1	Organic lacustrine sediment varves as indicators of past precipitation changes: a 3,000-year		
2	climate record from Central Finland		
3			
4	Saija Saarni ¹ , Timo Saarinen ¹ , Anssi Lensu ²		
5			
6	saitur@utu.fi; tijusa@utu.fi; anssi.lensu@jyu.fi		
7			
8	1 Geology division, Department of Geography and Geology, University of Turku, FI-		
9	20014 Turku, Finland Tel. +358 23 33 63 89		
10	2 Environmental Science and Technology division, Department of Biological and		
11	Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.		
12			
13			
14	Key words: Organic sediments, Lacustrine varves, Precipitation reconstruction, Paleoclimate,		
15	Late Holocene, Northern Europe		
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

- 26 Abstract
- 27

28 Annually laminated (varved) sediments from Lake Kallio-Kourujärvi, Central Finland, 29 provide high-resolution sedimentological data for the last three millennia. These varves 30 consist of two laminae that represent i) deposition during the spring-to-autumn growing 31 season, composed of degraded organic matter and a variety of microfossils, and ii) deposition 32 during winter, composed of fine-grained homogenous organic matter. Because of the absence 33 of a clastic lamina, these varves differ from the typical, well-described, clastic-organic varve 34 sequences in Fennoscandian lakes. Such organic varves in Finnish lakes have not been 35 studied in detail before. Three thousand varves were counted and their seasonal deposition 36 was distinguished. Comparison of varve thickness with meteorological data revealed a 37 positive correlation between organic varve thickness and precipitation. This suggests that 38 catchment erosion processes and consequent organic matter and nutrient inputs are important 39 factors in organic varve formation. The correlation between temperature and growing-season 40 lamina thickness varied from insignificant, to positive, to negative during different time spans. This suggests that organic matter accumulation can sometimes have a significant, but 41 42 unpredictable role in organic varve formation, via organic matter production and degradation, 43 processes that are influenced strongly by water column temperature. The organic varves of 44 Lake Kallio-Kourujärvi enable a unique, high-resolution approach for the study of past 45 climate and environment. Our results suggest that decadal periods of increased precipitation 46 occurred during BP 2150-2090, 1710-1620, 1410-1360, 920-870 (1030-1080 AD), and after 47 370 BP (1580 AD). Dryer intervals occurred during BP 2750-2720, 1900-1850, 1800-1740, 1600-1500, and 780-700 (1170-1250 AD), 590-520 (1360-1430 AD). 48

- 49
- 50

51 Introduction

53	Annually laminated (varved) lake sediments reflect past climate and environmental changes
54	(Dean et al. 2002; Brauer 2004; Haltia-Hovi et al. 2007; Ojala et al. 2008). In a boreal climate
55	setting, characterized by snowy winters and mild summers, clastic-organic varves are
56	commonly preserved in the sediment record. Many such records from Scandinavia have been
57	studied in detail (Petterson et al. 1993; Itkonen and Salonen 1994; Snowball et al. 1999;
58	Tiljander et al. 2003; Ojala and Alenius 2005; Haltia-Hovi et al. 2007). In these studies, the
59	deposition of the clastic laminae was attributed to catchment erosion caused by snowmelt,
60	whereas there was little discussion of organic laminae.
61	Organic laminae, consisting of various microfossils and fine-grained, amorphous
62	organic matter are described from different varve types in diverse climate zones (O'Sullivan
63	1983; Anderson and Dean 1988; Bradbury 1988; Zolitschka 1998; Dean et al. 1999; Tiljander
64	et al. 2003; Ojala and Alenius 2005; Haltia-Hovi et al. 2007; Chutko and Lamoureux 2009;
65	Koutsodendris et al. 2011; Zahrer et al. 2013). Their thickness, however, has been under-
66	utilized for paleoclimatological or paleoenvironmental reconstructions. The less frequent use
67	of organic laminae for paleoclimatological reconstruction may be attributed to the fact that
68	less is known about their formation, making interpretation potentially difficult.
69	Organic matter in varve structures comes from autochthonous, lacustrine productivity
70	and allochthonous influx of material from the catchment (Meyers and Lallier-Vergès 1999).
71	Productivity in lakes depends on multiple variables such as temperature, which defines the
72	length of the growing season and controls the duration of spring and fall overturns, light, and
73	precipitation, which partly controls nutrient availability (Bradbury 1988; Meyers and
74	Ishiwatari 1993). Allochthonous organic material is transported to lakes via surface runoff
75	and input streams, which carry particulate matter and humic substances from surrounding

76 forests and mires. Net organic sediment accumulation, however, depends not only on primary 77 production and influx, but also on organic carbon (OC) mineralization (Sobek et al. 2009; 78 Gudasz et al. 2010), which is related to degradation of material in the water column (den 79 Heyer and Kalff 1998), chemical composition of the organic matter, sediment accumulation 80 rate, oxygen exposure time (Maerki et al. 2009) and bottom-water oxygen concentration, 81 activity of microbial decomposers and mixing by macrobenthos (Hedges et al. 1999; Sobek et 82 al. 2009). These variables are at least partly dependent on light and air temperature, which 83 control water-column temperature and the timing and duration of water-column circulation. 84 Organic lamina thickness in boreal settings has been partly related to growing-season temperature (Itkonen and Salonen 1994; Tiljander et al. 2003; Ojala and Alenius 2005; 85 Haltia-Hovi et al. 2007), but there is no consistent interpretation of the interactions between 86 87 temperature and organic lamina thickness. A few studies on organic varves in the High Arctic 88 (Chutko and Lamoureux 2009) and Central Europe (Koutsodendris et al. 2011), however, 89 suggested they had high potential for paleoclimatological and geochemical studies. 90 Here we present an organic varve record from Lake Kallio-Kourujärvi, Central 91 Finland. We used the record to investigate the suitability of organic varves for paleoclimate 92 reconstructions and to better understand the interactions between climate conditions and 93 organic matter accumulation. We shed light on climate variations and environmental changes 94 during the past 3,000 years using variations in organic varve thickness. Human land-use 95 effects in this remote location were minimal until very recently, and thus this lake sediment 96 record provides reliable information about the late Holocene climate and environmental 97 history of Central Finland. 98

99

100 Site description

102	Lake Kallio-Kourujärvi is located at 62° 33.655'N and 27° 0.373'E in the municipality of
103	Suonenjoki in Central Finland, at an altitude of 117.2 m asl. It is an elongate lake with a
104	surface area of 0.13 km^2 and a drainage area of approximately 10 km^2 . Kallio-Kourujärvi is a
105	mesotrophic, dimictic water body situated in the Southern Boreal vegetation zone where pine
106	trees dominate the forests (Ruuhijärvi 1988). The deepest basin is located in the northern part
107	of the lake and has a maximum water depth of 11 m (Fig. 1). There are two inlets into the
108	southern bay and one at the western shore, and an outlet in the north. The lake is surrounded
109	by forests and mires and has steep slopes to the east. The catchment is composed of
110	Quaternary till, sand, Carex and Sphagnum peat and bedrock outcrops (Kukkonen and Leino
111	1985, 1989). Bedrock in the catchment is composed mainly of plutonic rocks such as granites
112	(Pääjärvi 2000). There are no permanent human settlements in the vicinity of the lake.
113	Lake Kallio-Kourujärvi was formed after the retreat of the Weichselian ice sheet
114	about 10,000 years ago (Eronen and Haila 1990). At that time, the lake and parts of the
115	catchment were submerged by melt water. Because of its elevated location, Kallio-Kourujärvi
116	was isolated at an early stage of the ice sheet retreat, although the exact timing of
117	deglaciation is still unknown (Eronen and Haila 1990).
118	The annual mean temperature in the study area is approximately 2°C (Helminen
119	1987). The mean temperature of the coldest month (January) is -9° C and the mean
120	temperature of the warmest month (July) is +16°C (Fig. 2). Annual precipitation is between
121	650 and 700 mm, of which about 40% falls as snow. Stable snow cover is usually present
122	from the end of November until the end of April (Solantie 1987), whereas the lake is ice-
123	covered somewhat longer and usually does not thaw until May (Kuusisto 1986).
124	

125 Materials and methods

127 Coring

129 Lake Kallio-Kourujärvi was cored from the ice in the winters of 2008 and 2010, with a rodoperated piston-corer. Cores were collected in the deepest part of the lake where the water 130 131 depth was 11.0 m. Two 6.4-cm-diameter cores, KKJ-2 (2008) and KKJ-3 (2010) were 132 obtained (Fig. 1) within several meters of one another, as determined by GPS. About 400 cm 133 (KKJ-2) and 200 cm (KKJ-3) of sediment were recovered at the sites. The KKJ-2 core was 134 split into two parts for transport. A Limnos sampler (Kansanen et al. 1991) was used to obtain 135 undisturbed near-surface samples using the mini ice finger technique (Saarinen and Wenho 136 2005). Three 25-cm-long mini ice finger cores were used to tie the varve chronology to the 137 present day. Varve data from the last 3,000 years (140 cm) were available for this study. 138 139 Core sampling and thin section preparation 140 The sediment cores were opened carefully with a circular saw and a knife in the laboratory. 141 142 The core was split in half lengthwise with a thin wire and the exposed fresh sediment surface 143 was cleaned with a glass blade. Subsamples for thin section preparation were taken from core 144 KKJ-2 in the manner described by Haltia-Hovi et al. (2007) and Lamoureux (1994). The 145 sediment sequence was subsampled continuously for sediment embedding, using 11-cm-long 146 aluminum molds with 1.5-cm overlap. 147 Subsamples were impregnated with Spurr low-viscosity epoxy resin, following the 148 water-acetone-epoxy exchange method (Lamoureux 1994; Tiljander et al. 2002). Before 149 impregnation, adequate dehydration was ensured by measuring the water content of the 150 acetone (<0.5%) enthalpimetrically. For the first two epoxy-resin baths, a small amount of

151	acetone was added to improve impregnation (Pike and Kemp 1996). Thin sections (15 x 110	
152	mm) with a thickness of about 30 μ m were prepared from the impregnated subsamples at the	
153	Helmholtz Centre Potsdam (German Research Centre for Geosciences), following the	
154	technique of Lotter and Lemcke (1999).	
155		
156	Varve counting and microfacies analysis	
157		
158	Varve analysis was performed along a line on the thin sections, using a stereomicroscope	
159	(Nikon SMZ800). Dark field illumination and 6x magnification were used. Two main	
160	laminae types were distinguished: 1) growing season lamina (GSL) and 2) winter lamina	
161	(WL), and their thickness was measured along a line drawn along the thin section (Table 1).	
162	The chronology from core KKJ-2 was tied to present day by linking similar varve patterns of	
163	KKJ-2 with the mini-ice-finger sample that had an intact sediment-water interface.	
164		
165	Magnetic measurements and chemical analysis	
166		
167	Low-field magnetic susceptibility (κ_{LF} , SI x 10 ⁻⁶) was measured at 2.0-mm intervals, along	
168	the cleaned sediment surfaces of freshly opened cores (KKJ-2A, KKJ-3) that were covered	
169	with a thin plastic film. Measurements were done with an automatic measuring track and a	
170	Bartington MS2 susceptibility meter, coupled with a MS2E1 spot-reading sensor. Magnetic	
171	susceptibility measurements were used to correlate the two cores.	
172	Paleomagnetic sample boxes (external dimensions 2.2 x 2.2 x 1.8 cm, volume 6.1	
173	cm ³) were used to take samples for paleomagnetic measurements from core KKJ-3, at 3-cm	
174	intervals. A Molspin portable Minispin spinner magnetometer was used to measure the	
175	natural remanent magnetization (NRM). Magnetic inclination and relative declination were	

calculated from the NRM data. The core was oriented only for the z-axis, and thus results are
relative declination. Paleomagnetic measurements were undertaken to evaluate the fidelity of
the varve chronology.

The ratio of carbon to nitrogen (C/N) was measured on dried, homogenized samples,
each weighing 5 mg. Samples were obtained from core KKJ-3 at 9-cm intervals.

181 Measurements were made with an SIR-MS/CNS gas chromatography mass spectrometer in

182 the accredited commercial Ambiotica Laboratory at the University of Jyväskylä. C/N ratio

183 was analyzed to infer the provenance of the organic matter.

184

185 Statistical analyses

186

187 Correlations between total varve thickness (TOT), growing season varve thickness (GSL),

188 and climate variables total annual precipitation (P_{ann}), growing season precipitation (P_{gs}) and

189 temperature of the growing season (T_{gs}), were determined (Table 1). Meteorological data for

190 the last 110 years (NORDKLIM) are from the Jyväskylä meteorological station, 75 km

191 southwest of Lake Kallio-Kourujärvi (Fig. 1). We used the R 2.14.1 program (R

192 Development Core Team 2011) for statistical analyses.

193 Pearson's correlation analyses were performed on combinations between the dependent (TOT, GSL) and independent (Pann, Pgs, Tgs) variables for all possible time 194 195 intervals. The Shapiro-Wilk or Kolmogorov-Smirnov normality tests were used to test the 196 normal distribution of samples. If sample size was \leq 50 years, the Shapiro-Wilk test was 197 applied. Otherwise, the Kolmogorov-Smirnov test was used. If at least one variable was not 198 normally distributed in a time period, Spearman's correlation analysis was used instead of 199 Pearson's. Statistically significant (p < 0.05) correlations, with the highest absolute values in a period ≥ 10 years, were observed in the data. 200

202 **Results**

203

204 Sediment description

205

Fresh sediment from Lake Kallio-Kourujärvi is black and varves are not visible with the naked eye. Varve structures become visible only when the sediment surface oxidizes. C/N ratios vary between 19 and 22.

209 The laminae are mainly of two types (Fig. 2). The varve year begins with a lamina 210 that consists of highly degraded, massive organic matter, deposited during the growing 211 season and ice-free period (GSL). Microfossils such as insect remains, chrysophyte cysts, 212 sponge spicules, plant remains, pollen and diatoms are frequent. Dominant diatom species 213 belong to the genus Aulacoseira, and diatoms of the genera Cyclotella, Tabellaria, Eunotia, 214 *Pinnularia*, and *Suriella* are common. Layers of spring-blooming diatoms were not observed. 215 Instead, diatoms are evenly distributed throughout the GSL. The other type of lamina 216 represents deposition during winter (WL), and consists of homogenous, fine-grained organic 217 material that has settled in quiet waters under ice cover (Tiljander et al. 2003). 218 Minerogenic laminae (ML) are common in the sediment of boreal lakes as a 219 consequence of increased erosion induced by spring snowmelt floods (Ojala and Alenius 220 2005; Haltia-Hovi et al. 2007). In the Lake Kallio-Kourujärvi sediments, these laminae are 221 0.15 mm thick at maximum and occur only occasionally between WL and GSL in the top 9 222 cm of the record. Clay-size, minerogenic detritus is a minor component of GSL. 223

224 Varve variables and statistical analyses

226 The sediment of Lake Kallio-Kourujärvi is annually laminated up to the present, as observed 227 in the thin sections and ice finger samples. Three variables in the varve structure were 228 measured (Table 1): GSL, WL and TOT thickness. Varve boundaries were identified based 229 on their microstructure. Although there is a gradual transition from GSL to WL, the boundary 230 between WL and the overlying GSL is sharp. Sediment displaying a transition to lower 231 numbers of microfossils was considered to belong to the GSL (Fig. 2) and only the 232 homogenous organic layer was included in the measure of WL. Minerogenic laminae (ML) 233 were not studied in detail because of their rare occurrence and very small thickness. The ML 234 are, however, a component of total varve thicknesses. 235 The thickness of GSL ranges from 0.1 to 1.7 mm (Table 2), whereas WL are thinner, 236 varying from 0.05 to 1.0 mm. All varve variables in the topmost sediment increase towards 237 the present day. Other high-thickness values in GSL occur around BP 2150-2090, 1710-1620, 238 1410-1360 and 920-870, and after 370 (Fig. 3), and in WL around BP 2110-2080, 1660-1620, 239 1400-1370, 460-440 and since 50 (Fig. 3). 240 The varve thickness record shows periods of large-amplitude fluctuations that 241 coincide with the thickest GSL (Fig. 3). There are large-amplitude variations during BP

242 1720-850, which indicate large inter-annual differences. At BP 850 there is a sudden decrease

in variability, and this notably stable interval lasts until BP 700. Since BP 370, variability of

244 varve thickness slowly increases toward the present.

The correlation between TOT thickness and P_{ann} , and GSL and P_{gs} for the time span of the last 110 years is generally positive, whereas the correlation between GSL thickness and T_{gs} is low and slightly negative. Statistical analyses show periods of both high positive and high negative correlation between these variables (Table 3).

249

251 Paleosecular variation and low-field magnetic susceptibility

253	Magnetic susceptibility was used to correlate cores KKJ-2A and KKJ-3 (Fig. 4). The values
254	decrease toward the present, except for an increase in the topmost 7 cm (Fig. 4). Paleosecular
255	variations (PSV) from lake Kallio-Kourujärvi were compared with PSV data from Lakes
256	Nautajärvi (Fig. 1), Lehmilampi and Kortejärvi, where the major declination and inclination
257	shifts were well dated (Ojala and Saarinen 2002; Haltia-Hovi et al. 2010). The most
258	prominent inclination and relative declination shifts are generally recognized features (Haltia-
259	Hovi et al. 2010; Snowball et al 1999; Turner and Thompson 1981) and referred following
260	the nomenclature by Turner and Thompson (1981). Inclination features γ , δ , ϵ^1 , and
261	declination features e and f are clear and shift simultaneously in PSV data from Lake Kallio-
262	Kourujärvi (Fig. 5), but declination feature d is not clearly recognized. This may be an
263	artifact of core rotation during coring or opening of the core, but it may be that the feature is
264	simply lacking in the record. Similarity of PSV data to records from nearby, well-dated lake
265	sequences supports the reliability of the Kallio-Kourujärvi chronology.
266	
267	Chronology and error estimation
268	
269	The chronology was tied to present using marker varve horizons in the mini ice finger
270	samples from the sediment-water interface cores and in thin sections from core KKJ-2. Varve
271	counting errors were estimated in intervals of 100 years. Three repeated varve counts by the
272	same analyst were compared (Lotter and Lemcke 1999). The cumulative counting error was
273	estimated to be between -2.5% (56 varve years) and $+2.3\%$ (53 varve years) (Fig. 6).
274	Maximum deviations were -5.6% and +5.9%, observed from BP 950-850 and BP 450-350,
275	respectively. Counting errors result from indistinct varve boundaries, which are perhaps

276 artefacts related to coring and subsampling. But it is possible that these varves are just poorly 277 preserved. The interval with the highest varve quality (BP 1650-1550) had the lowest count 278 error (0%). Our error estimates are in line with other varve chronologies (Snowball et al. 279 1999; Tiljander et al. 2003; Haltia-Hovi et al. 2007). Varve counting errors may result in 280 differences between varve years and calendar years. This can lead to offsets in timing 281 between observed and reconstructed data, which in turn alters correlation coefficient values 282 between observed data and their putative proxy variables. 283 284 Discussion 285 286 Varve thickness versus meteorological data

287

The TOT and GSL data were compared with recent meteorological data to identify the 288 climate variables that affect sedimentation. Several periods display high, statistically 289 290 significant correlation values (Table 3). Generally, TOT correlates positively with P_{ann}, and 291 GSL correlates positively with P_{gs} (Table 3). Greater varve thickness occurs during years 292 with high precipitation, whereas varve thickness is smaller during drier periods (Fig. 7). 293 About 40% of total annual precipitation in Central Finland falls as snow. Snow 294 accumulation has an important role in boreal lake systems, because it controls the amount of 295 water released during the spring melt. Flooding enhances catchment erosion and transport of 296 allochthonous organic matter and nutrients into a lake. This may explain the more frequent 297 episodes of correlation between P_{ann} and TOT than of P_{gs} and GSL (Table 3). 298 Rainfall during the growing season increases the transfer of organic matter and

nutrients from the catchment to the lake (De Stasio et al. 1996). The C/N values of 19-22 in
the sediment record suggest dominance of organic material from terrestrial origin (Mevers)

301 and Ishiwatari 1993) and support the importance of precipitation as a transport medium.

302 Several studies have reported increased accumulation rates of organic matter as a

303 consequence of greater precipitation (Itkonen and Salonen 1994; Tian et al. 2011).

304 Periods of negative correlation between GSL and T_{gs} (1913-1922 and 1947-1957), 305 and an episode of pronounced positive correlation (1963-1980) suggest a more complex 306 relationship between GSL thickness and temperature (Fig. 7). Gudasz et al. (2010) reported 307 more efficient organic carbon (OC) mineralization in lake sediments with increased water 308 temperatures, and Haltia-Hovi et al. (2007) found that the thinnest organic laminae from Lake 309 Lehmilampi accumulated during warmer medieval times. In small lakes like Lehmilampi and 310 Kallio-Kourujärvi, surface waters may warm to more than 25°C during summer months. This 311 could increase OC mineralization and enhance degradation of organic matter in the water 312 column, both of which would decrease the amount of organic matter that accumulates in 313 sediments. Microbial reworking of organic matter during sedimentation through the water 314 column considerably diminishes the total amount of organic matter that accumulates (Meyers 315 and Lallier-Vergès 1999).

316 Temperature controls the length of the growing season and duration of spring and fall 317 overturns, which result in nutrient upwelling from the hypolimnion to the epilimnion. 318 Elevated temperatures in spring, summer, and autumn lead to stronger and more prolonged 319 stratification (Jankowski et al. 2006; Sobek et al. 2009). The timing and stability of thermal 320 stratification could affect GSL thickness by restricting the nutrient availability, leading to the 321 cessation of diatom blooms (Bradbury 1988; De Stasio et al. 1996). Diatoms are frequent in GSL and a decrease in diatom abundance may partly explain thinner GSL. However, the 322 323 response of algal populations to warming is dependent on the nutrient availability (DeStasio 324 et al. 1996) and in this regard, both precipitation and the length and intensity of the overturns are important. This may partly explain the nonlinear correlation between GSL and T_{gr}. 325

There is no evidence for major changes in temperature or precipitation that would explain the simultaneous reversal of correlations between varve thickness and climate variables (Table 3, Fig. 7). Only comparisons of several records would enable evaluation of whether climate variables such as storm events, length of ice-free periods, snow accumulation or perhaps human activities caused the inverse correlation during the period AD 1960-1980.

331 WL thickness shows low variability, but increased WL thickness, which coincides 332 with enhanced GSL thickness, presumably because after a highly productive summer there is 333 more fine-grained organic material in the water column that settles under the ice. The length 334 of the ice-free period and wind-induced sediment resuspension could, however, affect WL 335 thickness. Even a single storm event may re-suspend littoral sediments, which can be 336 transported to the profundal zone (Bengtsson et al. 1990). Warm winters shorten the time of 337 ice cover and expose littoral sediments to wind and wave reworking, thereby favoring 338 accumulation of thicker varves (Itkonen and Salonen 1994).

The lake response to the climate signal may not be linear and the intensity of climate forcing may vary considerably, leading to poor correlation between climate variables and varve thickness. Furthermore, lake sediment variables are affected by multiple climatic and non-climatic factors, and thus it is difficult to infer the cause of observed changes in lake deposits (Tian et al. 2011). In addition, local thunderstorms may influence the correlation coefficients.

Inferring past climate from varve data should be done with caution, bearing in mind all the factors, in addition to climate variables, that affect catchment dynamics and the accumulating lacustrine sediments. However, our analyses indicate a general increase in varve thickness during periods of higher precipitation. Thinner varves occur with lower precipitation as a consequence of reduced catchment erosion and nutrient limitation. Temperature may influence varve thickness, too, but the effect is nonlinear and 351 unpredictable. Prolonged direct lake stratification may result in reduced nutrient input and

352 stronger degradation of organic matter, thereby favoring formation of thin varves.

353

354

355 Paleoenvironmental and paleoclimate changes in Central Finland

356

Large inter-annual differences in varve thickness recorded in this study suggest a wide range of climate variations during the last 3,000 years. This time period extends beyond the climate intervals of the Little Ice Age (Grove 2001; Miller et al. 2010) and the Medieval Climate Anomaly (Hughes and Diaz 1994; Miller et al. 2010), to include the transition from the Sub-Boreal to the Sub-Atlantic (Wanner et al. 2008).

362 Large-scale precipitation trends inferred from Lake Kallio-Kourujärvi sediments contain periods of both mesic and dry conditions (Fig. 8) that are in line with reconstructed 363 lake level changes from Central Finland (Luoto 2009), peat humification fluctuations from 364 365 Central Sweden (Gunnarson et al. 2003) and effective precipitation in West Scandinavia (De Jong et al. 2009). This suggests that ocean and atmosphere processes are important influences 366 on large-scale climate trends in Central Finland. The relatively dry climate shifted to more 367 variable and humid conditions around 2,500 BP, following the general late Holocene climate 368 369 evolution of the Northern Hemisphere from the Sub-Boreal to the more humid Sub-Atlantic 370 (Miller et al. 2010; Wanner et al. 2008).

There are decadal periods of increased TOT and GSL thickness, implying enhanced precipitation during BP 2150-2090, 1710-1620, 1410-1360, 920-870, and after 370 BP (1580 AD) until the present day (Fig. 8), the most recent reflecting the onset of the Little Ice Age (LIA). Enhanced organic matter accumulation in Kallio-Kourujärvi during the LIA is in agreement with increased organic lamina thickness observed in Finnish clastic-organic varve
records (Tiljander et al. 2003; Haltia-Hovi et al. 2007).

377 Low TOT and GSL thickness occurs at BP 2750-2720, 1900-1850, 1800-1740, 1600-378 1500, and 780-700 (1170-1250 AD), 590-520 (1360-1430 AD). These are interpreted as 379 periods of decreased precipitation, and the two most recent episodes correspond to the 380 Medieval Climate Anomaly (MCA). Several of these intervals coincide with lower organic 381 matter accumulation in Lakes Korttajärvi (Tiljander et al. 2003), Nautajärvi (Ojala and 382 Alenius 2005) and Lehmilampi (Haltia-Hovi et al. 2007), which suggest widespread 383 decreased precipitation in Central and Eastern Finland. Synchronous droughts are also 384 observed from other parts of Scandinavia (De Jong et al. 2009; Gunnarson et al. 2003). 385 The low and very constant level of TOT and GSL between 780 and 700 BP (1170-386 1250 AD) represents a period of low climate variability and decreased annual precipitation, 387 as suggested earlier by Helama et al. (2009). Low organic matter accumulation and low 388 variability is observed in Lake Korttajärvi during this period, as well (Tiljander et. al., 2003). 389 Highest variability in the Lake Kallio-Kourujärvi record is observed during 1720-850 BP and 390 since 370 BP (1580 AD) until present, suggesting large inter-annual variations in 391 precipitation. These unstable periods are consistent with the climate reconstructions of 392 Helama et al. (2009), linked to the El Niño Southern Oscillation – North Atlantic Oscillation 393 (ENSO – NAO) variability. Although it is likely that large-scale climate patterns affect 394 organic varve formation, the Lake Kallio-Kourujärvi record does not reflect details of either 395 reconstructed NAO or ENSO variation. This is perhaps explained by the nature of the Kallio-396 Kourujärvi sediment, which is strongly influenced by growing season conditions, whereas 397 ENSO and NAO appear strongest during winter.

There are very few reconstructions of paleo-precipitation from Central Finland. The record from Lake Kallio-Kourujärvi agrees, in general, with previous reconstructions from

400	Southern and Central Finland (Väliranta et al. 2007; Helama and Lindholm 2003; Luoto
401	2009) and other parts of Scandinavia (De Jong et al. 2009; Gunnarson et al. 2003). This
402	suggests that organic varve thickness may serve as a reliable proxy for paleo-precipitation,
403	with the advantage that such varve records are much longer than tree-ring records and
404	provide higher temporal resolution compared to radiocarbon-dated lake sequences.
405	
406	Recent sedimentation and human influence
407	
408	The increasing trend in thickness of TOT, GSL, and WL since AD 1600 may reflect
409	intensified human land use activities such as slash-and-burn cultivation. Varve thickness
410	peaks at 1890, reflecting modern land use changes around the lake, such as logging, ditching
411	and infrastructure construction such as road building (Fig. 1), all of which lead to decreased
412	vegetation cover and increased erosion. Furthermore, minerogenic laminae (ML) occur
413	increasingly between WL and GSL since AD 1890, and result from watershed erosion during
414	spring floods. Increased varve thicknesses are generally observed in Finnish varve records in
415	the 20 th century and are related to increased human land use (Itkonen and Salonen 1994;
416	Tiljander et al. 2003; Meriläinen et al. 2010)
417	
418	Conclusions
419	
420	This study presents a unique organic varve sediment record from Lake Kallio-
421	Kourujärvi, Central Finland. The high-quality varve record yielded a counting error between -
422	2.5% (missing varves) and +2.3% (surplus varves) and covers 3,000 varve years.
423	Positive correlation between organic varve thickness and annual precipitation
424	suggests that precipitation plays an important role in organic varve formation in Lake Kallio-

Kourujärvi. Greater precipitation enhances organic matter and nutrient transport from the
catchment, which favors increased varve thickness. Thus, organic varves show great potential
as a proxy for paleo-precipitation.

The correlation between temperature and growing-season lamina thickness varied from absent, to positive, to negative during different time spans. This suggests that organic matter accumulation can sometimes have a significant, but unpredictable role in organic varve formation.

432 Our results suggest that decadal periods of higher precipitation occurred during BP
433 2150-2090, 1710-1620, 1410-1360, 920-870 (1030-1080 AD), and after 370 BP (1580 AD).
434 Dryer intervals occurred during BP 2750-2720, 1900-1850, 1800-1740, 1600-1500, and 780435 700 (1170-1250 AD), 590-520 (1360-1430 AD).

The large inter-annual variability during 1400-880 BP and from 370 BP occurred during enhanced variability of the NAO. Very low variability of varve thickness during the interval 850-700 BP coincided with low NAO variability. This suggests that the North Atlantic Oscillation plays a large role in climate stability in Central Finland.

440

441

442 Acknowledgements

443

444 We thank H. Wenho and A. Peltola for technical support in the field and laboratory, A.

445 Brauer, J. Mingram and M. Czymzik for guidance with microscope work, M. Saari and J.

446 Sandholm for technical support with microscope facilities, and E. Haltia for valuable

447 comments on the manuscript. We acknowledge two anonymous referees for their comments

448 and suggestions, and Mark Brenner for language editing. This work was supported by the

449 Academy of Finland (Grant no. 123724) and the Kone Foundation (Grant no. 27-5385).

450	
451	
452	References:
453	
454	Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeogr
455	Palaeoclimatol Palaeoecol 62: 215–235
456	
457	Bengtsson L, Hellström T, Rakoczi L (1990) Redistribution of sediments in three Swedish
458	lakes. Hydrobiologia 192: 167–181
459	
460	Bradbury JP (1988) A climatic-limnologic model of diatom succession for paleolimnological
461	interpretation of varved sediments at Elk Lake, Minnesota. J Paleolimnol 1: 115-131
462	
463	Brauer A (2004) Annually laminated lake sediments and their paleoclimatic relevance. In:
464	Fischer H, Kumke T, Lohmann G, Flöser G, Miller H, von Storch H, Negendank JFW (eds)
465	The climate in historical times. Towards a synthesis of Holocene proxy data and climate
466	models. Springer, Berlin, pp 109–128
467	
468	Chutko KJ, Lamoureux SF (2009) Biolaminated sedimentation in a High Arctic freshwater
469	lake. Sedimentology 56: 1642–1654
470	
471	Dean W, Anderson R, Bradbury JP, Anderson D (2002) A 1500-year record of climatic and
472	environmental change in Elk Lake, Minnesota I: Varve thickness and gray-scale density. J
473	Paleolimnol 27: 287–299

475	Dean JM, Kemp AES, Bull D, Pike J, Petterson G, Zolitschka B (1999) Taking varves to bits:
476	Scanning electron microscopy in the study of laminated sediments and varves. J Paleolimnol
477	22: 121–136
478	
479	De Stasio B, Hill D, Kleinhans J, Nibbelink N, Magnuson J (1996) Potential effects of global
480	climate change on small north-temperate lakes: physics, fish, and plankton. Limnol Oceanogr
481	41: 1136–1149
482	
483	De Jong R, Hammarlund D, Nesje A (2009) Late Holocene effective precipitation variations
484	in the maritime regions of south-west Scandinavia. Quat Sci Rev 28: 54-64
485	
486	den Heyer C, Kalff J (1998) Organic matter mineralization rates in sediments: A within- and
487	among-lake study. Limnol Oceanogr 43: 695–705
488	
489	Eronen M, Haila H (1990) Geologinen kehitys jääkauden lopussa. In: Alalammi P (ed) Atlas
490	of Finland, Surficial Deposits, vol. 124. National Board of Survey and Geographical Society
491	of Finland, Helsinki, pp 13–19 (in Finnish)
492	
493	Grove JM (2001) The initiation of the "Little Ice Age" in regions round the North Atlantic.
494	Clim Change 48: 53–82
495	
496	Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik L (2010) Temperature-
497	controlled organic carbon mineralization in lake sediments. Nature 466: 478-481
498	

499	Gunnarson BE, Borgmark A, Wastegård S (2003) Holocene humidity fluctuations in Sweden
500	inferred from dendrochronology and peat stratigraphy. Boreas 32: 347-360
501	
502	Haltia-Hovi E, Nowaczyk N, Saarinen T (2010) Holocene paleomagnetic secular variation
503	recorded in multiple lake sediment cores from eastern Finland. Geophys J Int 180: 609-622
504	
505	Haltia-Hovi E, Saarinen T, Kukkonen M (2007) A 2000-year of solar forcing on varved lake
506	sediment in eastern Finland. Quat Sci Rev 26: 678-689
507	
508	Hedges JI, Hu FS, Devol AH, Hartnett HE, Tsamakis E, Keil RG (1999) Sedimentary organic
509	matter preservation; a test for selective degradation under oxic conditions. Am J Sci. 299:
510	529–555
511	
512	Helama S., Lindholm M (2003) Droughts and rainfall in south-eastern Finland since AD 874,
513	inferred from Scots pine ring-widths. Boreal Env Res 8: 171–183
514	
515	Helama S, Meriläinen J, Tuomenvirta H (2009) Multicentennial megadrought in northern
516	Europe coincided with a global El Niño –Southern Oscillation drought pattern during
517	Medieval Climate Anomaly. Geology 37: 175–178
518	
519	Helminen VA (1987) Lämpöolot. In: Alalammi P (ed) Atlas of Finland, Climate, vol. 131.
520	National Board of Survey and Geographical Society of Finland, Helsinki, 4–10 (in Finnish)
521	
522	Hughes MK, Diaz HF (1994) Was there a "Medieval Warm Period", and if so, where and
523	when? Clim Change 26: 109–142

5	0	Λ
J		4

525	Itkonen A, Salonen VP (1994) The response of sedimentation in three varved lacustrine
526	sequences to air temperature, precipitation and human impact. J Paleolimnol 11: 323-332
527	
528	Jankowski T, Livingstone D, Buhrer H, Forster R, Niederhauser P (2006) Consequences of
529	the 2003 European heat wave for lake temperature profiles, thermal stability and
530	hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51: 815–
531	819
532	
533	Kansanen PH, Jaakkola T, Kulmala S, Suutarinen R (1991) Sedimentation and distribution of
534	gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after
535	the Chernobyl accident. Hydrobiologia 222: 121–140
536	
537	Koutsodendris A, Brauer A, Pälike H, Müller UC, Dulski P, Lotter AF, Pross J (2011) Sub-
538	decadal- to decadal-scale climate cyclicity during the laminated Holsteinian interglacial (MIS
539	11) evidenced in annually laminated sediments. Clim Past 7: 987–999
540	
541	Kukkonen E, Leino J (1985) Basic Map of Finland. Sheet 324102 Pörölänmäki. Survey
542	Administration of Finland
543	
544	Kukkonen E, Leino J (1989) Basic Map of Finland. Sheet 324103 Suonenjoki. Survey
545	Administration of Finland
546	
547	Kuusisto E (1986) Jääolot. In: Karlsson KP (ed) Atlas of Finland, Water, vol. 132. National
548	Board of Survey and Geographical Society of Finland, Helsinki, pp 15-18 (in Finnish)

5	4	9
\mathcal{I}	т	1

550 Lamoureux S (1994) Embedding unfrozen lake sediments for thin section preparation. J 551 Paleolimnol 10: 141–146 552 553 Lotter AF, Lemcke G (1999) Methods for preparing and counting biochemical varves. Boreas 554 28: 243–252 555 556 Luoto TP (2009) A Finnish chironomid- and chaoborid - based inference model for 557 reconstructing past lake levels. Quat Sci Rev 28: 1481-1489 558 559 Maerki M, Müller B, Dinkel C, Wehrli B (2009) Mineralization pathways in lake sediments 560 with different oxygen and organic carbon supply. Limnol Oceanogr 54: 428–438 561 562 Meriläinen JJ, Kustula V, Witick A, Haltia-Hovi E, Saarinen T (2010) Pollution history from 563 256 BC to AD 2005 inferred from the accumulation of elements in a varve record of Lake 564 Korttajärvi in Finland. J Paleolimnol 44: 531–545 565 Meyers P, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of 566 567 organic matter sources and diagenesis in lake sediments. Org Geochem 20: 867-900 568 569 Meyers P, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late 570 Quaternary paleoclimates. J Paleolimnol 21: 345–372 571 572 Miller GH, Brigham-Grette J, Alley RB, Anderson L, Bauch HA, Douglas MSV, Edwards 573 ME, Elias SA, Finney BP, Fitzpatrick JJ, Funder SV, Herbert TD, Hinzman LD, Kaufman

574	DS, MacDonald GM, Polyak L, Robock A, Serreze MG, Smol JP. Spielhagen R, White JWC,
575	Wolfe AP, Wolff EW (2010) Temperature and precipitation history of the Arctic. Quat Sci
576	Rev 29: 1679–1715
577	
578	NORDKLIM (2002) data set 1.0. Nordic meteorological services, NORDMET steering
579	committee (NOSC) http://www.smhi.se/hfa_coord/nordklim/
580	
581	Ojala AEK, Alenius T (2005) 10 000 years of interannual sedimentation recorded in the Lake
582	Nautajärvi (Finland) clastic-organic varves. Palaeogeogr Palaeoclimatol Palaeoecol 219:
583	285-302
584	
585	Ojala AEK, Saarinen T (2002) Paleosecular variation of the Earth's magnetic field during the
586	last 10000 years base on the annually laminated sediment of Lake Nautajärvi, central Finland.
587	Holocene 12: 391–400
588	
589	Ojala AEK, Alenius T, Seppä H, Giesecke T (2008) Integrated varve and pollen-based
590	temperature reconstruction from Finland: evidence for Holocene seasonal temperature
591	patterns at high latitudes. Holocene 18: 529–538
592	
593	O'Sullivan PE (1983) Annually-laminated lake sediments and the study of quaternary
594	environmental changes – a review. Quat Sci Rev 1: 245–313
595	
596	Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of
597	sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9: 195-
598	208

5	0	0
\mathcal{I}))

600	Pike J, Kemp AES (1996) Preparation and analysis techniques for studies of laminated
601	sediments. In: Kemp AES (ed) Palaeoceanography from laminated sediments. Geol Soc Spec
602	Pub, London, 116, pp 37–48
603	
604	Pääjärvi A (2000) Geological Map of Finland. Sheet 3223 Rautalampi. Geological Survey of
605	Finland
606	
607	R Development Core Team (2011) R: A language and environment for statistical computing.
608	Vienna: R Foundation for Statistical Computing
609	
610	Ruuhijärvi R (1988) Vegetation. In: Alalammi P (ed) Atlas of Finland, Vegetation and flora,
611	vol. 141. National Board of Survey and Geographical Society of Finland, Helsinki, 2-6 (in
612	Finnish)
613	
614	Saarinen T, Wenho H (2005). Minijääsormi sekä muita uusia ja vanhoja ideoita
615	järvisedimentin talvikairaukseen. Geologian tutkijapäivät 14.–15.3.2005, Turku. Congress
616	Abstract Book, pp 72–73. (in Finnish)
617	
618	Snowball I, Sandgren P, Petterson G (1999) The mineral magnetic properties of an annually
619	laminated Holocene lake-sediment sequence in northern Sweden. Holocene 9: 353-362
620	
621	Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B,
622	(2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure

6	2	4
v	_	т

625	Solantie R (1987) Sade- ja lumiolot. In: Alalammi P (ed) Atlas of Finland, Climate, vol. 131.
626	National Board of Survey and Geographical Society of Finland, Helsinki, pp 18–22 (in
627	Finnish).
628	
629	Tian J, Nelson D, Hu F (2011) How well do sediment indicators record past climate? An
630	evaluation using annually laminated sediments. J Paleolimnol 45: 73-84
631	
632	Tiljander M, Ojala A, Saarinen T, Snowball I (2002) Documentation of the physical
633	properties of annually laminated (varved) sediments at a sub-annual to decadal resolution for
634	environmental interpretation. Quat Int 88: 5–12
635	
636	Tiljander M, Saarnisto M, Ojala A, Saarinen T (2003) A 3000-year paleoenvironmental
637	record from annually laminated sediment of Lake Korttajärvi, central Finland. Boreas 26:
638	566–577
639	
640	Turner GM, Thompson R (1981) Lake sediment record of the geomagnetic secular variation
641	in Britain during Holocene times. Geophys J R astr Soc 65: 703–725
642	
643	Väliranta M, Korhola A, Seppä H, Tuittila ES, Sarmaja-Korhonen K, Laine J, Alm J (2007)
644	High-resolution reconstruction of wetness dynamics in a southern boreal rased bog, Finland,
645	during the late Holocene: a quantitative approach. Holocene 17: 1093–1107
646	
647	Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M,
648	Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P,

649	Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat
650	Sci Rev 27: 1791–1828
651	
652	Zahrer J., Dreibrodt S.; Brauer A. (2013): Evidence of the North Atlantic Oscillation in varve
653	composition and diatom assemblages from recent, annually laminated sediments of Lake
654	Belau, northern Germany. J Paleolimnol 50: 231–244
655	
656	Zolitschka B (1998) A 14,000 year sediment yield record from western Germany based on
657	annually laminated lake sediments. Geomorphology 22: 1-7
658	
659	
660	Figure Legends
661	
662	
663	Fig. 1 Bathymetric map of Lake Kallio-Kourujärvi, showing the coring site (cross) in the
664	deepest basin and characteristics of the catchment area. Insert shows the location of Lake
665	Kallio-Kourujärvi (cross), Jyväskylä meteorological station (square) in Scandinavia and the
666	location of the lakes (1-3) that are used as references for paleomagnetic dating
667	
668	Fig. 2 (A) Microscopic image of the sediment at a depth of 28 cm, under dark-field
669	illumination. Bright laminae represent growing-season sedimentation between spring and
670	autumn overturns, whereas thin, dark laminae are formed during winter ice periods. (B)
671	Schematic figure illustrating the composition of a varve. (C) Climate diagram showing
672	monthly average precipitation and air temperature for the period 1960-1990. Data are from

673	the Jvväsky	vlä meteorological	station (NORDKL)	[M]. 75 km s	outhwest of the s	study site.	The
010	the by table	, ia motooronogiea		(1) 1), / C mm D	outility opt of the r	ready bice.	1 110

blocks under the diagram mark the times within the year of lamina formation

675

$= -\mathbf{A} \cdot \mathbf{a} \cdot \mathbf{a}$	676	Fig. 3 Studied	variables total	varve thickness	(TOT),	growing	season l	amina ((GSL)
--	-----	----------------	-----------------	-----------------	--------	---------	----------	---------	-------

- 677 thickness, and winter lamina (WL) thickness. The grey line shows raw data and the black line
- displays the 21-year moving average. A line parallel to the x-axis demonstrates the median
- 679 thickness of the varve variable for the entire chronology

680

Fig. 4 Low-field magnetic susceptibility (κ_{LF}) of cores KKJ-2 and KKJ-3.

682

683 Fig. 5 Paleo Secular Variation (PSV) from Lake Kallio-Kourujärvi compared to varve-dated

PSV records from Lakes Lehmilampi, Kortejärvi, and Nautajärvi. (A) Inclination (B) relative
declination

686

687 **Fig. 6** Cumulative varve counting error estimates

688

689 Fig. 7 Varve data compared with meteorological data for the last 110 years, all shown as 5-

690 year moving averages (A) Growing season lamina thickness variation (GSL: black line) and

691 growing season temperature (T_{gs} : dash line). (**B**) Total varve thickness variation (TOT: black

692 line) and annual precipitation (P_{ann}: dash line) from the Jyväskylä meteorological station.

693 Periods of highest positive and negative correlation are highlighted

694

Fig. 8 Smoothed varve thickness record (TOT: 51-year running average) showing inferred
precipitation trends over the past 3,000 years. The increased precipitation after 2,500 BP is
related to the shift from the Sub-Boreal to Sub-Atlantic.

Table 1 Abbreviations and their definitions

Abbreviation	Definition
GSL	Growing season (April-September) lamina
WL	Winter lamina
ML	Minerogenic lamina
ТОТ	Total varve
P _{ann}	Annual precipitation
P_{gs}	Precipitation of the growing season
T_{gs}	Temperature mean of the growing season

Table 2 Summary of the varve physical properties

	TOT (mm)	GSL (mm)	WL (mm)
Minimum thickness	0.1	0.05	0.01
Maximum thickness	1.9	1.7	0.8
Mean thickness	0.46	0.35	0.11
Median thickness	0.4	0.3	0.1

Table 3 Intervals with the highest correlation coefficients

717	Period (AD)	Variables		r	p value	
718	1906–1920	Pgs	ТОТ	0.55	0.028	
719	1906–1922	Pann	TOT	0.55	0.028	
720	1913-1922	Tgs	GSL	-0.74	0.015	
721	1928–1944	Pann	TOT	0.60	0.011	
722	1947–1957	Tgs	GSL	-0.69	0.019	
723	1947–1959	Pann	TOT	0.64	0.017	
724	1959–1974	Pann	TOT	-0.55	0.026	
725	1963-1980	Tgs	GSL	0.50	0.034	
726	1966–1975	Pgs	GSL	-0.70	0.020	
727	1986–1996	Pgs	GSL	0.64	0.033	
728	1986–1996	Pann	TOT	0.69	0.018	