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Abstract. Water permeability is a key concept when estimating load
bearing capacity, mobility and infrastructure potential of a terrain. North-
ern sub-arctic areas have rather similar dominant soil types and thus pre-
diction methods successful at Northern Finland may generalize to other
arctic areas. In this paper we have predicted water permeability using
publicly available natural resource data with regression analysis. The
data categories used for regression were: airborne electro-magnetic and
radiation, topographic height, national forest inventory data, and peat
bog thickness. Various additional features were derived from original data
to enable better predictions. The regression performances indicate that
the prediction capability exists up to 120 meters from the closest di-
rect measurement points with concordance index 0.66 at 75 meters. The
results were measured using leave-one-out cross-validation with a dead
zone between the training and testing data sets.

Key words: load bearing capacity of soil, water permeability, regres-
sion, k-nearest neighbor, mobility, sub-arctic infrastructure.

1 Introduction

This paper is about predicting the water permeability of the soil by regression
analysis using publicly available multi-source data. Water permeability (also
called hydraulic conductivity) is a central soil property related to soil type and
soil texture. High permeability means that soil tends to stay dry and traversable
most of the year, whereas low permeability creates a risk for mobility when
precipitation is high. Mobility in arctic areas is of great interest to many differ-
ent parties. E.g. the mining industry is interested about the mobility estimates
when placing various facilities. The forest industry is interested on the load
bearing capacity of the soil, since the route solutions can be adaptive to mobil-
ity predictions. Peat bog and mire areas are a high risk for heavy machinery and
predetermined knowledge of their locations is required.
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Our input data set consists of 44 features which are publicly available. The
data is in the raster format with grid resolution ranging from 10 meters to 50
meters.

Water permeability of the soil has been measured in 1788 test spots at North-
ern Finland provided by the Geological Survey of Finland (GTK). It is an im-
portant attribute which, when combined with other features available, helps to
determine the soil types. Related studies have been conducted in [1] where soil
respiration rates are predicted from temperature, moisture content and soil type.
Another related research was published in the paper of P. Scull, J. Franklin and
O.A. Chadwick [2]. In their paper they use classification tree analysis for pre-
dicting the soil type in desert landscapes. Related work has been done also by
R.P.O. Schulte et al.[3] and H. Gao et al. [4]. Other related research was con-
ducted by R.A. Chapuis [5], R. Kiss [6], H.S. Mahmood et al. [7], N.J. McKenzie
[8], I.D. Moore et al. [9], A.T. Ramli et al. [10] and J.V.A. Zachary [11]. The
main novelty of this paper related to the previous studies is that the prediction
is based on wide-area public data. The features used in this paper are basically
available through-out the arctic zone.

We use regression analysis to find a mapping between the publicly available
data and water permeability of the soil. In the following, we present the regres-
sion methods in Ch. 2. Then we introduce the test area, the original data sets
and derived features (Ch. 3) and describe the analysis process and results of the
analysis (Ch. 4). The last part is for conclusions and future approaches (Ch. 5).

2 Regression methods

Regularized least squares regression (RLS) is well known so we describe it mainly
to introduce the variables and the notation used later in the paper. The explana-
tory variables x1, ..., xp consist of given data and dependent variable y is the
water permeability. We need to find a set of parameters w ∈ Rp and b ∈ R such
that the error function:

E(w) =
1
n

n∑

i=1

(
yi − wT xi − b

)2

+
λ

n
wT w (1)

is minimized, where xi ∈ Rp is the input vector, yi ∈ R is the response value,
n is the number of observations and λ is the regularization parameter.

The k-nearest neighbors (k-NN) approach predicts the test sample by taking
the average from k points nearest to it. Euclidean distance is the used metric
in our analysis. Explicitly stated, if y1, ..., yk are the response values of the k-
nearest points to the test sample, then the response value for the test sample ŷt

is:

ŷt =
1
k

k∑

i=1

yi.
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3 Test area, data sets and features

The research area is located in the northern part of the municipality of So-
dankylä, which is a part of Finnish Lapland. The size of the target area is
18432 km2. The center point of the rectangular target area is at ETRS-TM35FIN
coordinates 7524 kmN, 488 kmE, zone 35.

The data set consists of aerial gamma-ray spectroscopy data (referred later as
gamma-ray data, AGR) combined with electromagnetic (AEM), topographical
(Z), peat bog mask (PBM) and The National Forest Inventory 2011 (VMI1) data
when predicting the qualities and characteristics of the soil, namely its type and
water permeability (WP). Gamma-ray data is inversely related on the amount
of water on the soil, which can be used to predict the type of the soil. The forest
inventory data describes the profile of tree species, their maturity and foresting
state. Albeit this kind of data is not directly available elsewhere in northern sub-
arctic areas (e.g. Russia, Canada), several studies are underway to predict the
main characteristics of the forest by remote measurement methods [12]. These
methods include LiDAR and various satellite measurements.

The data providers are:

Provider Data Grid size

Geological Survey of Finland (GTK) AGR, AEM 50 m
WP

Finnish Forest Research Institute (Metla) VMI, PBM 20 m

National Land Survey of Finland (NLS) Z 10 m

Table 1: Data providers, data and the grid size.

When considering all the derived features used in the analysis we get a total
of 96 data layers.

The test site has 1788 sample points, where many mechanical and electro-
chemical properties of the soil were measured, see [13]. The water permeability
is a theoretical value derived from the soil particle size distribution of the soil.

We now present our data sources and donors.

3.1 Forest inventory data

The National Forest Inventory (VMI) holds the state of Finnish forests. The data
is updated once in two years. The parameters are derived from various remote
sensing sources, and several spotwise verification and calibration methods are
applied to it before publishing the data [14]. 44 numerical features include green
mass, trunk dimensions and tree density per specie category. These multi-source
features exhibit built-in dependencies, thus the final number of useful features
is lower.

1 VMI2011: http://www.metla.fi/ohjelma/vmi/vm11-info-en.html
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3.2 Aerial gamma-ray data

The aerial gamma-ray data was provided by the Geological Survey of Finland
(GTK). The raster data is based on gamma-ray flux from potassium, which is
the decay process of the naturally occurring chemical element potassium (K).
This data indicates many significant characteristics of the soil, including the
tendency to stay moist after precipitation and tendency to frost heaving. Also
the soil type, especially density, porosity, grain size and humidity of the soil have
an effect to gamma-ray radiation. In Fig. 1 we present the gamma-ray data from
Sodankylä target area. The bright end of the gray scale is for the high gamma
radiation and hence less water in the locality of the pixel.

Fig. 1: Aerial data: gamma-ray (left) and electromagnetic data (right). Air-borne elec-
tromagnetic data is sensitive to geological properties to depth of hundreds of meters,
but it also indicates some features of the top soil.

3.3 Electromagnetic properties of soil

The air-borne electromagnetic (AEM) data was provided by the Geological Sur-
vey of Finland (GTK). Primary AEM components, in-phase and quadrature,
were transformed to apparent resistivity values by using a half-space model [15].
The apparent resistivity gives information on different kind of soil conductors.
The apparent resistivity is governed by grain size distribution, water and elec-
tronic conductors content of soil and cumulative weathering.

3.4 Topographical height data

Topographical data provided by the National Land Survey of Finland (NLS) was
included in the analysis. The data from NLS server is basically similar to aerial
laser measurements (LiDAR) except LiDAR can reach denser grid. Instead of raw
height alone we used local height difference, flow accumulation area, confluence
and inclination described in [16]. These four derived features are more efficient
for prediction than raw height data alone.
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3.5 Peat bog mask

Peat bog mask is created from GTK aero-radiometric data and is courtesy of
NLS and METLA. The grid size is 20 m and the value 1 indicates that peat
thickness is over 60 cm. Value 0 indicates thickness less than 60 cm. The limit
chosen is practical for mobility prediction.

3.6 Derived features

The following features were derived from gamma-ray and electromagnetic data:

– Mean and variance over 3 × 3 window
– Mean and variance over Gabor filter with 8 orientations, see [17]
– Local Binary Pattern (LBP) with pixel radii r ∈ {1, 2}, see [18]

From topographical height we derived the following features: local height
difference, ground inclination, convergence index and flow accumulation area.
The definition of these features is at [6]).

There are several additional attributes possible to derive from topographical
height data, and more geomorphological features will be employed in the future.

The regression methods use total of 44 original and 52 derived features,
including the constant feature. The derived features are useful only if the original
feature is continuous enough. E.g. the Forest Inventory data often has locally
constant zones with abrupt changes and the derived features do not help much.

3.7 Water permeability exponent

This is the subject of prediction. Basically, the water permeability indicates the
nominal vertical speed of water through the soil sample. The measurement of
this quantity is indirect, based on soil particle size distribution, and the actual
speed highly depends on the inhomogeneities (roots, rocks) and micro-cracks in
the soil. This is why this quantity is descriptive and theoretical. In our analysis
we are using a logarithmic quantity xwp derived from water permeability speed v.
For purposes of this presentation it is called as the water permeability exponent
and defined as:

xwp = − log10 v, [v] =
m

sec
, (2)

This formula has v as the vertical speed of water flow through the soil.

4 Analysis and results

We are looking for methods which predict water permeability on areas, where
there may not be direct water permeability measurements nearby. Therefore, we
developed a modification of the leave-one-out cross-validation (LOOCV) for mea-
suring the degree of spatial dependency from the nearby direct measurements,
which we refer to as LOOCV with dead zone. Namely, the approach works on the
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measurement data just like an ordinary LOOCV in which each measurement at
a time is removed from the training set and used as a test point, except that we
also remove from the training set all points that are within geographical distance
r from the test point. This approach is illustrated in Fig. 2. By varying r, we can
measure how far from the test area we assume the closest measurements to be
at the very least. In addition, the results can be helpful in deciding how dense
grid of direct measurement one should use in order to obtain a certain level of
prediction performance.

We perform the regression of water permeability with the following three
feature sets:
– location only
– features + location
– features only

where location refers to the geographical coordinates (e.g. latitude and longitude)
and features to the ones described in Section 3. Note that one can not rely on
the location information if there are no nearby direct measurements at all, and
therefore we measure the prediction performance separately with these.

The prediction performances with the different feature sets as a function of
the radius r of the dead zone are depicted in the two leftmost graphs in Fig. 3 on
p. 8. The generic version based on feature data only gives weaker results, since
the sample point arrangement at Sodankylä (see sample sets A and B in Fig. 2)
and perhaps the phenomenon itself induce spatial dependency. No good generic
regression method for this data set has been found, instead the problem is about
how much additional samples are needed per target area to make the prediction
useful.

r

LOO test point

Omitted points

Fig. 2: Left : 1788 sample points. Set A (1187 points, marked with red circles, distance
to the nearest neighbor dNN ≤ 86m) is tightly packed and set B is very sparse (601
points, marked with black dots, aver. dNN ≈ 1.1 km). Right : the dead zone (with radius
r) around the leave-one-out test point (black circle). The gray circles are omitted from
the training set (white circles). Both the k-NN and RLS method address the training
data only, e.g. the k nearest neighbours are selected from outside the circle.

The common k-NN method has one essential parameter, the number of neigh-
bors k. The spatial dependency can be probed by adding the dead zone radius r
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to avoid the optimisitc effect of the nearest neighbors. Fig. 2 depicts the modified
leave-one-out arrangement, where k nearest points outside the dead zone of ra-
dius r are used for teaching. By varying r one gets a varied dataset and a rough
estimate on how dense it should be for it to predict well in new circumstances.

The same parameterized dead zone leave-one-out arrangement was used with
regression, too.

4.1 Predicting water permeability

As mentioned before, the prediction subject is the water permeability exponent
xwp. The values used for regularization parameter λ ranged from 2−15, ..., 215.
k-NN parameter had k ∈ {1, 3, 6, 12, 22}. Two different error measures were
used for estimating prediction performance: mean absolute error (MAE) and
concordance index (CI) [19]. Explicitly, the error measures are:

MAE =
1
n

n∑

i=1

∣
∣
∣
∣
yi − ŷi

yi

∣
∣
∣
∣ CI =

1
N

∑

yi<yj

h(ŷi − ŷj) (3)

MAE baseline ỹ is the best possible prediction under the assumption that
the prediction will be constant: MAE baseline = arg min ỹ

1
n

∑n
i=1

∣
∣(yi − ỹ)

/
yi

∣
∣

The prediction performance should be better than this to be useful. The corre-
sponding persentage values (MAPE and MAPE baseline) have been used in the
rest of the text.

In equation (3) we denote N = | {(i, j) | yi > yj} | as the normalization
constant which equals to the number of data pairs with different label values
and h(u) is the step function returning 1.0, 0.5 and 0.0 for u > 0, u = 0 and
u < 0, respectively. The values of the C-index range between 0.0 and 1.0, where
0.5 corresponds to a random predictor and 1.0 to the perfect prediction accuracy
in the test data.

4.2 Results

The results for regression analysis can be seen in Fig. 3 on p. 8.
Both MAPE and C-index indicate rather good prediction performance to

the distance of 120 m from the nearest soil sample point. This is seen both with
k-NN and RLS methods. When MAPE is higher than the baseline, it is better to
use baseline average than the prediction. MAPE baseline is the horizontal line
in the lower figures in Fig. 3.

The dead zone radius r > 0 simulates a situation, where the test point is at
least r distance away from the given training points. r = 0 is traditional LOO
test arrangement and measures best the properties of the predicted value within
the training set itself. It may be too optimistic, since we seek for generalization.
A large radius r ≈ ∞ is overly pessimistic, since it would use only tiny fragments
of the training set and would completely distort the prediction.

The prediction performance near r = 0 seems to indicate rather good gen-
eralization ability, but the performance reduces drastically over the dead zone
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Fig. 3: Left : k-NN results with k = 6 and 3 different feature sets. Right : RLS results
on features-only case. C-index and Pearson correlation at top and MAPE below. The
prediction performance is adequate below 120 meters.

distance r. Further study, both theoretical and practical, must be done to prop-
erly address classical geoinformatics concepts such as spatial autocorrelation and
spatial semivariance together with the general prediction ability. The problem is
new, since spatial analysis in geosciences is usually applied to one variable only
(e.g. topological height), but this type of problem has many (in this case 96+2)
features from which only 2 are locational coordinates.

5 Conclusions and future work

The results indicate that the chosen five data sources (forest inventory, gamma-
ray, air-borne electromagnetic, topographical data and peat bog mask) can be
used to estimate the water permeability to a certain range from known measure-
ments. This range seems to be c. 120-150 m. The best results come from the
k-NN method based on the location of the sample points only. This method is
naturally unavailable for general prediction.
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The prediction efficiency in the features-only case is relatively low, but since
the target application is the forest mobility, road and route planning, even a
small local prediction power leads to cumulative results over long periods. Also,
the forest harvesters will be capable of indirect load bearing capacity measure-
mentsduring the operation. The heavier load hauling harvesters may be able to
improve their track based on the earlier observations of the light-weight logging
harvesters.

The mapping from water permeability to soil types is not unique, see [20].
Given the water permeability prediction, a special majority rule could be used to
select the dominant soil type from neighboring grid point predictions. Such ex-
pert rules would require additional features like sophisticated geomorphological
categories.

For forestry applications, the most practical tool for direct load bearing ca-
pacity measurement is the spiked shear vane [21]. It yields shear modulus of soil,
which can be converted to modulus of elasticity. Modulus of elasticity can be
directly used as input to wheel sinkage calculus. Spiked shear vane output was
however not available in the field test data.

There is also a possibility to use aerial Light Detection and Ranging (LiDAR)
data instead of the topographical and forest inventory data. This would enable
the expansion of the scope of this study to any location at the arctic zone,
where only aerial and satellite measurements are economical. Also LiDAR has
more potential for derived features like geological morphology [22] and soil water
budget modeling [12]. The final goal is to predict the water permeability, soil
types, approximate water budget and the load bearing capacity of the terrain
in relation to the given weather forecast, while the model is based on remote
measures only. This remains a subject of the further study.

The potential applications aim to wide-area routing and location planning.
In this regard, even a modest prediction power could yield a cumulative effect
on route decision.
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