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ABSTRACT Due to the surge in remote work after the outbreak of COVID-19, network security has gained
an enormous focus. The issue of erroneous inspection decisions in network security solutions has long been
criticised, but the importance of the decision accuracy has never been as important as today. In this paper we
provide a solution for improving the inspection decision accuracy by specifying a method for endpoint aware
inspection in a network security solution capable of performing deep packet inspection. The method utilises
a subset of the protected network to gather hash fingerprints from the endpoint application network traffic
patterns. The information gathered from this subset is then utilised for gaining endpoint awareness for the
rest of the protected network. We use methods that work on the application layer of the protocol stack. This
makes the method applicable not only for local implementations, such as NGFWs and IPSs, but also for SaaS
and SASE solutions. The method is, however, easily utilised with lower layer information, such as network
and transport layer information, for operating system awareness as well. We also present a proof-of-concept
case study where we observe that, of the applicable network connections, 100% could be identified when
the operating system and endpoint application were present in the source group. To our knowledge, this is
the first method to enhance the inspection process accuracy by leveraging a subset of the protected network
to gain endpoint awareness.

INDEX TERMS Computer network management, firewalls (computing), middleboxes, network security.

I. INTRODUCTION
The network security landscape experienced an abrupt
change due to the COVID-19 pandemic, as remote work
became the norm within a few months. The acute need for
network security solutions put additional pressure on the
network security solution providers as well, and problems
that might have been prioritized lower before the pandemic
quickly became high priority. One of such problems is the
accuracy of deep packet inspection related observations.

A network security solution, which is used for providing
additional security to the network, may utilise many different
features for analysing the network traffic. These features
often include deep packet inspection, intrusion prevention
systems, network application identification, URL and content
categorisation and TLS decryption. Depending on the net-
work security solution, it may be able to terminate content
it considers malicious, or it may only provide additional
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information for the network administrator. Examples of such
network security solutions includeNext Generation Firewalls
or NGFWs, Intrusion Prevention Systems or IPSs, Intrusion
Detection Systems or IDSs and Secure Web Gateways.

A key element of a network security solution is the ability
to identify malicious content from the network traffic. When
considering the goodness of entities in a network security
solution, such as protocol patterns, files, or URLs, it is often
relatively easy to identify the entities that are certainly good
or bad. There is an area in the middle, however, a grey area,
where it is not as easy to make the distinction. In this grey
area, the content can be malicious, or it can be legitimate
and just happen to exhibit patterns that may be determined
suspicious. It is also possible that a certain pattern in a file
or a misuse of a protocol causes one endpoint application to
crash, even if the content itself is not intentionally malicious.

This grey area is where false positives and false negatives
happen in a network security solution. False positives and
false negatives happen when the network security solution
makes an assessment of the goodness or badness of the
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inspected entity, and that assessment is wrong. When a false
positive happens, the network security solution has made the
assessment that the entity is malicious, when in fact it was not.
Correspondingly, a false negative happens when the network
security solution has made the assessment that the entity
is benign, when it was actually malicious. False positives
and false negatives can be produced from any part of the
network traffic which a network security solution processes.
This includes, for example, files, URLs and network protocol
patterns.

As the inspection observations become more uncertain, the
decision needs to be made by the network security solution
whether the potential impact of a false negative outweighs
the inconvenience of a false positive. This decision is made
more complicated by the fact that a network security solu-
tion is usually blind to the local context: what kind of end-
point, and which endpoint application, is the recipient of the
traffic.

The grey area of uncertainty is poison for a network secu-
rity solution. When the decision to block or allow uncertain
traffic is wrong, there are only bad consequences. On one
hand, if the decision ends in a false positive termination,
the administrator needs to do manual work to permit the
connection. If false positives are common, the administrator
will oftenmake a decision to reduce security in general to ease
the workload the false positives create. On the other hand,
if the decision ends in a false negative, something malicious
is let through, which can have even worse consequences.
Inspection process accuracy refers to the proportion of false
positives and negatives out of all inspection assessments.
A higher accuracy indicates a lower amount of false positives
and false negatives.

To solve the problem of false positives and false negatives,
awareness of the local context is needed by the network secu-
rity solution to form amore conscious decision. Our approach
to solving this problem is for the network security solution
to become aware of the endpoint application which will be
receiving the content. We refer to this as endpoint aware
inspection. Information on the receiving endpoint application
can be significant when considering the grey area of network
traffic.

As an example, a new and publicly exploited vulnerability
might be discovered in the way one web browser parses a
certain file type. Depending on the inspection capabilities
of the network security solution, it might not be possible
to identify a file exploiting this vulnerability with a 100%
certainty. This leaves the network security solution with the
choice between a risk of producing false positives, and a
risk of accidentally permitting a malicious file through. With
visibility into the receiving endpoint application, however, the
network security solution can make a much more informed
decision about whether to permit the file through or not.
When a file considered to potentially exploit this vulnerability
is observed, the network security solution can terminate the
traffic if the receiving endpoint application would be the
vulnerable web browser. Meanwhile, the same file may be

permitted through, if the receiving endpoint application is
found to be something else.

In this paper, we specify a method for endpoint aware
inspection in a network security solution capable of perform-
ing deep packet inspection. The method uses a small subset
of the protected network to collect verifiable information
for mapping traffic patterns to endpoint applications. This
information is stored and later utilised to identify endpoint
applications from traffic patterns where the endpoint applica-
tion cannot be verified otherwise. To our knowledge this is the
first method to enhance the inspection process accuracy by
leveraging a subset of the protected network to gain endpoint
awareness.

We use protocol hash fingerprinting algorithms, such as
JA3, JA3S, HASSH, CYU and RDFTP, discussed further
in Section III-C, to identify the endpoint application. These
algorithms were selected due to their simplicity, topical-
ity and their shown promise. However, our method can
easily be modified to support any passive fingerprinting
method.

Network and transport layer information has often been
used for fingerprinting the endpoint operating system [1]. It is
noteworthy that the information on these lower protocol lev-
els can, and often will, be different, depending on where the
inspection is being performed. A router performing Network
Address Translation (NAT) on the traffic will modify both
the network and the transport layer information, which means
that the identification made based on network and transport
layer information may be different on both sides of the router.
In addition, this lower layer information can only be used for
identifying the operating system, not the endpoint applica-
tion. Fig. 1 demonstrates an example network configuration,
and how the application layer information stays static while
the lower layer information changes on the route from the
client application to the server application.

Due to using the above mentioned protocol hash fin-
gerprinting algorithms, our method works on the applica-
tion layer of the protocol stack, on top of the network and
transport layer. Because of this, it is not limited to local
implementations that are able to see the lower level infor-
mation untouched, such as IPS’s and NGFW’s installed on
the perimeter of the protected network. Instead, it can also be
applied to cloud security implementations such as Security
as a Service (SaaS) or Secure Access Service Edge (SASE)
solutions. The method is, however, easily modified to utilise
lower layer information for operating system identification as
well.

In this paper the term endpoint refers to the combination
of an operating system and endpoint applications installed
on top of it. This may include physical endpoints, such
as desktops, laptops or server machines, as well as virtual
machines. The best results for endpoint aware inspection are
gained when all protected endpoints send endpoint appli-
cation metadata, such as product name and version, to the
network security solution on each new network connec-
tion that is opened. This way the network security solution
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FIGURE 1. An example network configuration demonstrating application layer data being sent from a client
application (Web Browser) to a server application (Web Server). Even though the lower layer data changes
several times during the route, as several routers perform NAT on the traffic, the application layer data remains
static.

can be certain of the endpoint application and make deci-
sions based on accurate information. However, it is often
not possible to install an external component, which sends
metadata to the network security solution, on all protected
endpoints. The reason is usually either that the operating
platform is closed and installing such an external component
is impossible, or that the network security solution provider
does not have support for a particular operating system for
their external component. Our method acknowledges this and
proposes instead that information on the traffic patterns of
different endpoint applications is gathered into a database
from a subset of protected endpoints where such an exter-
nal component has been installed and the original endpoint
application is known for certain. These traffic patterns are
stored in the form of hash fingerprints. This information
can then be utilised for identifying the endpoint applica-
tions from the endpoints where no external component has
been installed, and used when making an inspection based
decision.

This method is not a silver bullet solution that entirely
removes the problem of false positives and false negatives
from a network security solution. Rather, it is a way to extend
the context in which the network security solution makes
its conclusions. Preliminary results presented in section IV
demonstrate, however, that the method has promise, and that
it can quite reliably identify the endpoint applications even
when the operating system for the source and the target are
different.

The rest of the paper is organized as follows. In section II
we take a look at existing methods for solving the issue
of false positives and false negatives, and consider their
limitations. In section III we give a detailed specification

for the method and the included components and steps.
In section IV we present a proof-of-concept case study where
we demonstrate how the method works in a real environment.
In section V we discuss different aspects of the proposed
method. Finally, in section VI, we make a conclusion of our
paper.

II. RELATED WORK
The problem of lacking context in network based threat detec-
tion has stimulated a lot of discussion and criticism. There are
many attempts to solve this problem, and in this section we
present the most common ones. Somemethods are better than
the others, but each method has its limitations.

The use of active scanners is one of the most common
solutions for providing visibility to the endpoints. Active
scanners may be installed separately, or they can be an inte-
grated part of the network security system itself. Examples
of active scanners are Nmap [2] and Nessus [3]. Nmap is
free to use open-source software. It contains a feature titled
‘‘Version detection’’ [4], which reveals information on the
endpoint application based on an active scan. Nmap can
currently identify over 8800 different endpoint applications
and versions [5]. Nessus on the other hand is a commercial
scanner which implements features such as port scanning and
vulnerability scanning.

Active scanning has its uses, especially in identifying
the server applications. However, client applications cannot
be covered with active scanning. In addition, active scan-
ning needs to be performed regularly to keep an up-to-date
database of the assets, which can take time. Even then, it is
possible that the version or even the endpoint application
changes between the scans.
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Another active endpoint application detection method is
the use of a Configuration Management Database or CMDB.
A CMDB is a database which contains information on
different organisation assets, which can include endpoint
applications and endpoint application versions installed on
different endpoints. The usefulness of a CMDB in the con-
text of endpoint aware inspection depends heavily on how
up-to-date the database is at any given moment. An actively
updated CMDBwhich includes information on installed end-
point applications and endpoint application versions can be
a valuable source for endpoint application information, but
active updating may require heavy resources [6].

Different passive identification methods have also been
developed. Especially passive operating system fingerprint-
ing is a part of many network security solutions [7]–[9]. The
methods for passive OS fingerprinting range from simple
string matching on plain-text application layer data (such as
HTTP User Agent) to fingerprinting the parameter values
sent in the TCP handshake [10]. Passive endpoint application
fingerprinting is often more complex and thus not as largely
utilised as OS fingerprinting. For some protocols there exists
a plain text field revealing the endpoint application, such as
User Agent for HTTP. More often than not, however, the end-
point application is not as explicitly expressed and requires
more advanced identification methods. Several methods with
varying success rates have been proposed especially for iden-
tifying the endpoint application from TLS [11]–[13]. None of
the passive fingerprintingmethods are 100% effective, and all
are susceptible to changing when the underlying application
is updated. Each passive fingerprintingmethod also requires a
trusted source for information on which endpoint application
maps to which fingerprint.

The most accurate method for providing endpoint aware-
ness to a network security solution is if an endpoint sends
metadata for each new network connection to the network
security solution. This metadata should at minimum include
the information on the endpoint application which initiated
the connection. This way the network solution will always
receive current and exact information on the endpoint appli-
cation initiating the network connection being inspected.
The drawback to this method is that on the endpoint the
installation of an external component sending the metadata
to the network security solution is required. It is, how-
ever, not always possible to install an external component
on each protected endpoint. Several network security solu-
tions have implemented these types of external metadata
components [14], [15].

Cisco Systems has developed a process of populating a
database of TLS fingerprints based on metadata received
from endpoints [16], [17]. Based on published information,
this process could have similarities to the steps of populating
the fingerprint database specified in our method. Cisco has
developed a proprietary fingerprinting format and does not
use hash fingerprints as our method does. We did not find any
reference of improving inspection process accuracy with the
collected information from the public materials from Cisco,

FIGURE 2. A simplified overview of the four components and four steps
defined in the method.

whereas in our method, improving the accuracy of the deep
packet inspection process is a core functionality.

III. PROPOSED METHOD FOR ENDPOINT AWARE
INSPECTION IN A NETWORK SECURITY SOLUTION
In this sectionwe specify amethod for endpoint aware inspec-
tion in a network security solution capable of performing deep
packet inspection. Utilising this method, a network security
solution can have higher confidence in its deep packet inspec-
tion based decisions by gaining an awareness of the protected
endpoint application. The method consists of four compo-
nents which are utilised in four steps. The four components
and four steps are visualised in Fig. 2.Wewill first give a high
level description of the method, after which we will provide
detailed definitions for the concepts needed by the method
in sections III-A, III-B and III-C. Based on this we finally
provide a thorough definition of the method in section III-D.
The four components used by the method are the Target,

the Source, the Inspector and the Database.
• The Target: The entire set of protected endpoints.
• The Source: A subset of the endpoints belonging to the
Target that send metadata to the Inspector about the
endpoint applications for each connection.

• The Inspector: A network security solution which per-
forms deep packet inspection on the traffic, is able to
calculate hash fingerprints from it, and correlate them
with the endpoint application based on the received
metadata.

• The Database: A storage for the endpoint application -
hash fingerprint pairs. The database can be integrated to
the Inspector, or it can be an external component.

These four components are then taken into use in four
steps: Establish, Generate, Store and Utilise.
• 1. Establish: Select suitable endpoints to the Source
group. The Source group should be formed so that it
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FIGURE 3. A high level representation of one use case of the method. The Target group is presented on the left,
and two endpoints have been selected in the Source group. The network connections initiated by the endpoints
in the Target group go through the Inspector. One connection initiated by Firefox in the Source group is
displayed. The Inspector calculates the hash fingerprint for this connection and stores it in the Database along
with the application metadata. The information is later utilised when an endpoint not belonging to the Source
group makes a network connection.

provides a good sample of the Target group. Install to
the selected endpoints an external component which
provides endpoint metadata for the Inspector on each
new network connection.

• 2.Generate: For a suitable period of time, calculate hash
fingerprints in the Inspector for the network connections
initiated by endpoints in the Source group. Correlate
hash fingerprints with the endpoint application.

• 3. Store: Store the correlated hash-endpoint application
pairs in the Database. During this period the Database is
populated so that enough information has been gathered
to have a good coverage of the network traffic for the
next step.

• 4. Utilise: Start calculating hash fingerprints in the
Inspector also for the network connections initiated by
the endpoints in the Target group. Deduce the endpoint
application based on the information in the database,
and use the information when making an inspection
decision. During this phase, the Database will continue
to be populated from the data received from the Source
group to keep it current.

Fig. 3 provides a rough visualization of one use case of
the method. On the left it depicts the Target group, which
consists of all endpoints that are protected by the Inspector.
A subgroup of the endpoints are tagged with ‘‘Source’’: these
endpoints are the Source group, providing endpoint metadata
to the Inspector. One of the endpoints in the Source group
initiates a network connection, and sends metadata to the
Inspector that the network connection was initiated by the
Firefox web browser. The Inspector calculates a hash finger-
print from the connection, and stores the endpoint application
metadata with the hash to the Database. When an endpoint
in the Target group, that does not belong to the Source group,
initiates a new network connection, the Inspector calculates
a hash fingerprint from the connection, and checks if the
Database has information on the endpoint application for this

hash value. In the example the hash is mapped to Firefox.
The Inspector can then use this information when formulating
inspection decisions for the connection.

A. ENDPOINT APPLICATION
In the context of this paper, we use the term endpoint appli-
cation to reference the software components that are installed
on an endpoint and communicate with other software com-
ponents on other endpoints over a network. Such endpoint
applications may be client applications such as web browsers
or e-mail clients, but also server components such as web or
e-mail servers.

We do not want to restrict the definition to the exact
instance of an endpoint application, however. If we identify
the endpoint application with something too strict, such as
a hash value of the executable, we will lose a large part of
the extensibility of the method. This is due to the fact that
the network behaviour of an endpoint application can remain
constant while other attributes in the endpoint application are
changed. The network behaviour can thus remain constant
even between different versions of the application. In addi-
tion a simple hash value of the executable would restrict
the endpoint application identification to a specific operating
system and platform, which is unnecessary, as the preliminary
results in the case study in section IV demonstrate that the
hash fingerprints can remain constant even across different
operating systems.

Different operating systems can have different metadata
stored for each executable. Windows can store file version
information with binary files such as.exe or.dll files [18]. This
information may contain the Product name property, which
defines the product the binary file was distributed with [19].
In most cases, the Product name property is a sufficient
way to identify the endpoint application. On most Unix-
like operating systems similar information can be gathered
based on which package the file was installed with [20], [21].
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On Unix-like systems the information about the package
corresponds well enough to the product information on Win-
dows. Correlating the same endpoint application between
different operating systems may require manual work as the
package name is often not exactly the same as the Product
name. This correlation is left out of the scope of this paper
and is assumed to be done during the implementation.

In addition, we require that the endpoint trusts the endpoint
application. It is trivial to modify the file version information
on Windows or override the file on Unix-like operating sys-
tems. However, these operations break the inherent trust the
operating system has on the file. OnWindows, the executable
needs to be signed by a trusted entity, and the signature breaks
when the properties are modified. Integrity checks also exist
in the package managers on Unix-like systems.

B. ENDPOINT METADATA
Receiving endpoint metadata from a subset of endpoints is
a key requirement of this method. With the endpoint meta-
data it is possible to confidently map the hash fingerprints
calculated by the network security solution to an endpoint
application. The metadata needs to include enough informa-
tion to uniquely map each network connection to an endpoint
application. For uniquely identifying the network connection,
the 5-tuple of source IP address and port, destination IP
address and port, and the transport protocol is sufficient.
The requirements for identifying the endpoint application are
discussed more in the section III-A. The metadata can always
include more information as well, such as a hash value of the
executable or the version number of the application, but this
should not affect the endpoint application identification in the
context of this method.

For an endpoint to send metadata to the network security
solution, an external component will need to be installed
on the endpoint. This often requires that the network secu-
rity solution vendor develops a specific component for this
purpose. Examples of such components include the End-
point Intelligence Agent (EIA) for McAfee Network Security
Platform [14] and the Endpoint Context Agent (ECA) for
Forcepoint Next Generation Firewall [15].

C. HASH FINGERPRINTS
A fingerprint is a short tag for a larger object [22]. In gen-
eral, a fingerprint is produced by a fingerprinting algorithm.
In the method presented in this paper we use fingerprinting
algorithms that produce an MD5 hash value as the resulting
fingerprint [23]. Themethod can, however, easily be extended
to utilise any fingerprinting algorithm.

Several fingerprinting algorithms have recently been
developed for fingerprinting endpoint applications from
different protocols. The unifying idea between these algo-
rithms is that there are protocol parameters for which differ-
ent endpoint applications will either select different values,
or present the values in a different order. The algorithm
defines how these values are stored together in a data struc-
ture, and an MD5 hash is calculated from the collected data,

comprising the hash fingerprint. Most of the algorithms are
so recent that no academic papers have yet been published on
their accuracy. In this section we introduce the existing hash
fingerprinting algorithms for endpoint application identifica-
tion. All referenced algorithms are open-sourced, and several
open-sourced tools implementing the algorithms exist, such
as Zeek [24] and fatt [25].

The JA3 and JA3S fingerprints were the first such hash
fingerprints proposed for identifying endpoint applications.
JA3 and JA3S fingerprints are used for identifying the client
(JA3) and server (JA3S) applications from TLS traffic. The
method was developed by Salesforce employees J. Althouse,
J. Atkinson and J. Atkins and open-sourced by the company in
2017 [26]. It is based on research by L. Brotherston, presented
in 2015 at DerbyCon [27]. The JA3 and JA3S methods utilise
clear text information presented during the TLS handshake,
such as version, supported cipher suites and extension infor-
mation, for calculating the hash fingerprint. The JA3 and
JA3S fingerprints are the only hash fingerprinting method
presented here that has already been academically studied to
some extent. The research has, however, mainly focused on
identifying malicious connections [28].

Following JA3 and JA3S fingerprints, Salesforce has
released similar fingerprinting methods for other protocols
as well. In 2018 Salesforce employee B. Reardon pub-
lished fingerprinting algorithms for SSH client and server
identification, called HASSH and HASSHServer [29]. This
method utilises information in the SSH_MSG_KEXINITmes-
sages sent in clear text by both the client and the server.
In 2019 Salesforce employee C. Yu presented a similar finger-
printing algorithm for identifying endpoint applications from
gQUIC traffic called CYU [30]. This method again utilises
clear text information presented in the Client Hello message.

Complementing the work by Salesforce, individual
researchers have presented hash fingerprinting algorithms
for identifying endpoint applications for other protocols.
A method for fingerprinting RDP endpoint applications,
called RDFP, is presented by Karimishiraz in [31] published
in 2019. The author notes that clients using the Enhanced
Security mode can be fingerprinted using the JA3 finger-
printing method, but the RDFP method can be used for
identifying the clients that use the Standard Security mode.
A method for fingerprinting DHCP clients titled KYD is
presented by Bannatwala in [32]. The method is based on
the work presented by Coffeen in [33]. Finally, a method for
fingerprinting SMB clients, called SMBFP, was introduced
in 2020 by Torres in [34]. The author describes the method
as being incredibly bleeding edge.
One problem with hash fingerprinting is brought up in

the study by Truong in [28] on JA3 and JA3S fingerprints.
This problem is collisions, caused by the fact that several
endpoint applications use the same underlying TLS libraries
to perform TLS connections. Due to these collisions, such
a hash fingerprint based endpoint application identification
needs to be regarded as a potential identification, rather than
a certain one.
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D. METHOD DESCRIPTION
In this section we present a formal specification for the
method for endpoint aware inspection in a network security
solution capable of performing deep packet inspection. First
we define the premise for the method, after which we present
a detailed description of the method. The method has four
components: Target, Source, Inspector and Database, as well
as four steps: Establish, Generate, Store and Utilise. The
components and steps are presented in a simplified form
in Fig. 2.

1) DEFINITIONS
Let N be a network of endpoints (|N | ≥ 2) protected by a
network security solutionW . LetW be able to perform deep
packet inspection on the network traffic, and perform security
analysis based on the inspected content.

The endpoints n ∈ N contain endpoint applications; let A
be the set of all network applications in all endpoints n ∈ N .
The endpoint applications a ∈ A make network connections;
let C denote the set of network connections initiated by all
endpoint applications a ∈ A for all endpoints n ∈ N .
Let H be the set of MD5 checksums; let h : C → H be

the function for calculating a hash fingerprint for a network
connection c ∈ C as described in section III-C. Let o : H →
P(A) denote the function which returns the set of network
applications a ∈ A that have been mapped to the MD5
hash d ∈ H .
Let P be the set of properties, such as URL, file, or protocol

pattern, in a network connection c ∈ C that may be catego-
rized by the network security solution W; let g1 : C × P →
{0, 1} denote a function for determining whether the network
security solutionW will create an inspection match from the
property p ∈ P for connection c ∈ C . g1(p) will return 0 when
a match will not be created, and 1 when a match will be
created. Let g2 : C × P × P(A) → {0, 1} denote a similar
function, but with endpoint application awareness utilising
the o function.

2) COMPONENTS
a: TARGET
The Target group is the entire set N of protected endpoints.
An endpoint in the Target group refers to the combination of
an operating system and endpoint applications installed on
top of it. This may include physical endpoints such as desk-
tops, laptops or server machines as well as virtual machines.

b: SOURCE
The Source group S ⊂ N is a subset of the protected network.
It should form a good sample of the endpoints present in the
protected network: if different operating systems are used in
the network, the sample group should contain at least one
endpoint from each group of operating systems. The pre-
liminary results presented in section IV, however, show that
some endpoint applications produce same hash fingerprints
between different operating systems, which indicates that the
method can be useful even if this requirement cannot be met.

FIGURE 4. Visualization of the Utilise step. The result section shows
different outputs for the o function for different hash fingerprints.

c: INSPECTOR
The Inspector is the network security solution W capable of
performing deep packet inspection. All network connections
c ∈ C initiated by the endpoints n ∈ N go through the
Inspector. The Inspector is able to calculate hash fingerprints
using h from certain network connections c ∈ C that are
supported for hash fingerprinting byW . The network security
solution W may be able to calculate hash fingerprints for
one or more network protocols. The Inspector is also able to
correlate the hash fingerprints with the endpoint applications
a ∈ A based on the metadata received from the endpoints in
the Source group S ⊂ N .

d: DATABASE
The Database is used for storing the hash fingerprints
d ∈ H as well as metadata for the endpoint applications
{a1, . . . , an} ∈ A that have been associated with the hash
fingerprint by the Inspector by the function o. The contents
of the database may be limited purely to the list of endpoint
applications associated with d by o(d), or it may contain
additional metadata as well. This database may either be an
integrated database in the network security solutionW itself,
or an external database. An integrated database may be easier
and faster to implement. An external database may, however,
be more useful in case it is desired that data from several dif-
ferent Source groups S from different protected networksN is
collected in one database. In very large networks an external,
centralised database may thus be more convenient.

3) STEPS
a: ESTABLISH
In the first step, the Source group S ⊂ N is established.
The external components that provide endpoint metadata,
as defined in section III-B, for the network security solu-
tionW , are installed on the endpoints in the Source group.

b: GENERATE
In the second step, the network security solution W inspects
the network connections c ∈ C initiated by the endpoint
applications a ∈ A in the Source group S ⊂ N , and calculates
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FIGURE 5. Example demonstrating additional confidence granularity. In this example, the property p has been
associated with a vulnerability in endpoint application App1. The decision to make an inspection based match from
property p differs depending on whether App1 has been associated with the hash fingerprint calculated from the
connection or not.

hash fingerprints using function h from the connections c ∈ C
that are supported for hash fingerprinting by W . These hash
fingerprints are correlated to the original endpoint application
based on the endpoint metadata by function o.

c: STORE
In the third step, the correlated data, which includes but is
not necessarily limited to, the endpoint application and the
calculated hash fingerprint, is stored in a database.

d: UTILISE
In the fourth step, the information stored in the database is
utilised for the entire Target group N . When the network
security solution W receives a network connection c from
an endpoint belonging to the Target group N but not to the
Source group S, and where the protocol is supported for
hash fingerprinting by the network security solution, the hash
fingerprint d ∈ H is calculated for the network connec-
tion with function h. The network security solution W then
queries the database for endpoint application information for
the calculated hash using function o. Depending on the result
of the query, the network security solution can then make a
more informed decision when determining whether a deep
inspection basedmatch should be produced from the property
p ∈ P or not.

4) MAKING THE DEEP PACKET INSPECTION BASED
MATCH USING ENDPOINT AWARENESS
When utilising the endpoint application information while
making a deep packet inspection based decision, the network
security solution will use the result of g2(c, p, o(d)). Below
we list the potential results with different values for o(d) and

how the network security solution can utilise the information
for endpoint aware inspection. The list is also visualized
in Fig. 4.

• No results. o(d) = ∅. If no endpoint application in the
Source group has previously produced the same hash
fingerprint, the network security solution will need to
proceed with the inspection decision regarding property
p as without endpoint awareness, by calculating g1(c, p).

• One result. o(d) = {a}. If only one endpoint application
in the Source group has produced the same hash fin-
gerprint, the network security solution can assume that
the connection currently being inspected has potentially
been produced by that endpoint application. It can pro-
ceed with the inspection decision regarding property p
by calculating g2(c, p, a).

• Several results. o(d) = {a1, . . . , an}. If several end-
point applications in the Source group have produced
the same hash fingerprint, the network security solu-
tion must assume that the connection currently being
inspected has potentially been produced by any of the
matched endpoint applications. It can proceed with the
inspection decision regarding property p by calculating
g2(c, p, a1) ∨ . . . ∨ g2(c, p, an).

After endpoint awareness is gained for the inspection
process in the network security solution W , it can utilise
this information when making inspection decisions. These
decisions are related, for example, to categorising the traffic.
If the network security solution W needs to decide whether
an inspection match should be produced from the property
p ∈ P of the connection c, it can make the decision in
the context of all potentially identified endpoint applications.
If the property p of the connection c is especially meaningful
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for a certain endpoint application a ∈ A, and that endpoint
application a has been potentially identified from the connec-
tion c, the network security solutionW has more confidence
for creating an inspection match. On the other hand, if that
endpoint application has not been potentially identified from
the connection but something else has, the network security
solution has reduced confidence for creating a match.

An additional level of granularity can be achieved when
the set AS of all endpoint applications used by the Source
group is stored, and this information is utilised as part of
the inspection decision g2. This provides additional levels
into the confidence of the endpoint application match. Fig. 5
visualises this added granularity, as described below.

Assume that endpoint application App1 has a vulnerabil-
ity v, and a property p ∈ P associated with v is found from the
network connection c ∈ C . In the first example,App1 belongs
toAS and is thus present and actively used in the Source group
S ⊂ N . When the network connection c is observed by the
network security solutionW from the Target group N , a hash
fingerprint d is calculated using h. If the database returns a
match for App1 for o(d), the network security solution W
can have high confidence that the endpoint application is
indeed App1. It can proceed with the inspection decision
regarding property p with this assumption. In this example,
the network security solution W is designed to always pro-
duce an inspection match from the property p if the endpoint
application App1 belongs to o(d), even if other endpoint
applications have produced the same hash fingerprint as well.
If the database does not return a match for App1, the network
security solution can have similarly high confidence that the
endpoint application is notApp1. In this example, the network
security solution W will not produce an inspection match
from the property p if the endpoint application App1 does not
belong to o(d).

In the second example, App1 does not belong to AS as it
is not used by the Source group S ⊂ N . When the network
connection c is observed by the network security solutionW
from the Target group N, a hash fingerprint d is again calcu-
lated.App1will not be returned for this hash fingerprint by the
database for o(d). This does, however, not give the network
security solution any information on whether the endpoint
application might be App1 or not. Because of this, the net-
work security solution needs to continue with the inspection
decision regarding p as without endpoint awareness using
function g1. In this example the network security solutionW
is designed to produce an inspection match from p if endpoint
awareness is not available. This results in a higher risk of a
false positive.

One solution for the problem presented in the second
example would be that the administrator additionally defined
that App1 is not used in the protected network. This could
be achieved by defining A as the complete set of endpoint
applications used in N. The network security solution W
would again be able to use g2 for deciding whether an inspec-
tion match should be created from p, and App1 will never
belong to o(d). This would again give the network security

FIGURE 6. Description of the case study setup.

FIGURE 7. The timeline of the case study.

solution W high confidence that the endpoint application is
not App1, which in the example would always lead to no
inspection match being created from the property p.

IV. CASE STUDY: LOCAL NETWORK SEGMENT WITH
ONE EXTERNAL INTERNET CONNECTION
A proof-of-concept case study was performed in a local
network segment with one external internet connection. For
the scope of this study, seven endpoints in the network were
selected as the Target group. These endpoints consisted of
five endpoints usingWindows 10OS and two endpoints using
Ubuntu Linux OS. The network traffic was inspected using
the Forcepoint Next Generation Firewall [35].

The collected hash fingerprints were restricted to JA3 fin-
gerprints. This restriction was done based on the fact that the
Forcepoint Next Generation Firewall supports JA3 and JA3S
fingerprints, which restricted the hash algorithms to them.
As specified in section III-C, JA3 fingerprints are for client
applications and JA3S fingerprints are for server applications.
As all protected endpoint applications in the selected Target
group were client applications, there was no source for JA3S
fingerprints in the group, which left JA3 as the selected
fingerprint.

The target of the case study was to examine how well
the Target group can be covered with information collected
from the Source group. The study group is rather small,

VOLUME 10, 2022 44525



J. Heino et al.: Method for Endpoint Aware Inspection in Network Security Solution

but our objective was to see if there is potential for scala-
bility. In addition, we were interested to see how well the
information collected from one operating system can cover
information from another operating system. Because of this,
we left all Linux machines outside of the Source group, and
present the results also as separated by operating system. The
user behavior in the Target group consisted of daily leisure
activities.

Finally, we conducted a small test to demonstrate how
this method could reduce false positives. We selected four
files known to trigger vulnerabilities in certain endpoint
applications, but not in Firefox web browser. We then
accessed these files using Firefox, and observed the
results.

A. SETUP
For the Source group, we selected two Windows endpoints
running Windows 10 OS. This left two Ubuntu Linux end-
points and three Windows 10 endpoint outside of the Source
group. To verify the results, we collected endpoint metadata
also from the endpoints left out of the Source group. We used
the Forcepoint Endpoint Context Agent (ECA) component
to collect endpoint metadata from the Windows machines,
and from the Ubuntu endpoints the endpoint metadata was
collected with a custom script based on the BPF Compiler
Collection project [36].

As the Inspector we used Forcepoint Next Generation
Firewall. The Inspector observed all network traffic from
the endpoints and calculated JA3 fingerprints for the rele-
vant connections. For the Windows endpoints the mapping
of the endpoint application to the JA3 fingerprint was done
by the Inspector using the Forcepoint ECA component. For
the Linux endpoints the mapping was done separately by
correlating the metadata collected from the endpoints to the
log events from the Forcepoint NGFW using the 5-tuple of
source IP address and port, destination IP address and port,
and the transport protocol. The information was stored in
daily JSON files which in the context of this method made
up the Database.

The timeline of the case study is presented in Fig. 7.
We first had an initial period of two weeks to generate data
to the Database from the Source group. Next, we collected
data for four weeks from the entire Target group. After this
test period was over, we gathered and correlated all collected
data and analysed the results.

For the false positive test, we selected two machines from
the local network segment. We selected one machine to
work as a client and one to work as a server. On the server
machine, we created a temporary key and certificate using
OpenSSL, and set up a minimalistic HTTPS server using
Python. We selected four files we knew to trigger vulner-
abilities in certain versions of Internet Explorer, Microsoft
Outlook and Android native Web Browser. We then accessed
these files from the client using Firefox web browser, which
was known not to be vulnerable. The traffic was inspected
and decrypted by the Inspector.

B. RESULTS
Table 1 presents the amounts of hashes, endpoint applications
and unique hash-application pairs in the Source and Target
groups. The Source group data is presented as during the
initial two weeks collection period, and as during the entire
study period. The Target group data is presented in its entirety,
and as restricted only to data collected from endpoint appli-
cations that were present in the Source data. In this study,
when restricting the Target group data based on data from
the Source group, we always consider the Source group data
during the entire study period.

FromTable 1we can see that during the entire study period,
the Target group contained 80 active endpoint applications,
out of which 53 were included in the Source group data.
We can also see that the Source group data contained 7 end-
point applications that were not present in the rest of the
Target group. The Source group data contained 62 unique JA3
fingerprints whereas the entire Target group data contained
73 unique JA3 fingerprints. After restricting the Target group
data only to endpoint applications present in the Source group
data, the amount of unique JA3 fingerprints dropped to 56.
From Table 2 we can also see that only 3 of these JA3
fingerprints were not observed in the Source group.

We also separated the data collected from the Target group
by operating system. The results are presented in Table 3 and
Table 4. The difference in the amounts of endpoint appli-
cations between Windows and Linux is quite large, as the
Linux group contained 15 endpoint applications whereas the
Windows group contained 68 endpoint applications during
the Utilisation period. In addition it is noteworthy that only
4 out of the 15 Linux endpoint applications were present in
the Source group. However, these 4 applications produced
most of the hashes in the Linux group: 20 hashes out of 33.

Table 4 shows the hashes produced by the Target group as
separated by OS. The amount of hashes from the Windows
endpoints diminishes only from 57 to 53 when restricting the
endpoint applications to ones present in the Source group.
The most noteworthy finding is that all of these 53 hashes
were also produced during the Generate phase. This means
that when only considering endpoint applications used in
the Source group, the Source group data covered all hashes
produced by the Windows endpoints in the Target group. The
coverage results for Linux endpoints were not too bad either,
as when restricting the results only to endpoint applications
present in the Source group only 3 out of 20 hashes were not
produced by the Source group.

In Fig. 8 we see the inspection events produced during our
false positive test. We can see that the Inspector calculated
the JA3 fingerprint from the traffic, which remained same
for each of the four connections. We can see that the client
machine sent metadata to the Inspector about the endpoint
application being Firefox. In addition, we can see that in each
case, the traffic was terminated by the Inspector by a situation
which, based on its name, is related to a vulnerability in some
other endpoint application than Firefox. If our method was
utilised for these connections, it would be possible to identify
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TABLE 1. Hashes, apps and pairs from source and target.

FIGURE 8. Logs from the Forcepoint Next Generation Firewall during the false positive test.

TABLE 2. Target hashes.

that the recipient endpoint application is not vulnerable for
the potential exploit in the file, and if so decided, the file could
have been permitted through.

C. REMARKS ON THE CASE STUDY
The decision to leave both Ubuntumachines out of the Source
group was deliberate. We wanted to see how well the hashes
collected from a Windows environment can apply to a Linux
environment. The results showed that the endpoint applica-
tion coverage is not good, as only 4 out of the 15 endpoint
applications on the Linux endpoints were also present in the
Windows endpoints in the Source group. However, for the
Linux endpoint applications that were covered by the Source
group, the coverage was very good: out of the 20 hashes
produced by the Linux endpoint applications that were also
present in the Source group, only 3 were not produced by the
Windows endpoint applications in the Source group. This is
an encouraging result as it indicates that the implementations
of an endpoint application for different operating systems are
not too different considering their network behaviour. The
amount of covered endpoint applications was, however, very
small, which means that these results are not conclusive.

The most noteworthy result from this study was that when
the Target group data was restricted only to endpoint applica-
tions covered by the Source group, all hashes produced by the
Windows machines in the Target group were covered by the
Source group. This is a very promising result, indicating that
as long as the Source group provides great enough coverage
of the endpoint applications used in the Target group, this
method can provide a proper endpoint awareness for the
inspector in the target network.

In this study, 27 out of 80 endpoint applications in the
Target group were not present in the Source group. 11 of
these endpoint applications were from Linux and 16 were
fromWindows. The fact that the Source group did not include
any Linux endpoints is one reason for this variance. Another
reason is that the endpoint applications installed on each end-
point varied greatly based on the preferences of the user of the
endpoint. All endpoints in the Target group were mainly used
for personal free-time activities, but otherwise were quite
heterogeneous regarding installed endpoint applications. The
variance in an organisational setting would most likely be
smaller, as the tools used for daily tasks are often more
homogeneous compared to personal free time preferences.

For the false positive test, we selected files that each were
known to exploit a vulnerability in some endpoint application,
just not in the web browser we used for accessing them.
Thus, it could be argued that the inspection situations that
caused the file downloads to terminate were technically not
false positives, as the files truly were malicious. One way to
approach this is that, no matter which endpoint application
is the recipient of the traffic, a malicious file should always
be terminated. However, the intention of this test was to
demonstrate that our method can be utilised for real life
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TABLE 3. Target by OS.

TABLE 4. Target hashes by OS.

examples. In the case of these particular files, the decision
to terminate the connection might stay the same even if the
endpoint application was known. But this demonstrates that
it is possible for the Inspector to gain better awareness of the
inspected content using our method, and thus to make more
educated decisions.

V. DISCUSSION
The method presented in this paper utilises hash fingerprint-
ing algorithms that work on application layer data. Because
of this, the method is not restricted to local devices, such as
NGFWs or IPSs, that are able to see the original network
and transport layer content. Instead, it can also be utilised
by cloud implementations, such as SaaS and SASE solu-
tions, that may only receive the original application layer
data untouched. There are, however, many fingerprinting
algorithms that identify endpoint information based on lower
layer information as well, that are referenced in section II.
The method presented in this paper can easily be applied also
to lower layer information.

Without a large scale study it remains unclear how long a
time period is needed to gather preliminary information in the
Generate and Store steps for the Utilise period to have good
enough certainty. In the case study in section IV we selected
the period to be two weeks. It is, however, likely that a shorter
time period would suffice in an active network. Whether it
should be one hour, one day or one week may depend on the
size and activity level of the protected network, and requires
further study.

It may also be that if the method is used for a long period
of time in one environment, it becomes necessary to remove
obsolete entries from the database after a certain period of
inactivity. This might be necessary to keep the database

current. If a hash fingerprint was produced by one endpoint
application many years ago and never after that, and is then
produced by another endpoint application now, it is safe to
assume that any traffic producing this hash fingerprint now
would be the new endpoint application instead of the old one.
Further study is needed to understand what this period of
inactivity would be, and if it needs to be incorporated into
the method.

One weakness in the method is in the usage of the passive
hash fingerprints. It is trivial for a malicious entity to modify
its network patterns to mimic a benign endpoint application.
However, we do not consider this weakness a big one. This
method provides a means for identifying whether a property
in a network connection, such as URL, file or a protocol
pattern, is especially meaningful for the identified endpoint
application or not. This would often lead to the connection
being terminated only when it would be received by certain
endpoint application. A malicious endpoint application fak-
ing a benign endpoint application would thus at most end
up having its traffic terminated due to it being considered
harmful for the faked benign endpoint application.

Another weakness in the usage of passive hash fingerprints
is in the fundamental existence of such methods that can
identify the endpoint application, and potentially even the
version, based on network traffic. If the network security
solution is able to identify the endpoint application based on
the unencrypted protocol properties, so is a malicious third
party who is able to eavesdrop the traffic. When a malicious
entity is able to observe which endpoint applications, even
which versions, are used in the network, they have a much
easier task of figuring out a suitable attack.

For this problem to go away, a larger consensus between
endpoint application developers would be needed to attack
the problem of the fingerprintability of network connections,
which we consider not too likely. The best solution would
be for the problem to be solved on the protocol specification
level. Another solution could be for the network security
solution to work as a proxy, initiating a new network con-
nection for each received connection, where the produced
hash fingerprint is obscured. This would remove the endpoint
application information from any connection going through
the network security solution, but letting the network security
solution itself continue with this additional context.

It is possible that an endpoint application in the Target
group generates a checksum which has not been observed
from the Source group, despite the endpoint application in
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question being in use in the Source group. Thismay happen if,
for example, the endpoint application in the Target group gets
updated before any instance of the endpoint application in the
Source group. If high confidence is placed on the contents
of the database, especially when the proposed technique for
higher granularity is used, this can lead to a false assumption
that the endpoint application is not the application in question.
This could lead to a reduced security for the specific endpoint
application.

We have earlier in the paper indicated that the best security
would be achieved if every endpoint in the protected network
was able to send metadata to the network security solution,
and that this method is aimed at the networks where this is
not possible. This method does, however, provide important
insights even in the situation where all endpoints provide
metadata, as it gives visibility into anomalies in the network
patterns for the endpoint applications. When the hash finger-
prints for each endpoint application are stored in the database,
the network security solution can form an understanding of
the common patterns for each endpoint application. Based
on this information it can then identify anomalies, such as
if one endpoint application suddenly starts producing hash
fingerprints that have previously been mapped only to some
other endpoint application.

In the context of this work we have proposed that the
awareness of the endpoint applications is utilized when mak-
ing deep packet inspection based decisions. The information
could, however, also be used for access based control. This
would impose an even higher need for accurate and complete
coverage for varying hash fingerprints - otherwise legitimate
connections could get dropped if the particular hash finger-
print has not been observed from the Source group. In addi-
tion, malicious endpoint applications could get through the
network security solution simply by faking a benign hash
fingerprint for a white-listed endpoint application. We thus
recommend that if used for access-based control, the infor-
mation is again taken as an added context, and used only to
compliment other security layers.

The data on which the presented research is based on is
openly available. Please contact the first author for access.

VI. CONCLUSION
In this paper we have presented a method for endpoint aware
inspection in a network security solution capable of perform-
ing deep packet inspection. This method provides a way to
improve the accuracy of deep inspection based decisions.
This is achieved by gaining an awareness of the endpoint
application initiating the network connection in the network
security solution. To our knowledge this is the first method
to enhance the inspection process accuracy by leveraging a
subset of the protected network to gain endpoint awareness.

On a high level, the method utilizes a subset of the pro-
tected endpoints as a source for accurate endpoint application
information. This information is correlated to patterns in
the network traffic, and the correlated information is then
extended to the entire protected network. Using this endpoint

awareness, the network security solution is able to perform
more conscious deep packet inspection based decisions.

The method utilises application layer data for identifying
the endpoint application. The method can be utilised in a
local security device, such as a NGFW or an IPS, installed
on the perimeter of the protected network. Using application
layer data, however, makes the method useful also in cloud
security implementations, such as SaaS and SASE solutions.
Routing devices may change the network and transport layer
data before it reaches a cloud solution, but the application
layer data more often remains untouched.

To validate the method we presented a proof-of-concept
case study from a small local network segment with one exter-
nal internet connection. In this case study we saw that 73%
of the applicable network connections from the protected
network could be mapped back to the endpoint application
based on the data from the source group. When we took
out the connections that were produced by operating systems
that were not present in the source group, the amount of
identified network connections went up to 93%. When we
further restricted the network connections to those produced
by endpoint applications that were present in the source
group, the amount of identified network connections was
100%. Finally, we performed a small scale false positive test
with real life examples to demonstrate that the method can
be used for making a more educated inspection decision.
The results of the case study confirm that the method has
a solid ground. A larger scale study is, however, needed to
verify whether the method remains usable when the sample
groups are several magnitudes greater, as they are in the target
audience of large organisations.
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