of 16 nM and high specificity for Lsd1

over MAOs [74]. RN-1 suppressed osteoblast differentiation as shown by reduced ALP stain-

ing and expression of osteoblast-related genes at nanomolar concentrations (Fig 2A). Simi-

larly, GSK-LSD1 impaired osteoblast differentiation at all concentrations tested (Fig 2B), with

no observed effects on cell viability. Importantly, both RN-1 and GSK-LSD1 completely inhib-

ited the formation of mineralized nodules also in mouse primary calvarial cell cultures,

although their effects on ALP activity were less pronounced than in MC3T3-E1 cells (Fig 2C).

Because no inhibition of other enzymes has been reported at these low concentrations [73, 74],

our results suggest that RN-1 and GSK-LSD1 suppress osteoblast differentiation due to the

specific inhibition of Lsd1 activity.

Lsd1 inhibition suppresses osteoblast function in vivo
To study the effect of selective Lsd1 inhibition on bone metabolism in vivo, we treated 6-week-

old wild-type C57BL/6NHsd male mice with either 1,5 mg/kg GSK-LSD1 or vehicle for 4

weeks intraperitoneally (n = 10/group). The mice tolerated the treatment well with no acute

side effects. Two mice treated with GSK-LSD1 developed an eye infection, but this was most

likely not related to the treatment and the mice healed normally with sterile saline rinsing.

Assessment of the distal femora by μCT revealed that trabecular bone was significantly

decreased in GSK-LSD1 treated mice compared to vehicle treated mice, as shown by reduced

bone volume (BV/TV), trabecular thickness and trabecular number (Fig 3A and 3B). Cortical

thickness and cortical bone volume were also decreased in GSK-LSD1 treated mice (Fig 3C).

To investigate the underlying mechanism for the decreased trabecular bone parameters, we

performed histomorphometric analysis on the methyl methacrylate-embedded tibias. Histo-

morphometry confirmed the trabecular osteopenia observed by μCT (Fig 3D). This was due to

decreased number and activity of the osteoblasts as the number of osteoblasts, osteoid surface

and thickness, as well as bone formation rate were all decreased in GSK-LSD1 treated mice

compared to vehicle treated controls. There were no significant differences in any of the osteo-

clast parameters (Fig 3D–3G).

To further elucidate the effects of Lsd1 inhibition on bone turnover rate, we measured the

levels of bone resorption marker CTX-I and bone formation marker P1NP in serum samples.

There was no significant difference in serum CTX-I (p = 0.67), while serum P1NP was signifi-

cantly decreased (p = 0.012), supporting the histomorphometric finding of decreased bone for-

mation (Fig 3H).

Table 1. More than two-fold differentially expressed histone demethylases in MC3T3-E1 cells differentiated for 21 days compared to undifferentiated subconfluent

cells in RNA-seq analysis.

Histone demethylase Synonyms Fold change Adjusted p-value

Kdm3a Jhdm2a, Jmjd1a, Kiaa0742 2,4 7.36e-12

Kdm4b Jhdm3b, Jmjd2b 2,2 5.87e-15

Kdm5b Jarid1b, Kiaa4034, Plu1 3,1 2.11e-20

Kdm6b Jmjd3, Kiaa0346 2,5 1.39e-07

Kdm7a Jhdm1d, Kdm7, Kiaa1718 13,4 3.05e-64

https://doi.org/10.1371/journal.pone.0265027.t001
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Loss of Lsd1 expression disrupts primary spongiosa ossification and

reorganization

To study the loss of Lsd1 expression in long bone osteoblasts we crossed the Lsd1fl/fl mice with

Prrx1-Cre mice, leading to deletion of Kdm1a exons 5 and 6 in the limb bud mesenchymal

cells [51]. The male Lsd1� =�Prrx1
mice showed a clear bone phenotype already at 4 weeks of age

with 42% lower body weight (p<0.0001) and 35% shorter tibias (p<0.0001) compared to litter-

mate Lsd1fl/fl controls. The heterozygous Lsd1þ=�Prrx1
showed a less pronounced phenotype with

10% lower body weight and 5% shorter tibias compared to littermate Lsd1fl/fl controls (Fig

4A). Due to the drastic phenotype the bone samples were collected at 4 weeks of age to avoid

potential harm for animal wellbeing.

In visual analysis of the 2D X-ray data the long bone phenotype of Lsd1� =�Prrx1
mice was appar-

ent, with osteogenesis imperfecta-like curvature of the bones, loss of secondary ossification

centres and impaired union of the fibula to the tibia (Fig 4B). The μCT 3D reconstructions

showed unclosed calvarial sutures of the Lsd1� =�Prrx1
mice and similar phenotype of tibias as the

Fig 2. Lsd1 inhibition in osteoblasts. Effect of Lsd1 inhibition in MC3T3-E1 cells by RN-1 (A) and GSK-LSD1 (B) on differentiation demonstrated by ALP and Von

Kossa staining of 21d differentiated cells (left), expression of osteoblast related genes in 14d differentiated cells quantitated by qPCR (middle, n = 3) and proliferation rate

(right, n = 3). Effect of Lsd1 inhibition in calvarial osteoblasts by RN-1 and GSK-LSD1 (C) demonstrated by ALP staining of 21d differentiated cells (left), expression of

osteoblast related genes in 14d differentiated cells quantitated by qPCR (middle, n = 3) and von Kossa stained area (right, n = 3). P-values for statistically significant

differences are marked � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pone.0265027.g002
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initial 2D images (Fig 4C). Further 3D analysis showed significantly decreased trabecular BV/

TV and number as well as increased structural model index (SMI) in the Lsd1� =�Prrx1
mice (Fig

4D), indicating loss of structural complexity and remodeling of the trabecular bone. In the

analysis of cortical bone at tibial midshaft of the Lsd1� =�Prrx1
mice, the cortical volume and cortical

BMD were both decreased, while cortical porosity was increased when compared to controls

(Fig 4D). Histomorphometric analysis of the tibias from Lsd1� =�Prrx1
mice showed similarly lower

overall tissue volume, consistent with genetic effects on limb tissue patterning, but increased

BV/TV and trabecular thickness indicating enhanced bone formation. Osteoblast parameters

Fig 3. Lsd1 inhibitor treatment in vivo. (A) Representative images of Von Kossa stained control (top) and GSK-LSD1

treated (bottom) MMA embedded sections. (B) μCT analysis of trabecular bone. (C) μCT analysis of cortical bone. (D)

Histomorphometric analysis of trabecular bone structural parameters. (E) Histomorphometric analysis of osteoblast

parameters. (F) Representative images of fluorescent labels in control (top) and GSK-LSD1 treated (bottom) samples.

(G) Histomorphometric analysis of dynamic parameters, (H) Bone resorption marker CTX-I and bone formation

marker P1NP serum levels. Mice were treated with either 1,5mg/kg GSK-LSD1 or saline on a 4-on-3-off schedule for 4

weeks, n = 10/group). P-values for statistically significant differences are marked � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pone.0265027.g003
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were similar between groups, but the number of osteoclasts decreased in Lsd1� =�Prrx1
mice,

although it did not reach statistical significance (p = 0.36). There were no differences in the

dynamic markers of bone formation between Lsd1� =�Prrx1
mice and controls (Fig 4E). These

changes in imaging parameters indicate that genetic loss of Lsd1 function in the mesenchyme

has complex effects on bone formation.

Gene expression analysis on RNA extracted from marrow-evacuated femurs showed a 60%

decrease of Lsd1 expression in the knockout mice compared to controls, confirming the effect

of the conditional knockout model. Decreased expression was also found on osteoblast mark-

ers Osterix/Sp7 (Osx, 41%, p = 0.060), Osteoprotegerin (Opg/Tnfrs11b, 52%, p = 0.051), osteo-

blast master regulator Runx2 (45%, p = 0.032) and Collagen type 1 alpha 1 (Col1A1, 46%,

Fig 4. Loss of Lsd1 in long bone mesenchymal cells leads to impaired ossification and growth. (A) Lsd1 knockout mice have decreased body weight and length of tibia.

(B) 2D X-ray data shows osteogenesis imperfecta-like phenotype with increased curvature, impaired secondary ossification and non-union of the fibula to the tibia in the

Lsd1-cKO mice (right) compared to control (left). (C) Representative 3D models of μCT data shows similar loss of secondary ossification site and unclosed calvarial

sutures in the Lsd1-cKO mice (right, bottom) compared to the control mice (left, top). (D) 3D analysis of trabecular and cortical bone. (E) Histomorphometric analysis of

trabecular bone. (F) RT-PCR analysis of RNA extracted from marrow-evacuated bone shows efficiency of Lsd1 knockout (~60%), decrease in osteoblast markers Osx,

Runx2 and Col1A1, no significant change of osteoblast marker Trap and adipocyte marker PPARgamma, and a significant increase of AdipoQ expression. A-E: n = 5-7/

group, F: n = 5/group. P-values for statistically significant differences are marked � P<0.05, �� P<0.01, ��� P<0.001.

https://doi.org/10.1371/journal.pone.0265027.g004
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p = 0.029). Osteoclast marker Trap/Acp5 expression was decreased by 27% but the change was

not statistically significant. Adipocyte master regulator Ppargamma/Pparg expression was

unchanged but adiponectin (AdipoQ/Adipoq) expression was increased by 59% (p = 0.0043)

(Fig 4F). Expression values were normalized to beta-actin/Actb and compared between

Lsd1� =�Prrx1
and Lsd1fl/fl mice.

Histological analysis of decalcified tibias verified the aberrations in the growth plate first

observed in the radiological analysis of X-ray data (Fig 4B). Visual analysis of Safranin-O stain-

ing showed impaired organization and decreased cellularity of the growth plate. The prolifer-

ative zone of the growth plate was also significantly thinner in Lsd1� =�Prrx1
mice, unlike the

hypertrophic zone (Fig 5A). In the growth plate analysis, the chondrocyte density of both the

proliferative and hypertrophic zones were decreased (Fig 5B). The mean chondrocyte column

height in both the proliferative zone and hypertrophic zone were decreased in Lsd1� =�Prrx1
mice

(Fig 5C). The Picrosirius Red staining of trabecular bone combined with polarized light imag-

ing (which discriminates between collagen isoforms) revealed increased Collagen I (Col1a1)

staining and decreased Collagen III (Col3a1) staining when normalized to bone area. There

were no changes in the collagen composition of cortical bone of Lsd1� =�Prrx1
mice (S2 Fig). The

subepiphyseal osteoclast count showed a decreased number of osteoclasts normalized to bone

area (Fig 5D). These results indicate that the growth plates of Lsd1� =�Prrx1
mice exhibit loss of

organization and cellular richness, as well as loss of remodeling of subepiphyseal bone.

Fig 5. Loss of Lsd1 in long bone mesenchymal cells disrupts growth plate organization but not collagen maturation. (A) Growth plates of Lsd1 knockout mice

have decreased organization and thicker hypertrophic zone (right) compared to control (left) (n = 4–5 per group). (B) Mean cell density of Lsd1 knockout mice was

lower in both proliferating zone and hypertrophic zone of the growth plate. (n = 4–5 per group). (C) Chondrocyte column height counting showed impaired cellular

organization in the proliferating zone of growth plate. (n = 4–5 per group). (D) Osteoclast counting of subepiphyseal bone showed impaired regeneration seen as

decreased relative number of osteoclasts (n = 5 per group).

https://doi.org/10.1371/journal.pone.0265027.g005
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Lsd1 binding is enriched on proximal promoter areas during

osteoblastogenesis

To study the genomic occupancy of Lsd1 and the dynamics of histone methylation during

osteoblast differentiation, we performed ChIP-seq analysis of Lsd1, H3K4me1, H3K4me2,

H3K4me3 and H4K27me3 on differentiated MC3T3-E1 cells at 0,7 and 14 days. In the Lsd1

ChIP-seq data, we found 9207, 10879 and 16978 significant Lsd1 peaks compared to input

control in cells differentiated for 0, 7, and 14 days, respectively, suggesting that Lsd1 occupancy

increases upon osteoblastic differentiation (Fig 6A). There were 3755 common peaks present

in all time points, representing constitutive Lsd1 binding sites, but also a large number of

unique Lsd1-bound sites at various time points (e.g., more than 9,000 unique binding sites in

14D differentiated cells), demonstrating dynamic binding of Lsd1 in osteoblast genome during

differentiation (Fig 6B). Interestingly, Lsd1 binding showed strong enrichment at transcrip-

tional start sites (TSS) and the proximal promoters as the majority of the Lsd1 peaks were

localized within 1 kb of TSS, and this peak region narrowed further upon osteoblast differenti-

ation (Fig 6C and 6D). This finding suggests that Lsd1 is modulating gene expression by acting

directly on TSS and on proximal promoters.

Fig 6. Lsd1 ChIP-seq analysis. (A) Number of Lsd1 peaks detected at different time points. (B) Overlap of Lsd1 peaks between different time points represened by Venn

diagram. (C) Distrubution of Lsd1 peaks. (D) Distance of Lsd1 peaks from the TSS at different time points. (E) Top enriched TF consensus motifs in Lsd1 ChIP-seq peak

data. (F) Overlap of Lsd1 and published Runx2 ChIP-seq peaks.

https://doi.org/10.1371/journal.pone.0265027.g006
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Altogether, 5522, 6557 and 9319 genes were bound by Lsd1 on days 0, 7 and 14 of osteogenic

differentiation, respectively. Between 1 and 33 Lsd1 peaks were identified on these genes, while

the average gene was occupied by 1.7 to 1.8 Lsd1 peaks at each time-point. Based on these data,

Lsd1 likely plays a prominent role in the regulation of osteogenesis by acting at gene promoters.

The full list of Lsd1 ChIP-seq peak locations and genes are presented in S2 Table.

Lsd1 interacts with loci enriched for Runx2 binding motifs

Previous reports have demonstrated that Lsd1 binds to DNA, but in a non-specific manner

[75–77]. However, we hypothesized that Lsd1 could interact with other nuclear proteins that

would target Lsd1 to specific gene promoters to regulate gene expression in osteoblasts. There-

fore, we searched for conserved transcription factor consensus binding motifs in Lsd1 bound

sites using the HOMER tool. Intriguingly, in the top ten most enriched motifs at Lsd1 bound

sites, we found consensus motifs for Runx1 and Runx2, and for different subunits of the AP-1

transcription factor complex, including Fra1, Fra2 and Fosl1 (Fig 6E). Consensus Runx1/2

motifs ((A/T/C)TGTGGTT(A/T); (G/T)(T/C)TGTGGTTT; CTGTGGTTT(G/C)) were

found in 16–20% of Lsd1 ChIP-peaks. For comparison, Runx2 motifs are found in approxi-

mately 40% of Runx2 bound sites in MC3T3-E1 cells [78–80]. Strong enrichment of RUNX

motifs in Lsd1 ChIP-seq peak data suggest that Lsd1 is important in modulating the promoter

areas of osteoblast related genes allowing subsequent Runx2 binding or that Lsd1 interacts

directly or indirectly with Runx2 in the same protein complex.

To further explore the putative functional interaction of Lsd1 with Runx2, we compared

our Lsd1 ChIP-seq peak map with previously published Runx2 ChIP-seq data sets from

MC3T3-E1 cells [78, 79]. Interestingly, of the Lsd1 bound sites that contained Runx2 binding

motifs, 35% had been previously shown to bind Runx2, further supporting our interpretation

of functional interplay between Lsd1 and Runx2 on the same sites on the chromatin in

MC3T3-E1 osteoblasts (Fig 6F).

Genomic distribution of Lsd1 dependent H3K4me marks with H3K27

methylation marks

In general, H3K4me1 is a marker for active enhancers, whereas H3K4me2 and H3K4me3 are

marks for active promoters. H3K27me3 in turn, is present in silenced or poised/bivalent

(marked by H3K4me3 and H3K27me3) chromatin [3]. Of these histone marks, H3K4me1 and

H3K4me2 are substrates for Lsd1 demethylase activity. When evaluating peak numbers for

these histone marks, the total peak numbers remained relatively unchanged between the differ-

entiation time-points (Fig 7A). Consistent with the literature, we found H3K4me1 peaks more

distant from the TSSs than H3K4me2/3, while H3K27me3 was nearly absent at TSSs but

showed growing chromatin binding with increasing distance to the TSSs (Fig 7C). The distance

of H3K4me2/3 from TSSs decreased upon differentiation, suggesting more condensed methyla-

tion of H3K4 at the core promoters in the mature osteoblasts. Binding of H3K27me3 in turn

showed no marked dynamics between the time points. Accordingly, when the peak locations

were correlated to annotated genomic features, most of H3K4me2/me3 were found at promot-

ers, H3K4me1 at promoters and introns, and H3K27me3 both at promoters and distally in the

intergenic regions (Fig 7B). In summary, the histone ChIP-seq peak data were consistent with

the general characteristics described for the specific histone modifications we analyzed.

Epigenomic correlation between Lsd1 and histone methylation status

To identify which histone marks are associated with Lsd1, we next studied the correlation

between Lsd1 and histone mark peaks. In general, Lsd1 peak location at the TSSs was inversely
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correlated with H3K4me1 occupancy, suggesting Lsd1 plays a role in demethylating H3K4me1

at the proximal promoters (Figs 6D and 7C). Lsd1, H3K4me2 and H3K4me3 in turn were found

at or very close to the TSS. At many promoters, the peak profiles were almost identical between

Lsd1 and H3K4me2 and H3K4me3, suggesting that Lsd1 associates with these two histone

marks. In another approach, we evaluated the overlap of ChIP-seq peaks (Fig 7D and Table 2).

On day 14 of osteogenic differentiation (day with highest number of Lsd1 occupied sites), 89% of

the Lsd1 peaks overlapped with H3K4me2, whereas only 46% of the peaks overlapped with

H3K4me1 peaks, both being known substrates for Lsd1. The difference in the peak overlap could

suggest that in osteoblasts Lsd1 actively demethylates H3K4me1 leading to decreased H3K4me1

on the Lsd1 bound sites, whereas Lsd1 might not actively demethylate H3K4me2, although

located at the same site. Alternatively, Lsd1 may bind H3K4me2 and upon de-methylation the

Fig 7. Histone ChIP-seq analysis. (A) Total number of ChIP-seq peaks. (B) Distribution of ChIP-seq peals on annotated genomic locations. (C) Average distance of

H3K4me1/me2/m3 and H3K27me3 peaks from the TSS’s. (D) Overlapping peaks of Lsd1 and histone mark binding sites at 14D differentiated cells. Percentage of Lsd1

peaks overlapping with histone modification peaks are indicated.

https://doi.org/10.1371/journal.pone.0265027.g007

Table 2. Overlapping LSD1 and histone modification peaks.

LSD1 peak number Overlap with H3K4me1 Overlap with H3K4me2 Overlap with H3K4me3 Overlap with H3K27me3

0D (8959) 30% 89% 76% 2%

7D (10574) 34% 90% 74% 3%

14D (16425) 46% 89% 64% 3%

https://doi.org/10.1371/journal.pone.0265027.t002
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enzyme is released from H3K4me1 marks, or that Lsd1 resides on active promoters near TSSs

but participates in protein complexes not including H3K4me1 or me2. For comparison, only

2.5% of the Lsd1 peaks overlapped with H3K27me3 peaks, suggesting that Lsd1 is not present in

the same protein complex that regulates H3K27me3 methylation state.

To study this in greater detail, Lsd1 peak locations at the proximal promoters of individual

genomic loci were examined. In a view of chromosome 19 on our RNA-seq data (Fig 8), there

are several constitutively expressed genes (except for two non-expressed genes marked by high

H3K27me3). Interestingly, H3K4me1 was strongly decreased locally at Lsd1 peak regions at

TSSs of actively transcribed genes, whereas there was abundant H3K4me2 binding at the same

sites (Fig 8).

When Lsd1 and H3K4me1 were found at the same location apart from TSS, these sites were

interpreted as enhancers. For example, for the Kdm7a locus, which is upregulated during oste-

oblast differentiation based on our RNA-seq data, we found that the Lsd1 peak correlated with

low H3K4me1 at the promoter, but on an upstream enhancer, the Lsd1 peak site closely

matched the local levels of H3K4me1 (S3 Fig). These examples demonstrate that the associa-

tion of Lsd1 with H3K4me1 containing nucleosomes may be dependent on the genomic site.

In other words, Lsd1 may act differentially on TSSs and enhancer areas. When we inspected

promoters and enhancers of the individual osteogenic genes such as Bglap, Sp7 and the locus

containing both Dmp1 and Ibsp (S4 Fig), we found that increased Lsd1 binding at 14d differen-

tiated cells correlated with low H3K4me1 and increased H3K4me2 at these sites. These data

Fig 8. Examples of H3K4 methylation patterns at Lsd1 bound promoters and enhancers visualized by integrative genomic viewer (IGV). View of chromosome 19

with several expressed genes.

https://doi.org/10.1371/journal.pone.0265027.g008
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collectively suggest that Lsd1 may be involved in reorganizing chromatin of known osteogenic

genes, and that Lsd1 may have substrate preference and perhaps preferentially demethylate

H3K4me1 in this context.

Lsd1 epigenomic events correlate with modulations in gene expression

during MC3T3-E1 osteoblast differentiation

To understand the correlation between Lsd1 binding and transcription dynamics during oste-

oblast differentiation, we integrated our Lsd1 ChIP-seq data with our RNA-seq data of the

parental MC3T3-E1 cells at 0 and 14 days of differentiation. First, we defined the gene as

expressed if the log2 expression level was greater than 1 (Fig 9A). Intriguingly, when we stud-

ied the expression status of those genes occupied by Lsd1 within 1 kb from the TSS, we found

that more than 90% of the genes were expressed (Fig 9B). Moreover, when including expres-

sion data for all 23,398 genes from the RNA-seq analysis, the average expression level of the

genes occupied by Lsd1 was significantly higher than the expression level of non-Lsd1 occu-

pied genes (Fig 9C). Thus, Lsd1 occupancy at the promoter was strongly associated with active

Fig 9. Lsd1 binding correlates with expression status and differential expression. (A) Determination of gene expression status of RNA-seq data. Genes with log2

expression level<1 were defined as expressed. (B) Correlation between Lsd1 binding and gene transcriotion at 0 and 14 d of differentiation. (C) The average expression

level of genes with (blue) or without (red) Lsd1 promoter occupancy at 0D and 14D timepoints. (D) Lsd1 binding was significantly enriched on the promoters of DE genes

during differentiation. (E) DE genes with Lsd1 occupancy were equally up- and downregulated. (F) Dynamics of Lsd1 binding was not indicative of up- or

downregulation of gene transcription.

https://doi.org/10.1371/journal.pone.0265027.g009
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transcription. However, although Lsd1 binding was abundant on the promoters of expressed

genes, Lsd1 was not occupying the promoters of all actively transcribed genes. More specifi-

cally, 20% and 33% of the expressed genes at 0 and 14D were occupied by Lsd1, respectively.

The latter is consistent with the concept that Lsd1 dynamically associates with its target genes

and that Lsd1 may vacate from loci after methylation of H3K4.

We also examined the correlation between dynamics of gene transcription on differentially

expressed genes at 0 and 14 d and Lsd1 occupancy. Interestingly, Lsd1 binding was signifi-

cantly more prominent at the promoters of differentially expressed genes than on the genes

with constant expression level between the time-points (Fig 9D). However, these genes con-

tained equal numbers of up- and downregulated genes (Fig 9E), suggesting that Lsd1 binding

is not indicative for the specific direction of gene expression changes. Similarly, when we

searched for a correlation between Lsd1 binding dynamics and gene expression changes, no

signs of Lsd1 binding to up- or down-regulate gene expression were observed (Fig 9F). Taken

together, although Lsd1 binding strongly correlates with transcriptional activity and dynamic

gene expression changes in differentiated versus undifferentiated cells, the molecular function

of this protein in control of gene expression may critically depend on local chromatin context

and interactions with other proteins.

Discussion

Posttranslational histone modifications are important for controlling local chromatin struc-

ture and gene transcription. In the present study, we demonstrate that Lsd1, by regulating his-

tone methylation profile, plays a crucial role in osteoblast differentiation in vitro and in vivo.

Lsd1 is ubiquitously expressed and it has been shown to play a very context specific role in dif-

ferent types of cells, ranging from the regulation of stem cell properties during embryonic

development to growth promoting role in several types of malignancies [43, 81, 82] In vivo,

global Lsd1 knockout leads to early embryonic lethality [23, 54]. We found that Lsd1 inhibition

by either shRNA mediated knockdown or by pharmacological inhibitors suppressed osteoblast

differentiation and function in vitro. Furthermore, inhibition of Lsd1 activity in vivo resulted

in decreased osteoblast number and activity, thus causing osteopenia. Conditional deletion of

Lsd1 in mesenchymal cells led to osteopenia and disruption of growth plate organization. The

decreased number of chondrocytes in the growth plate impaired the typical RANKL expres-

sion from the growth plate. The collagen composition analysis with Picrosirius red staining

showed, that endochondral bone formation from the growth plate increases deposition of

mature Collagen I instead of the transient deposition of Collagen III. This finding may explain

differences of bone volume observed by μCT and histomorphometric analyses. We also char-

acterized Lsd1 occupancy in osteoblast genome by ChIP-Seq and found a novel functional

interaction of Lsd1 with the master regulator of bone formation, Runx2, further highlighting

the important role of Lsd1 in osteogenic differentiation.

Beyond its activity as a histone demethylase, LSD1 binds to DNA by forming a complex

with the ‘Corepressor of the RE1-Silencing Transcription Factor’ (CoREST/RCOR1/

KIAA0071), which then interacts with DNA and bridges LSD1 with its substrates [75–77]. In

addition to LSD1, all RCORs (RCOR1, RCOR2 and RCOR3) interact with histone deacetylases

1 and 2 (HDAC1 and HDAC2) forming a LSD1-RCOR-HDAC1/2 complex with a unique

capacity to both demethylate and deacetylate its targets [83, 84].

LSD1 has been previously shown to bind to both enhancer [85] and promoter areas [47, 86]

prior to complex activation. We found that Lsd1 binding was especially enriched at gene promot-

ers with Runx2 consensus motifs many of which had previously been shown to bind Runx2 in

ChIP-Seq. Hence, the Lsd1-Runx2 functional interaction may at least in part account for how
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Lsd1 is recruited to osteogenic genes during osteoblast differentiation. Previously, genome-wide

binding of Lsd1 has been studied by ChIP-seq in 3T3-L1 pre-adipocytes [53], C3H10T1/2 embry-

onic mesenchymal cells [53], and in brown adipose tissue [87]. In 3T3-L1 cells Lsd1 occupancy at

gene promoters increased significantly when the cells reached the mature adipocyte stage, which

is in accordance with the high promoter occupancy we observed in osteoblasts. However, we also

found that Runx2 transcription factor motifs were the most significantly enriched in osteoblasts,

whereas in 3T3-L1 adipocytes Lsd1 occupancy was shown to correlate with Nrf1 consensus

motifs [53]. Furthermore, Lsd1 was reported to physically interact with Nrf1 in 3T3-L1 cells [53].

In primary brown adipocytes, Lsd1 has been shown to form a complex with Prdm16, leading to

suppression of white adipose tissue (WAT) genes and upregulation of mitochondrial function

and thermogenesis, favoring brown adipose tissue (BAT) function [87]. Taken together, our

results are in agreement with previous studies suggesting that interaction partners are critical in

determining the genomic binding and the outcome of Lsd1 activity in a context specific manner.

Runx2 is well known for its interactions with numerous regulatory proteins, including

CBFβ, TLE proteins, HES-1, YAP, Smads, C/EBP, Msx2, AP-1 and HDACs [88, 89]. In addi-

tion, proteomic studies have shown that Runx2 may interact with many other protein com-

plexes through indirect interactions [90]. Interestingly, Lsd1 has been previously shown to

interact with Runx1 in differentiated erythroid cells, but the interaction was not found in cells

at undifferentiated state [91]. Our RNA-seq data showed that both Runx1 and Runx2 mRNAs

were expressed in osteoblasts with Runx2 being far more highly expressed than Runx1 as

MC3T3-E1 cells matured (S1 Fig). Hence, Lsd1 may switch from Runx1 to Runx2 containing

complexes during the progression of osteoblast differentiation, possibly through interactions

with other transcription factors or scaffolding proteins.

Lsd1 appears to play a role in several different MSC-related cellular events. Our results sug-

gest that Lsd1 promotes osteoblast differentiation at least in part by modulating chromatin sta-

tus at Runx2 bound sites. Recently Lsd1 and Runx2 gene transcriptional regulation were also

associated in a study of C2C12 cells, where Lsd1 was shown to promote myogenic differentia-

tion by suppressing Runx2 gene expression by demethylating H3K4me1/me2 at an enhancer

site 200 kb downstream of Runx2 [92]. In our ChIP-seq data, there were several Lsd1 peaks in

the vicinity of the Runx2 locus, but we could not identify this specific enhancer site in our

data, perhaps reflecting the high context specificity of Lsd1 action and chromatin binding.

Based on a Crispr/Cas9 screen of multipotent C2C12 cells, Munehira and collegues also

reported that Kdm3b, Kdm6a and Kdm8 had an effect on osteogenic differentiation, whereas

Lsd1 was found to be the only one required for myogenic differentiation. Our study using

shRNA mediated silencing or pharmacological inhibition of Lsd1 activity in vitro and in vivo

indicate that Lsd1 is required for differentiation of both MC3T3-E1 osteoblasts and primary

calvaria osteoprogenitor cells in vitro, as well as osteoblast differentiation and function in vivo.

Recent reports from other groups have concluded that LSD1 inhibition promotes osteo-

genic differentiation of MSCs. For example, this conclusion has been made based on the find-

ing that MAO-B inhibitor pargyline induced differentiation of human adipose-derived

mesenchymal stem/stromal cells [93], and pargyline treatment increased ovariectomy-related

and age-dependent bone loss in vivo [94]. Furthermore, limb mesenchyme targeted knockout

of Lsd1 by Prrx1-Cre was reported to lead to increased bone mass and Lsd1 depletion in vitro

was shown to increase MSC differentiation [95]. Pargyline is much less selective for Lsd1 than

the Lsd1 inhibitors we used in our study, which could account for differences in the interpreta-

tion of the results stemming from effects from other MAO-B enzymes than Lsd1. It should

also be noted that previous studies have examined Lsd1 function in uncommitted MSCs, while

we focused on lineage-committed osteoblasts. Hence, the possibility arises that even if Lsd1

may prevent osteogenic lineage-commitment of MSCs it can still have an essential role in
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osteoblast maturation when the cell fate has already been determined. Previous experiments

published on Lsd1� =�Prrx1
mice were conducted on a different Lsd1 conditional knockout con-

struct flanking exon 6 coding for a part of the AOD compared to the construct used in this

paper, flanking exons 5 and 6 coding for the FAD binding site and AOD. Original reports of

these constructs reported only Lsd1 null phenotypes as no truncated Lsd1 forms were found

[51, 54]. Sun and colleagues reported that loss of Lsd1 not only increased bone mass and osteo-

blast differentiation, but decreased body stature, body weight and delayed cartilage develop-

ment, though no mention of tibia or femur lengths were made. Therefore, the increased bone

volume in μCT analysis in their report could be an outcome of the impaired primary spongiosa

ossification and remodeling that was observed in this report.

We found Lsd1 occupied genes to be associated e.g. with cell cycle, chromatin organization

and cancer whereas in adipocytes, Lsd1 was found especially in the genes related to adipogen-

esis, electron transport chain and oxidative phosphorylation [53], indicating the context speci-

ficity of Lsd1 action. We observed a strong negative correlation between Lsd1 bound regions

and H3K4me1 levels, whereas H3K4me2 levels at these sites were unchanged or increased.

This result suggests that Lsd1 may be stably associated with H3K4me2 regions but could

quickly vacate these loci when H3K4me1 is demethylated to unmethylated H3K4 in

MC3T3-E1 cells. Because Lsd1 knockdown does not reduce global H3K4me3 levels, it is appar-

ent that biological effects of Lsd1 on osteoblast maturation are restricted to specific loci within

the genome. Our data together with previous literature of other cell types therefore strongly

suggest that interactions of Lsd1 and transcription factors with genomic loci are lineage-spe-

cific and chromatin context dependent.

In conclusion, our results support the current view that Lsd1 controls the lineage-commit-

ment of MSCs and apparently favor adipogenic over osteogenic cell fate. However, once cells

are pre-committed to the osteoblast lineage (e.g., MC3T3-E1 cells and calvarial osteoblasts),

optimal expression of Lsd1 and its recruitment to specific loci is necessary to support osteoblast

maturation into its final, functional phenotype. These biological distinctions in Lsd1 activity

may be controlled by transcription factors and co-regulators that recruit Lsd1 to certain geno-

mic locations, rather than by changes in Lsd1 expression. We propose that modulation of Lsd1

activity might be beneficial for short term applications in MSC-based bone tissue engineering,

but that long-term use in treatment of cancer or osteoporosis would not be advisable from the

perspective of the important function of Lsd1 in normal osteoblast differentiation.

Supporting information

S1 Fig. LSD1, Runx1 and Runx2 are expressed abundantly during osteoblast differentia-

tion. Lsd1 expression was stable throughout the differentiation culture of both MC3T3-E1

cells (A) as well as mouse calvarial osteoblasts (B) (n = 3). LSD1 protein expression was abun-

dant and increased during osteoblast differentiation (C) in MC3T3-E1 cells. Both Runx1 and

Runx2 were expressed throughout osteoblast differentiation, but Runx2 mRNA expression

was clearly higher than Runx1 in the RNA-seq data (n = 2).

(TIFF)

S2 Fig. Picrosirius red staining analysis showed no changes in collagen maturation under

polarized light between groups. Histological analysis of the Picrosirius red stained tibial sec-

tions showed increased collagen I and decreased collagen III staining in the Lsd1� =�Prrx1
mice

compared to control when normalized to bone area, but the ratio of collagen I and III was

unchanged (n = 4 per group). P-values for statistically significant differences are marked �

P<0.05, �� P<0.01.

(TIFF)
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S3 Fig. Kdm7a gene locus H3K4 methylation and LSD1 binding patterns visualized by

integrative genomic viewer (IGV). Kdm7a is an upregulated during differentiation and show

Lsd1 binding both at proximal promoter and at upstream enhancer.

(TIFF)

S4 Fig. Examples of H3K4 methylation patterns at Lsd1 bound promoters and enhancers

visualized by integrative genomic viewer (IGV). Osteogenic locuses for Sp7 (A), Bglap (B)

and both Dmp1 and Ibsp (C) show correlation between high Lsd1, low H3K4me1 and high

H4K4me2 at 14D.

(TIFF)

S1 Table. Primer and antibody information.
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S2 Table. Lsd1 ChIP-seq peak locations and genes.
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