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ABSTRACT
Forthcoming time-domain surveys, such as the Rubin Observatory Legacy Survey of Space and
Time, will vastly increase samples of supernovae (SNe) and other optical transients, requiring new
data-driven techniques to analyse their photometric light curves. Here, we present the ‘Python for
Intelligent Supernova-COsmology Light-curve Analysis’ (PISCOLA), an open source data-driven
light-curve fitter using Gaussian Processes that can estimate rest-frame light curves of transients
without the need for an underlying light-curve template. We test PISCOLA on large-scale sim-
ulations of type Ia SNe (SNe Ia) to validate its performance, and show it successfully retrieves
rest-frame peak magnitudes for average survey cadences of up to 7 days. We also compare to the
existing SN Ia light-curve fitter SALT2 on real data, and find only small (but significant) disagree-
ments for different light-curve parameters. As a proof-of-concept of an application of PISCOLA,
we decomposed and analysed the PISCOLA rest-frame light-curves of SNe Ia from the Pantheon
SN Ia sample with Non-Negative Matrix Factorization. Our new parametrization provides a similar
performance to existing light-curve fitters such as SALT2. We further derived a SN Ia colour law
from PISCOLA fits over ∼3500 to 7000Å, and find agreement with the SALT2 colour law and with

reddening laws with total-to-selective extinction ratio RV . 3.1.

Key words: software: data analysis – supernovae: general – cosmology: observations
– distance scale

1 INTRODUCTION

The next decade will see a rapid increase in the number
and quality of extragalactic optical transients observed in
wide-field, time-domain sky surveys. Detected objects will
include classical supernova types, as well as new and exotic
transients evolving on a wide-range of timescales. The scien-
tific analyses of these transients will almost always require
the fitting of the observed transient light-curves, followed
by an estimation of their rest-frame properties, luminosities
and timescales. Further, the study of the demographics of
the populations these events are drawn from will require the
automated fitting of many thousands of transients.

In this paper, we present PISCOLA, a data-driven tran-
sient light-curve fitter. Other than practical considerations
such as ease of use, there are three main advantages of using
PISCOLA for light-curve fitting. The first is that PISCOLA
uses Gaussian processes for the light-curve fitting, and thus
is not limited by an underlying light-curve model or tem-
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plate, and returns the intrinsic light-curve of a transient
rather than a template fit. Secondly, other than an spec-
tral energy distribution (SED) that is used for K-corrections,
PISCOLA is agnostic to the type of transient being fit. Thus,
it can in principle be used to estimate the rest-frame light-
curves of any optical transient. Finally, as there is no under-
lying template, the intrinsic rest-frame light-curves/colours
of the transient being fit can be measured across all phases of
the transient’s evolution: PISCOLA has no assumed colour
evolution or colour law.

As a proof-of-concept of PISCOLA, in this paper we
demonstrate the application of PISCOLA to type Ia su-
pernovae (SNe Ia). SNe Ia are the result of a runaway
thermonuclear explosion of carbon-oxygen white dwarf star
(Hoyle & Fowler 1960; Woosley et al. 1986). The resulting
light curves are powered by the radioactive decay of 56Ni
(e.g., Colgate & McKee 1969), reaching a peak luminosity
about 20 days after explosion (e.g., Riess et al. 1999b). Al-
though the exact triggering mechanism and configuration
of their progenitor systems remains controversial (see re-
view of Jha et al. 2019), empirically SNe Ia appear simi-
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lar in brightness with an intrinsic root-mean-square (r.m.s.)
scatter in their peak B-band magnitudes of around 0.3 mag
(e.g., Cadonau et al. 1985; Tammann & Leibundgut 1990).
Correlations between their peak luminosity, the decline rate
of their light curves and their optical colours allow them to
be further standardised (e.g., Pskovskii 1977; Phillips 1993;
Tripp 1998; Phillips et al. 1999; Kattner et al. 2012), reduc-
ing their observed r.m.s. scatter to around ∼0.15 mag or 7–8
per cent in distance (e.g., Betoule et al. 2014). SNe Ia have
therefore assumed a key role as cosmological distance esti-
mators (e.g., Kowal 1968; Riess et al. 1998; Perlmutter et al.
1999; Riess et al. 2011; Betoule et al. 2014).

Cosmological studies of SN Ia have always used some
form of light-curve fitting (e.g., Leibundgut et al. 1991;
Riess et al. 1995, 1996; Perlmutter et al. 1997; Jha et al.
2007; Guy et al. 2007; Conley et al. 2008; Burns et al.
2011), in order to interpolate their peak magnitudes and
perform a K-correction from observed magnitudes to the
rest-frame. These light-curve fitters traditionally consist of a
(multi-colour) time-series light-curve template or SED built
from a sample of well-observed, and often low-redshift, SNe
Ia. However, although these fitters have worked well for cos-
mological applications, they have some limitations that a
data-driven approach may not.

Firstly, current template-based light-curve fitters are
limited by the choice of light-curve parameters to be ex-
tracted and do not have the flexibility to easily extract fur-
ther information from the SNe (for example, colour evolu-
tion) to understand their physics. Secondly, template-based
fitters typically only work well where they are trained: typ-
ically on samples of ‘normal’ SNe Ia with optical data, and
excluding (for example) SN1991T- and SN1991bg-like events
(Filippenko et al. 1992b,a; Ruiz-Lapuente et al. 1993) or
wider wavelength ranges such as the near-infrared (IR).
Finally, alternative standardisations with different light-
curve parameters can be explored: uncertainties due to the
parametrizations used are currently an important factor in
the systematic uncertainty budget of SN Ia cosmological
analyses (e.g., Abbott et al. 2019).

This paper is organised as follows. In Section 2 we in-
troduce and describe our new light-curve fitter. In Section 3
and 4 we test our fitting code on samples of SNe Ia, both
simulated and real. In Section 5 we then present an applica-
tion of PISCOLA for SN Ia distance estimation, and explore
alternative standardisations that PISCOLA can provide. A
simple analysis of the SN Ia colour law derived from our
light-curve fitter is shown in Section 6, and we summarise in
Section 7. Throughout, we assume a flat ΛCDM cosmology
with H0 = 70 km s−1 Mpc−1, and ΩM = 0.3.

2 PISCOLA

In this section, we introduce the light-curve fitter PIS-
COLA (Python for Intelligent Supernova-COsmology Light-
curve Analysis). The code is open source1 and written in
python 3, a language widely used in the astronomy commu-
nity. PISCOLA is intended to be simple and transparent in
operation, allowing the user the opportunity to understand

1 https://github.com/temuller/piscola

every step of the light-curve fitting and correction process.
The full documentation can be found online2.

We introduce PISCOLA in the context of fitting SN Ia
light curves and subsequently in SN Ia distance estimation,
but stress that PISCOLA is flexible and can be used to fit the
light curves of any optical transient. In Fig. 1, we show the
main steps in PISCOLA, described in the following sections.

2.1 The light-curve model

PISCOLA uses Gaussian processes (GPs), a Bayesian
method, to model the SN light curves by assuming that
the data distributes as a multi-variate Gaussian distribu-
tion, which is the case for most astronomical observations.
Unlike many other SN light curve fitters, there is no underly-
ing SN template or model that is directly fit to the observed
light curves; the observer-frame modelling is entirely data
driven. This implies that our method needs better quality
data than template-driven methods to reliably fit SNe Ia: it
is not suited to poorly sampled data. In Section 3, we de-
termine the quality of the data necessary for PISCOLA to
produce reliable results.

GP is an excellent tool for data regression, providing
a more robust regression than polynomials as they can be
undesirably global (splines are just a special case of GP re-
gression). GPs have also been previously used in the context
of SN and SN-like light curves, with excellent results (e.g.,
Kim et al. 2013; de Jaeger et al. 2017; Inserra et al. 2018;
Angus et al. 2019; Pursiainen et al. 2020; Wiseman et al.
2020).

A GP model is defined by a mean and a covariance
function/kernel. There are different types of kernels (e.g.,
‘squared exponential’, ‘rational quadratic’, ‘periodic’, the
‘Matérn family’, etc.), each with its own set of hyperparam-
eters (see Appendix A for more details). PISCOLA makes
use of george (Ambikasaran et al. 2016), a GP implemen-
tation in python that allows the user to choose between
several well-known kernels, together with the scipy and lm-
fit packages for the optimisation routines. Our code imple-
ments three kernels: squared exponential, Matérn-3/2 and
Matérn-5/2. The Matérn family is broadly used in differ-
ent areas of research as it is effective at describing differ-
ent physical processes (Rasmussen & Williams 2006), such
as light curves, while the squared exponential kernel pro-
vides a smoother fit. We use different kernels at different
points in our light-curve fitting process.

The fitting of the SN multi-colour observer-frame light
curves is performed in two dimensions, as a function of time
and wavelength. All three hyperparameters are optimised at
this stage: length scales for the time and wavelength axes,
and the variance (see Appendix A for details about these
hyperparameters). We fit in magnitude space as the loga-
rithmic scale provides smoother and more accurate GP fits
than using fluxes directly; when fitting in flux space, any
large differences in flux between different filters can produce
fits with under-estimated peaks (this happens for different
choices of kernel).

There are two disadvantages of fitting in magnitude
space. The first is that non-detections are not used as they

2 https://piscola.readthedocs.io/en/latest/
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Light-curve Correction

SN
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Colour-matched
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Figure 1. Flowchart of the main steps in the PISCOLA process. Gaussian processes are used to fit the SN light-curves as a function

of wavelength and time (Section 2.1). An SED is then ‘warped’ to match the observed SN colours, corrected for redshift (K-correction)

and then Milky Way dust extinction (Section 2.2). Finally, the required rest-frame light curves are obtained and, optionally, light-curve
parameters estimated from those light curves.

cannot be represented correctly in magnitude space. This
also means that data around peak luminosity will have more
weight than data in the tails of the light curves, for measure-
ments with the same uncertainty in flux space, during the
regression. We note that it is the data around peak that
interests us most in the light-curve fitting for the applica-
tions in this paper. A second disadvantage is that lower S/N
observations have asymmetric errors, which are an issue for
GP regression. However, these can be removed by masking
out these observations (see Section 3), although this reduces
the amount of useful data.

The two-dimensional regression provides more robust
results than fitting in one dimension at a time, i.e., flux
as a function of time independently for each band, as it
uses information from multiple bands to cover time gaps
in different filters allowing an improved interpolation (see
Appendix A1). An example of the fitting applied to a high-
redshift SN Ia griz light curve is shown in Fig. 2.

A Matérn-5/2 kernel is the default option in PISCOLA
as it produces flexible, yet smooth fits. In Fig. 2, the fit to the
redder z-band is good, despite having larger uncertainties. In
addition, although only the i-band has relatively good cov-
erage of the tails of the light curve both pre- and post-peak,
the two-dimensional GP model allows an informative ex-
trapolation of the time axis of the grz-band light curves. For
comparison, an example with a one-dimensional GP model
is shown in Fig. A4 and described in Appendix A1.

A further advantage of fitting in two dimensions is that
more accurate estimations of the time of peak luminosity
in a given rest-frame filter are obtained compared to 1D
fits in individual observer-frame filters. The time of peak
luminosity in a given band is estimated from the GP fit by
calculating the time at which the derivative becomes zero at
the effective wavelength of the desired band. For the case of
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Figure 2. Two dimensional GP model of the observer-frame
multi-colour light curve of the SN Ia SNLS-03D1au using a
Matérn-5/2 kernel. The original data, from the Supernova Legacy

Survey (Astier et al. 2006), were observed in the Canada–France–
Hawaii Telescope MegaCam griz filters and are shown as cir-

cles with uncertainties. The solid lines show the mean of the GP
model, and the shaded areas represent one standard deviation

(1σ). The vertical dashed-black line marks the estimation of the
time of rest-frame B-band maximum light.

the rest-frame B band, we denote the time of peak luminosity
as parameter tmax. This is important in many applications,
but particularly in the light-curve correction processes for
SNe Ia in cosmology.

Moreover, PISCOLA can produce excellent results with
relatively well-sampled SNe Ia, such as those at low red-
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shift (z .0.1), as it is able to fit bands outside the useful
ranges of other light-curve fitters. An example is shown in
Appendix B. This is of great importance in many areas, for
example in the estimation of the Hubble constant, measure-
ment of peculiar velocities in the local universe, and the
extraction of astrophysics from the SNe Ia light curves, to
name just a few applications.

2.2 The spectral energy distribution model

Although no light-curve template is used in PISCOLA,
a (time-dependent) SED is still required to K-correct
the observer-frame light curves to rest-frame filters.
Many such templates are available for different SN
types (e.g., Nugent et al. 2002; Blondin & Tonry 2007;
Hsiao et al. 2007; Rodney & Tonry 2009; Liu & Modjaz
2014; Vincenzi et al. 2019). We colour-adjust (or ‘mangle’)
the SED as a smooth function of wavelength so that it repro-
duces the colours of the observed light curves at each epoch,
as estimated by the GP model (see also Hsiao et al. 2007;
Conley et al. 2008). The result is a colour-matched SED, i.e.,
a SN time-series SED which reproduces the observed light
curves of the SN being fit.

The colour-matching is performed by multiplying the
SED by a wavelength-dependent function at the desired
phases (with respect to tmax), after which the SED repro-
duces the observed light-curve when integrated through the
observed filters. This wavelength-dependent function is of-
ten represented by a spline in the literature, but PISCOLA
makes use of GPs with (by default) a squared exponential
kernel, resulting in a smooth function and a natural way
of propagating uncertainties in the process. The steps for
developing the colour-matching function for each SN are:

(i) An observer-frame SED is constructed from the tar-
get’s redshift;

(ii) Milky Way (MW) dust extinction is applied to the
SED;

(iii) The observed filters are used to calculate model fluxes
from the SED;

(iv) The ratios between the actual fluxes of the observed
SN and the model fluxes from the SED are calculated to-
gether with their respective effective wavelengths;

(v) A wavelength-dependent multiplicative function is
calculated by modelling the flux ratios with GPs using an
squared exponential kernel.

The SED template is multiplied by the multiplicative
function to produce a colour-matched SED. An example of
a typical multiplicative function and SED template is shown
in Fig. 3.

As a final step, the colour-matched SED is corrected
for MW extinction and shifted to the rest-frame to obtain
a final SED model. PISCOLA corrects for MW dust extinc-
tion using the Schlafly & Finkbeiner (2011) dust maps and
a Fitzpatrick (1999) extinction law as default. Other im-
plementations of the dust maps (Schlegel et al. 1998) and
extinction laws are also available. The sfdmap and ex-
tinction python packages are used to perform the cor-
rections. PISCOLA does not estimate, or correct for, any
other sources of extinction. This procedure is repeated for
as many phases as desired for each SN, depending on the
data coverage.
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Figure 3. Mangling function (solid green line) for SNLS-03D1au

at tmax. The green squares represent the flux ratios of the different
bands centered at their respective effective wavelengths. The ini-

tial SED (dashed black line) is compared to the SED multiplied
by the mangling function (solid red line). The initial (black open

circles) and mangled (red stars) SED fluxes are also shown. The

transmission functions of the filters used are plotted in grey. The
scaling is arbitrary for visualisation.

The product of this process is a rest-frame time-series
SN SED that reproduces the observer-frame light curves of
the SN being modelled. From this, rest-frame light curves
in any required band can be calculated within the wave-
length and phase limitations of the input data (together with
any desired light-curve parameters based on those rest-frame
light curves). This process is agnostic to the physical type of
transient being fit, under the assumption that a physically
relevant time series SED is used in the colour-matching pro-
cess.

We note one subtlety: the procedure described above
depends on the initial estimate of tmax. This initial estimate
can be improved using the rest-frame light curves. If the
initial and improved estimates of tmax are not consistent,
the light-curve fitting process can be repeated with the new
estimate until a satisfactory convergence is reached.

In the remainder of this section, and to asses the per-
formance of PISCOLA, we discuss the specific use of PIS-
COLA to the fitting of SN Ia light curves. Here we focus
on traditional SN Ia rest-frame light-curve parameters: the
rest-frame B-band peak apparent magnitude (mmax

B
), the de-

cline in magnitudes in the 15 days following tmax (∆m15(B)),
and the B−V colour at tmax ((B−V)max). In Fig. 4, we show
an example of a resulting rest-frame B-band light curve of a
SN Ia.

2.3 Application to SNe Ia

Several aspects of the light-curve fitting process can be af-
fected by choices in the analysis, including the MW extinc-
tion law, the SED time-series template and the exact rest-
frame filters. In Section 4, when we will compare PISCOLA
with results from the SALT2 SN Ia light-curve fitter to es-
tablish its performance, an accurate comparison will require
these choices to be consistent.

SALT2 is an empirical SN Ia model, used in several ma-
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Figure 4. Rest-frame B-band light curve of SNLS-03D1au. In

this case, observations with Megacam-griz filters were used to
construct the B-band light curve.

jor cosmological analyses (Betoule et al. 2014; Scolnic et al.
2018b; Abbott et al. 2019), trained on a spectrophotometric
sample of SNe Ia. It describes the flux of a SN Ia with the
following functional form,

F(SN, p, λ) = x0 × [M0(p, λ) + x1M1(p, λ) + . . .]
× exp[c × CL(λ)],

(1)

where p is the rest-frame time with respect to B-band peak,
λ is the rest-frame wavelength, M0 is the average spectral
sequence, M1 is an additional component that describes fur-
ther variability, and CL represents the average colour varia-
tion law of a SN Ia (Section 6). The contribution of higher-
order components is less significant and not used. The terms
x0, x1 and c are the SALT2 light-curve parameters, where
−2.5 log10(x0) + 10.635 =mmax

B
, x1 is a measurement of the

stretch of the light curve, and c is the colour of the SN.
We ensure our choices follow Scolnic et al. (2018b) as

far as possible:

• We adopt the extinction law from Fitzpatrick (1999);
• The SN Ia SED time-series template is the M0 compo-

nent from the SALT2 model (salt2_template_0.dat). We
do not include the SALT2 x1-dependent component in the
SED as PISCOLA does not measure this parameter (i.e., a
template with x1 = c = 0.0 is used);
• We use the same filter transmission functions for the

observed light curves as Scolnic et al. (2018b);
• We use the same photometric calibration system for

magnitude systems from different surveys (e.g., AB using
BD +17◦4708 (Bohlin & Gilliland 2004) as primary stan-
dard);
• We use the Bessell filters (Bessell 1990), shifted to

match Landolt (1992) observations, as included in SALT2
(see Betoule et al. 2014, and Appendix A of Conley et al.
2011), to estimate the rest-frame light-curve parameters.

In principle, the use of the M0 SED but neglecting the
spectral differences introduced by x1, will lead to small dif-
ferences in the K-corrections when compared to SALT2. For
example, when including the x1-dependent component (as-
suming the x1 values from Scolnic et al. 2018b), the differ-

ences in the rest-frame B-band light curve are on average
. 0.01 mag around peak and . 0.03 mag at earlier or later
phases. This sets a natural limit to the accuracy of these
tests.

3 TESTS WITH SIMULATIONS OF SNE IA

We test PISCOLA with extensive simulations using the Su-
perNova ANAlysis software (snana; Kessler et al. 2009b),
version v10_75c. We focus our tests on the effects of ca-
dence, the mean time between consecutive observations of
an object in the same filter, and observational uncertainties
or, equivalently, signal-to-noise ratio (S/N).

snana simulations simulate transient surveys and pro-
duce light curves of simulated transient events, account-
ing for the survey observing pattern, limiting magnitudes,
pointing on the sky, and so forth. For testing PISCOLA, we
simulate Pantheon-like SN Ia samples (Scolnic et al. 2018b),
representing one of the most comprehensive compilations of
SNe Ia. Pantheon comprises many different SN Ia surveys:
the Harvard-Smithsonian Center for Astrophysics (CfA) sur-
veys 1–4 (Riess et al. 1999a; Jha et al. 2006; Hicken et al.
2009a,b, 2012), the Carnegie Supernova Project (CSP;
Contreras et al. 2010; Folatelli et al. 2010; Stritzinger et al.
2011), the Sloan Digital Sky Survey SN Survey (SDSS;
Frieman et al. 2008; Kessler et al. 2009a; Sollerman et al.
2009; Sako et al. 2018), the Supernova Legacy Survey
(SNLS; Astier et al. 2006; Guy et al. 2010), the Panoramic
Survey Telescope and Rapid Response System 1 (Pan-
STARRS1 or PS1) Medium Deep Survey (Rest et al. 2014;
Scolnic et al. 2014) and different Hubble Space Telescope
(HST) surveys, including: the Supernova Cosmology Project
(SCP; Suzuki et al. 2012), the Great Observatories Origins
Deep Survey (GOODS; Riess et al. 2007), and the Cos-
mic Assembly Near-infrared Deep Extragalactic Legacy Sur-
vey + Cluster Lensing And Supernova Survey with Hub-
ble (CANDELS+CLASH; Graur et al. 2014; Rodney et al.
2014; Riess et al. 2018).

We denote the compilation of the CfA1–4 and CSP sur-
veys the ‘low-z’ sample (or survey) as they only contain SNe
Ia at z <0.1. For a more detailed description of the surveys,
see Scolnic et al. (2018b) or their respective references. We
use the SALT2 light-curve parameters for these SNe Ia from
Scolnic et al. (2018b)3.

All simulations have the same main characteristics. We
restrict our simulations to the ground-based samples (low-z,
SDSS, SNLS and PS1) as PISCOLA does not perform well
with the less well-sampled light curves that are typical from
the HST surveys. Simulated SNe Ia are based on the SALT2
model from Betoule et al. (2014, version 2.4), also used by
Scolnic et al. (2018b). The SNe are simulated by selecting
random x1 and c values drawn from the distributions of
Scolnic & Kessler (2016), which are survey dependent based
on several factors such as Malmquist bias; for more details,
see Scolnic & Kessler (2016). Approximately 500 SNe are
simulated for each SN sample (low-z, SDSS, SNLS and PS1)
and for each individual test. In other words, each simulated

3 https://archive.stsci.edu/prepds/ps1cosmo/
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Pantheon-like sample contains a total of ∼2000 SNe Ia. We
discuss this choice in Section 3.4.

The comparison between the fits and the simulations
are based on mmax

B
, i.e., we focus on the residual between

the simulated mmax
B

value and the estimated value obtained
with PISCOLA. In this paper, we will refer to this as ∆mmax

B
≡ mmax

B,PISCOLA
− mmax

B, simulations
. We fit the SNe in an auto-

mated way with the default GP kernels and over −15 to +30
days with respect to tmax (default phases). In addition, we
require every SN to have a sufficient coverage of the peak:
at least one data point in any band over −7 and 0 days,
one from 0 to +7 days, and one from −3.5 and +3.5 days
(this final constraint may overlap with one or both previous
constraints). We also mask out observations with a S/N ≤ 5
to prevent poor-quality fits and asymmetric errors. We note
that applying cuts in S/N does not bias the estimation of
mmax
B

or the observed peaks in the fitted light curves (this
was tested on real data and simulation from the following
sections), although it could possibly bias the fits at earlier or
later epochs. However, for the analysis in this work, we are
mainly concerned about the data around peak. Note that
the cuts applied are different, but more stringent than those
applied in other analyses using SALT2 (e.g., Scolnic et al.
2018b), discarding more SNe.

These constraints reduce the sample of SNe, but they
ensure a relatively good quality light curve data required by
GP interpolation (to be tested in the following sections). The
chosen values are somewhat arbitrary, but small changes do
not significantly alter the results. We note that, although
template-driven fitters can fit SNe with different S/N, they
may introduce biases as, in the case of low S/N, the fitters
will mainly retrieve the light-curve parameters of the tem-
plates being used.

3.1 SN Ia Pantheon sample simulations

The first step is to test PISCOLA with a Pantheon-like sim-
ulation. The comparison between the PISCOLA-measured
and simulated mmax

B
values is shown in Fig. 5.

We discard some SNe at different stages of the fitting
process for several reasons:

(i) The observer-frame wavelength coverage does not
cover the rest-frame B-band at the redshift of the SN (e.g.,
SNe at high redshift);

(ii) The temporal coverage does not allow an initial esti-
mation of tmax (e.g., many low-z do not have data prior to
the B-band peak);

(iii) PISCOLA is unable to estimate an accurate B-band
light curve. This happens when PISCOLA does not converge
to an estimation of tmax; e.g., several low-z SNe have their
B-band peak only partially covered, and tmax can fall close
to the limits of the coverage, producing a failure to estimate
a new peak;

(iv) The light-curve does not satisfy the additional con-
straints on peak coverage (Section 3), mainly due to a com-
bination of low cadence and/or masking of low S/N data;

(v) Visual inspection reveals poor PISCOLA fits, mainly
caused by remaining poor data quality.

The first three reasons are automated by PISCOLA.
Discarding SNe after visual inspection is only feasible due to

Table 1. Weighted mean, uncertainty on the weighted mean and

weighted standard deviation of ∆mmax
B for a Pantheon-like simu-

lation (Sec. 3.1).

error on the weighted

survey weighted mean weighted mean standard deviation
(mmag) (mmag) (mmag)

low-z 1 1 24

SDSS 4 2 34
SNLS 3 2 29

PS1 7 2 35

the relatively low number of SNe. This is a limitation, and
for future implementations we aim to automate it with a
statistically-motivated metric, which is the aim of this set of
tests. We note that future surveys (e.g., LSST), will produce
higher quality observations with lower uncertainties and bet-
ter cadences.

We successfully fitted (obtained mmax
B

) ∼50 per cent of
the SNe. This is a low number compared to other light-curve
fitters, but highlights the relatively poor data quality of some
historical surveys that SNANA simulates. Stages (ii) and
(iv) are the main causes of discarding SNe (see Section 4).
We note that these discarding reasons do not strongly de-
pend on redshift but mainly on the observing strategy of
each survey.

In Table 1, we show the values of ∆mmax
B

. There are no
significant (i.e., <3σ) deviations from ∆mmax

B
= 0.0 mag for

all surveys, except for PS1 at 3.5σ significance but small (<
0.01 mag) deviation. This is mainly caused by a few SNe with
underestimated mmax

B
and small uncertainty. Additionally,

Fig. 5 shows that some low-z SNe have underestimated mmax
B

values, while some SNLS SNe have the opposite. This is
most likely due to a combination of cadence and S/N and is
further investigated in the following section. Generally, we
conclude that PISCOLA is successful at retrieving accurate
mmax
B

values at < 0.01 mag.

3.2 Effect of observational cadence

As PISCOLA is a data-driven fitting method, the cadence
is important as the GP model has no prior for the true
shape of the SN light curves. We therefore simulated a set
of Pantheon-like samples with cadences between 1 and 10
days in steps of 1 day, and took the 1-day cadence simula-
tion as our benchmark. Observations are equally spaced for
all bands (e.g., simultaneous/same-day ugriz-bands observa-
tions every x days) and with random characteristics drawn
from survey-dependent distributions. We then estimate the
reliability of PISCOLA as the cadence becomes poorer. The
results are shown in Fig. 6.

We successfully fitted (obtained mmax
B

) ∼75–85 per cent
of the SNe in each of the 1- to 7-day cadence simulations,
and ∼60–75 per cent for the 8- to 10-day cadence simulations
(SALT2 fits &98 per cent of the simulated SNe in all cases).
The unsuccessful SNe are mainly due to low-S/N light curves
in the SDSS, SNLS and PS1 simulated samples and B-band
peak not well covered (e.g., data only after peak) in the case
of low-z objects. SNe were discarded for the same reasons as
in Section 3.1. At relatively high cadence (.7 d) PISCOLA
is accurate when estimating mmax

B
for the different surveys
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Figure 5. ∆mmax
B ≡ mmax

B, PISCOLA
− mmax

B, simulations
for a Pantheon-like simulation. Each point represents a single simulated SN, colour-

coded according to the legend. The uncertainties are 1σ and are taken from the PISCOLA fits. The golden hexagons represent the
weighted mean in bins of 1 mag with their respective uncertainties (1σ).

(i.e., . 3σ deviations from ∆mmax
B
= 0.0 mag; see bottom

panel of Fig. 6). However, the accuracy is improved for SNLS
and PS1 compared to low-z and SDSS samples, given their
superior S/N and/or rest-frame cadence.

As redshift increases, the rest-frame cadence increases
for fixed observer-frame cadence. This gives improved light-
curve coverage, but with a trade-off of S/N. We examined
∆mmax

B
versus redshift, but see no clear trend. The surveys

at different redshifts also generally perform similarly as a
function of cadence. We find that PISCOLA accurately re-
trieves mmax

B
(. 3σ deviations from ∆mmax

B
= 0.0 mag) for

cadences similar to those of most high-redshift transient sur-
veys, which have a typical cadence of about 7 days in the
observer frame (e.g., Dark Energy Survey).

However when the cadence is &7 days, the performance
of PISCOLA on the low-z simulated sample is quantitatively
different to the performance on the higher-redshift simula-
tions. At low-z, PISCOLA under-predicts mmax

B
(∆mmax

B
is

positive). This is because the peaks of the light curves are
smoothed out: the GP model has no information about their
true shape and thus does not recover the peak given a lack
of information. In the other simulations (SDSS, SNLS and
PS1), the opposite trend is seen: ∆mmax

B
is systematically

negative at low cadences. This is due to the lower S/N in
these data, despite the higher rest-frame cadence.

SNe with the lowest S/N, which would normally pro-
duce slightly under-predicted mmax

B
values (see Fig. A5), are

not successfully fit, and therefore, not included in the com-
parison, producing the effect of an apparent over-prediction

of mmax
B

for these samples instead of just an increase in scat-
ter. The masking of low-S/N data in part produces a sim-
ilar effect. This explains some of the discrepancies seen for
some SNLS SNe in Section 3.1. SNe with high S/N, but
relatively low cadences, can have their mmax

B
values slightly

over-predicted due to measurements with low uncertainty at
each side of the light-curve peak, which can produces sharper
peaks (top left panel of Fig. A5). However, this is not the
general case (see the top left panel of Fig. 6) as it very much
depends on the time of the observations with respect to the
actual light-curve peak and the apparent luminosity of the
SN.

These effects can be reduced by tightening the con-
straints of the observations around peak, although this
would in turn reduce the number of usable SNe. In prac-
tice, real observations are not evenly spaced, so these tests
just provide a more general idea of how well PISCOLA per-
forms.

3.3 Effect of observational uncertainties

The GP interpolation depends on the uncertainties of the ob-
servations. Thus, we tested the effect of observational uncer-
tainties by simulating two Pantheon-like samples with half
and twice the observational uncertainties (σobs) of the data
in the original Pantheon sample, with a fixed cadence of 7
days.

The weighted mean and weighted standard deviation of
∆mmax

B
for the 7-day cadence simulations with original, half
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Figure 6. Weighted mean with uncertainty on the weighted mean
(top left panel) and standard deviation (top right panel) of

∆mmax
B for simulations with cadences between 1 and 10 days. The

standard deviation of ∆mmax
B for SALT2-measured mmax

B values,
i.e., mmax

B, SALT2
− mmax

B, simulations
, are also shown for comparison

(transparent symbols in the top right panel). Measured signifi-
cant deviations of ∆mmax

B = 0.0 mag in units of σ are also shown

(bottom panel). The horizontal line in the bottom panel marks

a significance of 3σ.

and twice the observational uncertainties are shown in Ta-
ble 2. From this comparison, we can see that a deviation
from ∆mmax

B
= 0.0 mag (at ∼ 3σ) for the SDSS sample is

persistent for different values of σobs, which may be caused
by a generally low S/N despite the S/N≥ 5 selection used.
For the low-z sample, a significant (3.5σ) deviation from
∆mmax

B
= 0.0 mag (PISCOLA under-predicts mmax

B
) is only

observed for half σobs given the relatively low cadence, de-
spite the high S/N, as discussed at the end of Section 3.2.
In the case of SNLS, a significant deviation (4.5σ) in the
estimation of mmax

B
is only seen for twice σobs, while for PS1

no significant deviations are observed.
Despite having some disagreement in the estimation of

mmax
B

, these are all < 0.01 mag: PISCOLA is in good agree-
ment with established light-curve fitters. However, the char-
acteristics of surveys like SNLS and, especially, PS1, are
ideal for fitting SNe with PISCOLA as they have relatively
high S/N and the high-z observations allow a good light-
curve coverage due to the relatively high rest-frame cadence.
Surveys with the characteristics of the low-z sample require
high cadences (.6 days). Future surveys, such as the LSST,
will produce high-quality data with good S/N and cadence
(e.g., Lochner et al. 2018; Scolnic et al. 2018a), overcoming
some of the limitations found in this work, thus allowing
PISCOLA to produce reliable fits.

These comparisons help validate our code. However, we
note the caveat that the simulations are based on the SALT2
model, which differs from other light-curve fitters. Nonethe-
less, the results of the tests performed throughout this sec-
tion are promising as they help establish the reliability of
PISCOLA. The level of discrepancies uncovered in this sec-
tion would only be important in the use of SNe Ia as cosmo-
logical probes; in other astrophysical applications the level
of disagreement is not significant.

Table 2. Weighted mean, uncertainty on the weighted mean and
weighted standard deviation of ∆mmax

B for the 7-day cadence simu-

lations with initial, half and twice the observational uncertainties
(σobs; see Sec. 3).

error on the weighted
survey weighted mean weighted mean standard deviation

(mmag) (mmag) (mmag)

Initial simulation
low-z 4 2 26

SDSS -6 2 39

SNLS 0 2 29
PS1 0 1 30

half σobs simulation

low-z 7 2 26
SDSS -8 2 34

SNLS 4 2 29

PS1 1 1 29

twice σobs simulation

low-z 4 2 28

SDSS -8 3 45
SNLS -9 2 36

PS1 -4 2 36

3.4 Computational considerations

PISCOLA is a computationally intensive light-curve fitter.
Fitting the light curves is fast (of the order of seconds);
however, calculating the mangling function can take longer
(of the order of minutes for the default phase between −15
and 30 days with respect to tmax). This is because a fixed
GP model is used inside a minimization routine to calculate
the mangling function. The length-scale of the GP model is
fixed to a value of 20 to produce a smooth function, how-
ever, the ratios between the observed and model fluxes (see
Section 2.2) are treated as parameters for the minimisation
routine. We note that the wavelength axis is divided by 1000
before the minimization routine, and before setting the GP
length-scale, to ensure better results by avoiding large num-
bers, as these are not always properly handled by the routine
used. The results are then re-scaled by 1000.

The large covariance between the different bands, given
by the Squared Exponential kernel used (see Fig. A1), and
the precision required, make the calculation of the mangling
function a slow process as the minimisation routine takes
longer to converge. Additionally, if the whole light-curve
correction process needs to be repeated with an improved
estimation of tmax (Section 2.2), the time increases further.

As a result, the number of SNe that can be fit in a
‘reasonable’ amount of time is limited to a few thousands
or tens of thousands. For instance, fitting 1000 simulated
SNe Ia takes at least ∼2000 minutes (∼33 hours) on a single
CPU core, depending on various factors. This motivated our
choice of ∼2000 simulated SNe per test, allowing us to fit
objects in a reasonable amount of time.

4 COMPARISON WITH SALT2

We next test PISCOLA on real data, using the 1022 SNe
Ia from the Pantheon sample (excluding HST objects) for
these tests. Unlike the simulations in the previous section, we
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Table 3. Weighted mean, uncertainty on the weighted mean and
weighted standard deviation of ∆mmax

B and (B −V )max − c for the

Pantheon sub-sample used in this work (see Sec. 4).

error on the weighted

survey weighted mean weighted mean standard deviation
(mmag) (mmag) (mmag)

∆mmax
B

low-z 10 4 31

SDSS -26 2 31

SNLS -8 2 25
PS1 -9 2 34

(B −V )max − c
low-z 45 1 8
SDSS 35 3 38

SNLS 9 5 27

PS1 4 4 44

have no ‘ground truth’ for these tests, so instead we compare
the outputs of PISCOLA against those of SALT2 using the
light-curve parameter estimations as given in Scolnic et al.
(2018b). We fit the SNe in the same way as we described in
the previous section (using default PISCOLA parameters)
and applied the same constraints as for the simulations (see
Section 3). SNe were discarded at different stages of the
fitting process following Section 3.1.

Of the 1022 initial SNe Ia, we obtain successful fits,
with mmax

B
values, for 620, of which 413 have a (B − V)max

estimate. Table 4 shows a summary of the discarded SNe.
The percentage of successfully fitted SNe (∼60 per cent) is
larger than for the Pantheon-like simulation in Section 3.1
(∼50 per cent), which is explained by the different relative
numbers of SNe for the different surveys: in the simulations,
all surveys have approximately the same number of SNe.

The outputs from different light-curve fitters are diffi-
cult to compare on a SN-by-SN basis due to, for example,
different internal calibrations in the fitters producing offsets
in some parameters. These are not important for cosmology
as long as each code is self-consistent. In this section, we fo-
cus on the comparisons of mmax

B
and (B−V)max which are the

most directly comparable between SALT2 and PISCOLA.

4.1 B-band peak magnitude comparison

Before comparing mmax
B

values, an offset of ' 0.27 mag
needs to be applied as the version of SALT2 used in
Scolnic et al. (2018b) incorporates this global offset. On
close inspection, we also found that the MW extinction red-
dening values adopted by Scolnic et al. (2018b), using the
Schlafly & Finkbeiner (2011) dust maps, had some incon-
sistencies, principally in the low-z sample where most SNe
have smaller reddening values than expected. We use the
same reddening values as Scolnic et al. (2018b) for compar-
ison purposes.

In Fig. 7, we show the results of the comparison between
mmax
B

. The weighted average and weighted standard devia-
tion of ∆mmax

B
≡ ∆mmax

B,PISCOLA
− ∆mmax

B, SALT2
are shown in

Table 3. There is a general formal disagreement (>3σ) for
all the surveys except the low-z sample.

The differences are typically small, but there are some

important details. The apparent offset observed for the low-
z sample is mainly driven by one SN, SN 2004ey (in the
[14, 15] mag bin in the left panel of Fig. 7), due to its large
discrepancy with SALT2 (mmax

B
residual of ∼ 0.1 mag), but

small uncertainties. If this object is removed, the weighted
average of the mmax

B
residual for the low-z sample is reduced

to 0.005 mag. Using SALT2 to fit this SN, we obtained rel-
atively good fits to the light curves (see Fig. B2), but with
a different value of mmax

B
compared to that published by

Scolnic et al. (2018b), although in better agreement with the
PISCOLA value. We do not know the exact source of this
difference and do not have any reason from the PISCOLA fit,
which results in better residuals than SALT2 (see Fig. B1),
to discard this SN.

The discrepancy in mmax
B

for the SDSS sample is the
largest, expected due to its relatively larger uncertainties.
The lower S/N may cause an apparent over-prediction of
PISCOLA-measured mmax

B
values for these SNe (see discus-

sion in Section 3.2). However, there is also milder disagree-
ment for the SNLS and PS1 surveys, perhaps due to uniden-
tified issues with photometric calibration given the results
of Section 3, or due to differences in the SED models be-
tween SALT2 and PISCOLA. Despite thoroughly checking
the analysis and our tests, we are unable to identify the
source of this discrepancy. We note that the differences could
be due to unidentified issues in PISCOLA, SALT2 or both.

4.2 Colour comparison

We compare the colour parameters in Fig. 8. Given the data-
driven nature of PISCOLA, not every SN with an estimation
of mmax

B
has sufficient wavelength coverage to also estimate

its (B − V)max, particularly at high redshift. We also note
that the colour parameters are fundamentally different (see,
e.g., Kessler et al. 2013), and thus a detailed comparison is
difficult. For exampled, SALT2 estimates (B−V)max through
the c parameter using information across the 3000–7000 Å
range, while PISCOLA makes a direct measurement of B−V .

The weighted average and weighted standard deviation
for the colour parameter residuals are shown in Table 3. As
expected, some differences are seen between the colour pa-
rameters, particularly in the low-z and SDSS samples, where
PISCOLA measures redder SNe than SALT2. A global off-
set may be expected, but the discrepancies are different for
each survey, possibly implying issues with calibration as for
mmax
B

, or with the SED model.

In summary for this section, we find some differences
between light-curve parameters for SNe Ia measured using
PISCOLA and SALT2, some of which were anticipated. For
the most straight forward comparison, i.e. mmax

B
, the differ-

ences between PISCOLA and SALT2 were small. A detailed
comparison for colour is more difficult due to slightly vary-
ing definitions. Taking the results from this section and from
Section 3, we conclude that the performance of PISCOLA
is satisfactory and validates our code.
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Table 4. Number of supernovae discarded at different stages in the PISCOLA fitting.

Discarding reason low-z SDSS SNLS PS1 Total Cumulative number

discarded

Poor wavelength coveragea 1 3 33 9 46 46

Poor time coverageb 58 21 7 11 97 143

Inaccurate resultsc 22 18 1 13 54 197

Not satisfying extra constraintsd 15 39 57 32 143 340
Poor light-curve fitse 2 24 8 28 62 402

Initial sample 172 335 236 279 1022

Total discarded SNe 98 115 106 93 402

Remaining SNe 74 230 130 186 620
Notes. The reasons for discarding SNe are: (a) poor wavelength coverage that does not allow the calculation of the rest-frame B-band

light curve, (b) poor time coverage that does not allow an initial estimation of tmax, (c) unable to estimate an accurate B-band light

curve after light-curve fit and correction, (d) unable to satisfy extra constraints on peak coverage (see the penultimate paragraph of
Sec. 3), and (e) poor PISCOLA fits checked by visual inspection of SNe with large discrepancy in mmax

B compared to SALT2 values.
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Figure 7. Comparison between mmax
B obtained from the SALT2 light-curve fitter and that obtained using PISCOLA as a function of

mmax
B (left panel) and z (right panel) for SNe Ia from the Pantheon sample. The error bars are 1σ uncertainties from PISCOLA. The

yellow hexagons represent the weighted mean in bins of 1 mag (left panel) and 0.1 (right panel) with their respective uncertainties (1σ).
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Figure 8. Colour comparison between PISCOLA (B −V )max and

SALT2 c. The error bars are 1σ uncertainties from PISCOLA.
Note that c is a more indirect measurement of (B − V )max than
the PISCOLA estimator.

5 SN IA LIGHT CURVE ANALYSIS

Having introduced PISCOLA as a general light-curve fit-
ter tool for SNe, we now demonstrate a simple use case
applied to the standardisaton of SNe Ia for distance esti-
mation. Many current and previous cosmological analyses
(e.g., Astier et al. 2006; Guy et al. 2010; Betoule et al. 2014;
Scolnic et al. 2018b) have used SALT/SALT2 light-curve

parametrizations to standardise SNe Ia using the Tripp-like
formula (Tripp 1998):

µ = mB − M + α × x1 − β × c. (2)

where µ is the SN Ia distance modulus, mB, x1 and c
are the SALT2 light-curve parameters, and α, β and M are
nuisance parameters. M represents the average B-band peak
absolute magnitude of SNe Ia.

Current cosmological analyses using equation 2 incor-
porate an additional intrinsic dispersion term (σint), which
encapsulates additional SN Ia variability that cannot be
explained by their standardisation (e.g., Perlmutter et al.
1997; Tonry et al. 2003; Riess et al. 2004; Guy et al. 2010;
Betoule et al. 2014; Scolnic et al. 2018b). In the following
subsections we analyse SN Ia light curves from the Pantheon
sample using Non-negative Matrix Factorization (NMF), an
unsupervised machine-learning method, in search of an al-
ternative parametrizations to study the standardisation of
SNe Ia.

5.1 Light-Curve Decomposition with
Non-negative Matrix Factorization

Previous works have used PCA (or variations of it) on
SNe Ia to analyse their light curves and spectra to bet-
ter understand their use as cosmological probes (e.g.,
Cormier & Davis 2011; Kim et al. 2013; Sasdelli et al. 2016;
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He et al. 2018; Saunders et al. 2018). Here we use a differ-
ent approach and analyse our rest-frame B-band SN Ia light
curves with NMF, a data-driven linear decomposition algo-
rithm, comparable to PCA. NMF factorises a non-negative
matrix, X , with dimensions m × n, in a set of two non-
negative matrices, W and H , with dimensions m×k and k×n
(where k < min(n,m)), respectively, such that X =W × H .
In other words, NMF factorises a matrix into several com-
ponents (eigen-vectors) and coefficients (eigen-values). Both
methods (NMF and PCA) are commonly used for dimen-
sionality reduction and feature extraction; however, NMF
is better suited for some applications in astronomy as most
astrophysical signals are non-negative, thus extracting com-
ponents that are easier to interpret physically. Additionally,
NMF components are not necessarily orthogonal, as is the
case for PCA components, which allows us to find correla-
tions between coefficients.

The light-curve decomposition depends on the phase
coverage being used. We present our analysis for 214 SNe
which have rest-frame data over the phase range −10 to
+15 d. In this proof-of-concept investigation, we also dis-
carded 50 SNe which did not have straight-forwardly rising
and then declining light curves, flagged by visual inspection
of the fits. There are many reasons why such fits may re-
sult, including astrophysical reasons such as the presence of
secondary peaks in SN Ia light curves, or experimental rea-
sons such as lower S/N data. However, this decomposition
application is deliberately designed to be simple in scope;
future work will examine the more complicated morphology
of SN Ia light curves. The sample selection for this analy-
sis is summarised in Table 5. In Section. 5.3, we explain in
more detail the phase range chosen, and explore other phase
ranges. The rest-frame B-band light curves for this sample
are shown in Fig. 9.

We decomposed these light curves in absolute-
magnitude space, multiplied by −1 to obtain positive values.
To calculate the absolute magnitudes we use distance mod-
ulii calculated with our assumed cosmology and the redshifts
from Scolnic et al. (2018b, specifically zHD). As the NMF
algorithm used does not incorporate uncertainties, we used
a Monte Carlo approach, generating sets of light curves for
each SN from the uncertainties estimated by PISCOLA, and
applying NMF decomposition to each of these sets. This gen-
erates a distribution of coefficients from which we used the
mean value and the standard deviation to propagate uncer-
tainties.

The following analysis is described for a decomposition
with three components, although we consider further com-
ponents in Section 5.3. In Fig. 10, we show the components
obtained with NMF, with their respective explained vari-
ance (in percentage) with respect to the total variance of
all components. Each eigen-vector contains specific infor-
mation about the B-band of an ‘average’ SN Ia. Compo-
nent 0 contributes to the general scale of the light curve,
thus correlating with the B-band peak absolute magnitude,
Mmax

B
. Component 1 contributes to the rise of the light curve,

while component 2 mainly contributes to the decline of the
light curve (and therefore we expect it to correlate with
∆m15(B)). Component 1 also contributes to the decline, but
to a lesser degree than component 2. We note that from
this data-driven decomposition, we naturally retrieve com-
ponents related to the rise and decline of the B-band light
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Figure 9. B-band light curves of 214 PISCOLA-fitted SNe

Ia used in the decomposition analysis. Values are in absolute-
magnitude multiplied by −1.
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Figure 10. Three NMF components obtained from the decom-
position of the B-band light curves shown in Fig. 9. In parenthesis

are the percentages of the explained variance for each component

with respect to the total variance of all components. Note that
the absolute values of the components are not important for this

analysis.

curve, in agreement with the findings of Hayden et al. (2010)
and Ganeshalingam et al. (2011).

We are principally interested in the relative values of the
components rather than the absolute values, which have no
direct physical interpretation. We label the coefficients p0,
p1 and p2, associated to components 0, 1 and 2, respectively.

In Fig. 11, we show an example of a B-band light curve
from one of the SNe together with a reconstructed light
curve using the NMF components and coefficients, and their
residuals. The residuals show that the reconstructed light
curve has small differences (.0.05 mag) to the original light-
curve during the rise, but better agreement around peak
(∼0.02 mag residuals) and at later times (∼0.00 mag residu-
als). The reconstructed light-curves and the original light-
curves for the sample of 214 SNe are generally in excellent
agreement, with mean residuals of ∼0.0 mag and a standard
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Figure 11. Top: example of B-band light curve from one of
the SNe Ia (black) together with a reconstructed light-curve us-

ing the NMF components and coefficients (red). Values are in

absolute-magnitude multiplied by −1. Bottom: residuals from
the light-curves shown in the top panel. The shaded area shows

the standard deviation of the residuals for the entire sample in

Fig. 9.

deviation of ∼0.03 mag for all phases. This demonstrates that
the NMF decomposition with three components is able to
capture the variation in the light curves of SNe Ia.

The coefficients tell us about the contribution (or
weight) of each of the components on the light curve of a
SN Ia. By comparing these with different light-curve pa-
rameters, we can better understand their physical interpre-
tation. This is shown in Fig. 12. As expected, there is a clear
correlation between p0 and Mmax

B
, and thus (B −V)max (e.g.,

Tripp 1998). Coefficient p1, which contributes to the rise
of the light curve, has a small correlation with (B − V)max,
but not with Mmax

B
. On the other hand, coefficient p2 clearly

correlates with ∆m15(B), as expected, and shows minor cor-
relations with Mmax

B
and (B−V)max. None of the components

correlates with host-galaxy stellar mass. The decomposition
is somewhat analogous to the SALT2 model, which contains
x0 and x1 terms, although here we have two stretch compo-
nents. In our case, the average (B-band light-curve) model
has stretch parameters p1 ∼ p2 ∼ 0.2, while in the case of
SALT2 it has x1 = 0.

We note that NMF, unlike PCA, does not produce or-
thogonal components given the constraints of non-negative
values, i.e., correlations between the components can be ex-
pected. From the coefficients, we find that p1 and p2 are
anti-correlated (correlation of ∼ −0.5).

5.2 Distance estimation

We follow an analogous approach to equation 2 using the
PISCOLA components:

µ = mB − M + η1 × p̂1 + η2 × p̂2 − β × (B − V)max (3)

where mB and (B − V)max are the PISCOLA-measured
light-curve parameters (i.e., measured from the fits), p̂ =

2.9

3.0

p
0
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Figure 12. NMF coefficients vs PISCOLA light-curve parameters

and host galaxy stellar mass for the SNe in Fig. 9. From the 214
SNe, only 156 have (B−V )max values. Uncertainties are not shown

for visualisation. Linear regressions are represented by red lines.

p − 〈p〉, and 〈p〉 is the average NMF coefficient value of the
sample.

5.2.1 Hubble Diagram

To build a Hubble diagram, we adopt our standard cosmol-
ogy (see Section 1) and use a Markov Chain Monte Carlo
(MCMC) to find the optimal values for the nuisance pa-
rameters M, η1 , η2 and β, adopting uniform priors without
bounds (except for M, where we require M < 0). Note that
we used only SNe with (B − V)max values (156 out of 214)
for the Hubble diagram. See Table 5 for more details re-
garding the cuts applied to the SNe sample and the end of
Section 5.3 for a summary. The need of colour limits the
range of redshift, as we require rest-frame V-band cover-
age to estimate (B − V)max. Future work will focus on al-
ternative colour parameters. For instance, the slope of the
mangling function contains information about (B − V)max,
which is approximately contained in a narrow range (∼ 4500–
5500 Å), allowing us to incorporate higher-redshift SNe, al-
though it provides a more limited standardisation compared
to (B − V)max.

We included uncertainties and covariances for our
light-curve parameters, uncertainties in redshift (σz), un-
certainties due to peculiar velocities (σpec; adopting 300

km s−1) and uncertainties from stochastic gravitational lens-
ing (σlens). We also included an intrinsic scatter term (σint)
such that χ2

red = 1. Bias corrections are not included as a
separate analysis would be required. However, we do not ex-
pect it to be significant due to the need for a (B − V)max
measurement in our analysis, which translates into an im-
plicit redshift cut; see the redshift ranges for the different
surveys in Fig. 13. The resulting Hubble diagram is shown
in Fig. 13, while the MCMC results of the parameters are
in Fig. 14.
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Table 5. Number of SNe Ia discarded at different stages of the analysis (Section 5).

Discarding reason Low-z SDSS SNLS PS1 Total Cumulative number

discarded

Incomplete phase coverage 59 129 71 97 356 356

Unphysical light curve 1 19 8 22 50 406
No (B −V )max estimation 0 12 40 6 58 464

Initial sample 74 230 130 186 620

Total discarded 60 160 119 125 464

Remaining SNe 14 70 11 61 156
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Figure 13. Hubble diagram (top panel) and residual (bottom
panel) for the SNe Ia in the sample, using the PISCOLA stan-

dardisation introduced in this work.
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Figure 14. MCMC results of the nuisance parameters used for

the standardisation of the SNe Ia in the Hubble diagram (Fig. 13).
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Figure 15. Hubble Residual comparison between the

parametrization derived in this work (r.m.s. = 0.118 mag)
and the standard parametrization from SALT2 (r.m.s. =

0.111 mag).

5.2.2 Hubble Residuals: PISCOLA vs SALT2

We now compare this simple PISCOLA parametrization
with SALT2 using the same sample of 156 SNe. In Fig. 15,
we show the comparison of the Hubble residuals measured
using parameters derived from the PISCOLA light curves
and from SALT2. PISCOLA obtains a similar r.m.s. value of
0.118 mag compared to SALT2 (0.111 mag), indicating it as
a competitive method. The performance difference in r.m.s.
of 0.007 mag is small. We note, however, that, although PIS-
COLA does not outperform SALT2, using it for cosmologi-
cal analyses is a limited demonstration of its potential as a
general purpose light-curve fitter.

The nuisance parameters obtained by using PISCOLA
and SALT2 are summarised in Table 6. For SALT2, we found
a similar value for α and a slightly lower value for β than
those reported in Scolnic et al. (2018b), possibly due to the
subsample used in this work. The value for M is different
between both approaches, but as a normalisation factor this
has no effect on the analysis. The value of β is smaller with
PISCOLA, indicating the colour correction is not as large
as with SALT2, possibly implying that some of the colour
contribution is accounted for in p1 and/or p2 (note also the
slight correlation between β and η2 in Fig. 14). The stretch-
like parameters, p1 and p2, distribute as quasi-Gaussians
over ∼ 0.0 − 0.4 with mean values of ∼ 0.2, so the correction
from η1p1 + η2p2 is larger than αx1. This is consistent with
the possibility that some of the contribution from colour is
absorbed by the p1 and/or p2 parameters. Finally, we obtain
a lower σint with PISCOLA than with SALT2, but this is
also a reflection of our larger uncertainties, where the main
contributor to the uncertainty budget is (B−V)max, an effect
of the GP light-curve fits.
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Table 6. Nuisance parameters from the cosmological analysis for
SALT2 and PISCOLA.

Parameter SALT2 PISCOLA

M -19.36+0.01
−0.01 -19.16+0.01

−0.01
β 2.85+0.08

−0.08 2.15+0.11
−0.12

α 0.14+0.01
−0.01 -

η1 - 1.04+0.16
−0.15

η2 - 0.98+0.14
−0.13

σint 0.068 0.047

Notes. The uncertainties in σint are negligible (<0.001) in both

cases.
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Figure 16. PISCOLA Hubble residuals as a function of host

galaxy stellar mass. Uncertainties are not shown for visualisation.
A host galaxy mass step of −0.052±0.022 mag (2.4σ) was obtained.

The vertical dashed line marks the location of the step at Mstellar =
1010M�.

We also examined the dependence of Hubble resid-
ual on host galaxy stellar mass, the so-called ‘mass step’
(e.g., Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al.
2010), by using the stellar mass values from Scolnic et al.
(2018b). We found a mass-step value of −0.052 ± 0.022 mag
(2.4σ; see Fig. 16) and −0.071 ± 0.016 mag (4.4σ) for PIS-
COLA and SALT2, respectively, for a step at Mstellar =
1010M�. The PISCOLA value is therefore consistent with
the value obtained with SALT2 and with previous work
(e.g., Sullivan et al. 2010; Betoule et al. 2014; Scolnic et al.
2018b; Kelsey et al. 2021; Boone et al. 2021), although lower
and less significant.

5.3 Further Exploration

The results of the light-curve decomposition in Section 5.1
depend on the phase range considered. We explored differ-
ent ranges with lower limits of −8, −10 and −12 days, and
upper limits of +12, +15 and +18 days. As not all SNe have
the same coverage, we used an initial sample of 264 SNe
in common for all the ranges. Data outside of these phase
ranges are usually more incomplete. 50 SNe were discarded
for having unphysical-looking light curves, as previously de-
scribed, leaving 214 SNe. From these 214 SNe, only 156 SNe
had (B − V)max values. For details about the discarded SNe
at different stages of the analysis process, see Table 5.

Our full analysis (Sections 5.1 and 5.2) was performed
for these phase ranges and the Hubble residual r.m.s. values

Table 7. Hubble residual (HR) r.m.s. for our method using dif-

ferent combinations of light-curve phase ranges. The range that

gave the lowest r.m.s. is in bold.

Minimum phase Maximum phase HR r.m.s.

[days] [days] [mag]

−8 +12 0.125
−8 +15 0.120

−8 +18 0.123

−10 +12 0.123
−10 +15 0.118

−10 +18 0.122

−12 +12 0.125
−12 +15 0.125

−12 +18 0.127

Notes. The HR r.m.s. for the same sample, using SALT2, is
0.111 mag.

are in Table 7. The range of [−10, +15] d produced the small-
est r.m.s. Although naively it might be expected that larger
ranges would contain more light-curve information in the
NMF components, the fits can also be less reliable at early
or late epochs. For example, the ranges starting at −12 days
produce the largest r.m.s. values, due to less reliable fits from
the larger observational uncertainties at these early epochs.
A similar behaviour is seen for +18 d. The range of [−10,
+15] d produces the best combination between information
incorporated and reliable fits.

The shape and information contained in the different
NMF components also depends on the number of compo-
nents chosen. We repeated the analysis using two, four and
five components for the phase range of [−10, +15] d. Using
two components resulted in a clearly worse result (Hubble
residual r.m.s. of 0.141 mag), while using four and five com-
ponents produced similar results as that with three com-
ponents (both with a Hubble residual r.m.s. of 0.121 mag).
We conclude that two components are not sufficient to cap-
ture the variability of SNe Ia. On the other hand, as the
number of components increases it is hard to determine
if there is any physical interpretation and/or contribution
to the light-curve standardisation. The results suggest that
three components is optimal with the current data, each
component with clear physical interpretation. Although we
did not produce an improved performance over SALT2, de-
spite using one extra parameter, we stress that this is an
exploratory work where a single-band light-curve decompo-
sition was performed. Future work with multiple bands may
produce improved standardisation as stretch and colour in-
formation would be included.

To summarise the sample used for the cosmological
analysis, of the 620 SNe that PISCOLA successfully fit (ob-
tained mmax

B
), only 264 have phase coverage in the B-band

between −12 and +18 days. There are more SNe with smaller
phase-range coverage, but to ensure a fair comparison, we
use the sample from the largest phase-range coverage we
tested, which has SNe in common with all the other phase
ranges. Of these 264 SNe, 50 had unphysical-looking light
curves from visual inspection and were removed, leaving 214
SNe on which the NMF analysis was formed. Finally, from
these 214 SNe, only 156 have (B − V)max and form our final
cosmological sample. We note that, although the cuts in the
sample are severe, this is a proof-of-concept analysis with
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the idea of exploring new approaches and thus requires a
‘golden’ sample, removing possible biases.

6 PISCOLA COLOUR LAW

The SN colour is the light-curve parameter that contributes
most to the standardisation of SNe Ia. It is related to the
physics, progenitors and environments of SNe Ia, and is a
complicated parameter as there are several factors that may
contribute to variations in the observed colour (e.g., SN cir-
cumstellar material or host galaxy extinction).

The wavelength-dependent variation of colour in SNe Ia
is known as the ‘colour-variation law’ (CL). SALT2 describes
the CL as a wavelength-dependent function that does not
vary in time or as a function of x1 (see equation (1)). We
can also use the PISCOLA mangling fits to estimate a CL, in
a similar fashion to SALT2. The mangling function at tmax

(see Section 2.2) describes how the colour of a SN varies with
respect to a base SED and therefore gives us a method to
estimate the relative CL for a single SN (i.e., the mangling
function is equal to (B − V)max multiplied by the CL).

We divide SNe into bins of 0.05 mag in colour, and cal-
culate their average mangling function in each bin. We then
fit a third-order polynomial, optimising across all bins of
(B − V)max simultaneously, to obtain a functional form for
the CL following the assumption that the CL is wavelength-
dependent only (as in equation (1)). Only data between
∼3500 and ∼7000 Å is used as not all SNe have coverage
bluer than 3500 Å, especially at low redshift. High-z SNe
get their ultraviolet (UV) wavelengths redshifted to optical
wavelengths in the observer frame. However, most of the
SNe with rest-frame UV coverage do not have PISCOLA-
measured (B−V)max as the rest-frame V band gets redshifted
outside the filters’ range, and so are not used for the esti-
mation of the PISCOLA CL.

In Fig. 17, we compare the PISCOLA CL against that
of SALT2 and the extinction law from Fitzpatrick (1999)
for three different values of the total to selective extinction
ratio, RV . The PISCOLA CL agrees with the Fitzpatrick
(1999) extinction law with RV <. 3.1. Similar findings
have been reported in previous work (e.g., Burns et al. 2014;
Amanullah et al. 2015; Sasdelli et al. 2016; Brout & Scolnic
2021; Thorp et al. 2021).

When comparing with the SALT2 CL, there is agree-
ment at optical wavelengths, but some deviation towards
the UV. However, as previously mentioned, the data around
3000 Å is limited and thus the PISCOLA CL at these wave-
lengths is more uncertain.

The colour dispersion, i.e., the scatter around the CL,
is also of importance to quantify the disagreement. SALT2
includes its CL in its model (equation (1)), possibly limiting
its behaviour, and it is estimated during the training phase,
while we estimate it after the PISCOLA fitting and correc-
tion process of the SNe Ia, almost directly from the data.
In Fig. 18, we compare the CLs of PISCOLA and SALT2 at
(B−V)max = 0.15 mag, but also include their respective colour
dispersions. We note that, despite the differences in the es-
timation of the CLs, they agree within the uncertainties,
especially in the range used for calculating the PISCOLA
CL (at ∼3500–7000 Å).

This was also tested with the simulations of Sec. 3.1,
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Figure 17. The colour law obtained with PISCOLA (solid black

line) compared to that from SALT2 (dash-dotted blue line) and a
Fitzpatrick (1999, Fitzpatrick99) extinction law for different RV

values (red lines). The vertical dotted lines mark the effective

wavelengths of the B and V bands. This comparison is shown for
two different (B −V )max values (−0.10 and 0.15 mag).
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Figure 18. Top panel: CL obtained with PISCOLA (solid black

line) compared to the CL from SALT2 (dash-dotted blue line) for

(B−V )max = 0.15 mag. The shaded areas represent their respective
colour dispersions. Bottom panel: Colour dispersion comparison

between PISCOLA (solid black line) and SALT2 (dash-dotted
blue line). The vertical dotted lines mark the effective wavelengths

of the B and V bands.

where we found similar results. Furthermore, by changing
the shape of the CL of the simulations, PISCOLA is able
to retrieve a CL that agrees with it (at ∼3500–7000 Å; see
Fig. 19).

The colour dispersion indicates that PISCOLA has a
larger scatter towards the near-IR, but similar in the UV,
compared to SALT2. The shape of the colour dispersion
curve from PISCOLA could be a consequence of a com-
bination of three factors. The first is due to the smaller
observational uncertainties in the B and V bands, where
much of the flux of a SN Ia emerges, and larger uncertain-
ties at redder and bluer wavelengths. The second is due to
the reduced number of SNe covering bluer and redder wave-
lengths (around 3500 and 7000 Å respectively) compared to
the range around B and V . The third is that there may be
a difference in the CL for different SNe.
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Figure 19. The description is the same as in Fig. 17 but for (B−
V )max = 0.10 mag and a SALT2 model with a different (artificial)

CL shape. PISCOLA is able to retrieve a CL that agrees with

that of SALT2 (at &3500 Å) even after changing the shape of the
CL in the SALT2 model.

Differences in CLs are important as they can represent
differences in the underlying physics of SNe Ia. The SALT2
model mainly incorporates near-UV observations of high-z
SNe (e.g., from SNLS) as these wavelengths are redshifted
to optical wavelengths and can be observed with ground-
based telescopes. In principle, the characteristics of these
SNe could be intrinsically different to those at lower redshift
(e.g., Ellis et al. 2008; Maguire et al. 2012). This may intro-
duce biases in the SALT2-measured colour. The CL obtained
with PISCOLA agrees with the average extinction law mea-
sured in the MW (with RV . 3.1) within the uncertainties,
implying that the remaining variation (intrinsic scatter) in
SNe Ia may be driven by dust of similar properties to that
in our galaxy. We note that Brout & Scolnic (2021) found
the opposite, i.e., dust with different properties to that in
our galaxy, although using a SALT2 CL.

7 SUMMARY

In this work we have presented a new open-source SN light-
curve fitting code PISCOLA, which relies on Gaussian pro-
cesses (GP), a data-driven interpolation method, for fit-
ting light-curves. PISCOLA can be applied to any observer-
frame SN light-curves, and produces rest-frame light-curves
as its principal output. PISCOLA can additionally estimate
rest-frame light-curve parameters, such as peak magnitudes,
colours, and light-curve shapes.

We tested PISCOLA by applying it to SN Ia data, both
simulated and real. With simulations of SNe Ia for differ-
ent cadences and observational uncertainties, we found that
PISCOLA is reliable for observational cadences of . 7 days
for typical current SN Ia samples, provided relatively loose
constraints on data coverage around peak luminosity and
signal-to-noise are used. When comparing PISCOLA out-
puts on real data and comparing to light-curve fits with the
SALT2 light-curve fitter, we see small but significant (>3σ)
differences in peak rest-frame B-band magnitude. However,
with no ground-truth for these tests, we argue that such dif-
ferences may be expected given the different assumptions
used in the two techniques.

We then demonstrated a scientific use of PISCOLA by

analysing the rest-frame B-band light curves of the Pantheon
SN Ia sample using NMF, a machine-learning decomposition
algorithm, to search for alternative standardisations of these
objects. NMF allows the extraction of ‘easy-to-interpret’ and
non-orthogonal components, unlike other algorithms, such
as PCA. We compared the NMF coefficients with different
SN Ia parameters, and used them to build a Hubble dia-
gram. We tested different combinations of light-curve phase
ranges and numbers of components for the decomposition,
and found the best results were based on B-band light curves
with a phase range of [−10, +15] d and three components.
This parametrization produces an r.m.s. in the Hubble resid-
ual similar to that of SALT2 (0.118 and 0.111 mag, re-
spectively), showing the promise of this new framework. We
stress that, although PISCOLA does not outperform SALT2
in this particular case, future work with multiple bands can
produce better results. Additionally, this analysis is only a
limited demonstration of PISCOLA’s potential.

PISCOLA uses a smooth GP interpolation to adjust its
base SED to an observed SN colour (a mangling function).
This mangling function encodes information on the colour
law (CL) of SNe Ia. We estimated a functional form for this
CL by fitting a third-order polynomial and compared it with
the SALT2 CL and Fitzpatrick (1999) extinction laws with
different RV values. We found that the PISCOLA CL agrees
with an extinction law with RV . 3.1, but also with the
SALT2 CL. Although there could be some slight disagree-
ment towards the UV, a possible cause is the extrapolation
of the PISCOLA CL bluer than ∼3500 Å.

We have plans for future upgrades of PISCOLA. This
includes the use of a ‘stretch’-dependent time-series SED, a
mangling function in two-dimensions (wavelength and time),
and exploring alternative GP models, for example the use of
different kernels, different bounds for the hyper-parameters,
etc.. This may produce more accurate light-curve fits and
mangling functions. Finally, we emphasise that although our
tests have been based around applications to SNe Ia, PIS-
COLA is generic so that, with an appropriate time-series
SED for K-corrections, it can fit any type of optical transient
to estimate rest-frame light-curves and luminosities. For in-
stance, SED templates for type Ib, Ic and II SNe already
exist (e.g., Vincenzi et al. 2019) and, in the case of superlu-
minous SNe, a black-body could be used as an approximate
SED template as no current templates exist.
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APPENDIX A: GAUSSIAN PROCESS

A GP is a random process where any point x ∈ Rd is assigned
a random variable f (x) and where the joint distribution of a
finite number of these variables p ( f (x1) , . . . , f (xN )) is itself
Gaussian: p(f | X) = N(f | µ,K), where µ and K are the mean
and covariance functions. The latter is also called kernel.

PISCOLA incorporates three different kernels: Squared
Exponential, Matérn-3/2 and Matérn-5/2. These are defined
as

kSE (x, x′) = σ2exp

(
− |x − x′ |2

2`

)
, (A1)

kM32(x, x′) = σ2
(
1 +
√

3 |x − x′ |
`

)
exp

(
−
√

3 |x − x′ |
`

)
, (A2)

and

kM52(x, x′) = σ2
(
1 +
√

5 |x − x′ |
`

+
5 |x − x′ |

3`2

)
exp

(
−
√

5 |x − x′ |
`

)
,

(A3)

where ` (length-scale) and σ2 (variance) are the hyperpa-
rameters of the kernels. Fig. A1 shows a comparison between
the three kernels. From the mathematical perspective, each
kernel has its own properties; however, in terms of applica-
tions for fits, the main difference is the covariance between
points, which is larger for the Squared Exponential kernel
than for the other two, assuming two data points at a fixed
distance, and a fixed set of hyperparameters. The Matérn
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Figure A1. Comparison of the covariance between three kernels

available with PISCOLA: Squared Exponential (blue), Matérn-
3/2 (orange) and Matérn-5/2 (green).
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Figure A2. Comparison between different length scale values (`)
for an Squared Exponential kernel: 0.1 (blue), 5.0 (orange) and

20.0 (green). GP fits (solid lines) were performed on simulated

data (black circles). Only the mean GP model is shown in each
case for visualisation. The underlying function, from which the
simulated data was extracted from, is also shown (dashed grey

line).

family is appropriate for modelling physical processes (the
Squared Exponential kernel can be too smooth), with the
Matérn-3/2 and Matérn-5/2 kernels of special interest as
they are simple functions.

Figs. A2 and A3 show a comparison between different
length scales and variances for the Squared Exponential ker-
nel. The length scale determines the length of the ‘wiggles’
in a function, giving a sense of how far the data can be ex-
trapolated. The variance determines the average distance of
the function away from its mean. For a detailed introduction
to GP method see Rasmussen & Williams (2006).
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Figure A3. Comparison between different variance values (σ2)

for an Squared Exponential kernel: 0.01 (blue), 0.1 (orange) and
10.0 (green). GP fits (solid lines) were performed on simulated

data (black circles). Only the mean GP model is shown in each

case for visualisation purposes. The underlying function, from
which the simulated data was extracted from, is also shown

(dashed grey line).

A1 One dimensional Gaussian process fits

Two-dimensional GP light-curve fits have the advantage
of performing informative interpolation/extrapolation given
data from multiple bands and this forms our default ap-
proach. However, we also explored fitting each filter inde-
pendently (a 1D GP model). In Fig. A4, we show the same
example as in Fig. 2, but for such a 1D GP model, with
independent fits for each band, i.e. a regression of flux as a
function of time. The extrapolation of the rise of the light
curve for the r and z bands over-predicts the flux by compar-
ing them with i band, given that the former bands are bluer
and redder than the latter. In addition, the uncertainty of
the z light-curve decline fit rapidly increases the further the
GP model extrapolates. A final consideration is the estima-
tion of tmax: as in a 1D fit there is no interpolation in the
wavelength axis, the peak can only be estimated by choos-
ing the closest observer-frame band to rest-frame B band or
using a redder and bluer band than the B band for a more
accurate estimation. Both approaches are less precise than
the estimation from a two-dimensional interpolation.

A2 Effect of S/N

The results of a GP fit depends on the cadence and uncer-
tainties of the observations. In Fig. A5 we show a GP fit to a
rest-frame B-band light curve taken from a SN Ia SED from
which we extracted ‘observations’ with a 10-day cadence.
We simulate fractional errors of the observations with 5, 10,
20 and 30 per cent values, reproducing the effect of S/N.
When the errors are small (5 and 10 per cent), the peak is
over-predicted (e.g., for low-z SNe). Conversely, when they
are large (30 per cent), the peak is under-predicted (e.g., for
SDSS SNe).

This just gives a general idea on how S/N can affect the
light-curve fits as the exact values of the uncertainties will
depend on the apparent magnitude of the SN. For example,

52880 52900 52920 52940 52960 52980 53000
Modified Julian Days

0.0

0.5

1.0

1.5

2.0

2.5

Fl
ux

 [×
10

18
 e

rg
 s

1  
cm

2  
Å

1 ]

03D1au
z = 0.5043

Megacam_g
Megacam_r
Megacam_i
Megacam_z

Figure A4. The description is the same as in Fig. 2, but for a

1D GP model, with independent fits for each band.
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Figure A5. 10-day cadence ’observations’ (red circles) extracted
from the rest-frame B-band light curve (dashed grey line) of a
SN Ia SED template. GP fits (in green) were performed for cases

with simulated fractional errors of the observations of 5, 10, 20

and 30 per cent.

for two SNe with peak apparent magnitudes of 17 and 14, a 1
per cent error turns into 0.17 mag and 0.14 mag, respectively.

APPENDIX B: LIGHT-CURVE FITS

PISCOLA presents several advantages over template-driven
light-curve fitters, one of them being the better fits of low-
z SNe, i.e., objects with relatively well-sampled light curves
and high S/N. One example is presented in Fig. B1, where we
show the PISCOLA fit to SN 2004ey from the CSP survey.
In Fig. B2, we show the SALT2 fit we performed to the same
SN, using the implementation of the code in sncosmo. In this
case, we see that SALT2 produces larger residuals compared
to PISCOLA.

PISCOLA outperforms SALT2 when fitting the CSP u
and r, which are on the blue and red limits, respectively, of
the effective training range of SALT2 (∼3000–7000 Å). Fur-
thermore, PISCOLA produces good results in the i band,
even fitting the secondary peak, showing the potential of
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Figure B1. PISCOLA light-curves fit and residuals of SN 2004ey
from the CSP survey. The observational uncertainties for this SN

are small so they are only seen in the residual plots. The label

csp_o is used by PISCOLA to refer to one of the three available
CSP V -bands.

0

100

200

300

400

500

Sc
al

ed
 F

lu
x

csp_u

200

400

600

800 csp_B

200

400

600

800 csp_g

0

10

20

R
es

id
ua

ls

20

0

20

10
0

10
20

200

400

600

800

Sc
al

ed
 F

lu
x

csp_o

100
200
300
400
500
600
700
800 csp_r

100

200

300

400

500 csp_i

53300 53320 53340
Modified Julian Date

20

10

0

10

R
es

id
ua

ls

53300 53320 53340
Modified Julian Date

20

0

20

53300 53320 53340
Modified Julian Date

20

0

20

SN 2004ey (z = 0.0146)

Figure B2. SALT2 light-curves fit and residuals of SN 2004ey

from the CSP survey. The rest of the description is the same as
in Fig. B1.

fitting NIR light curves. We also note that PISCOLA pro-
duces better results in bands like CSP g and V (csp_o in
Fig. B2), important for the estimation of colour and colour
evolution in SNe Ia.

Future work will involve using PISCOLA to fit NIR
bands of SNe Ia and estimate distances with them.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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