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ABSTRACT

Computational deconvolution is a time and cost-
efficient approach to obtain cell type-specific infor-
mation from bulk gene expression of heterogeneous
tissues like blood. Deconvolution can aim to either
estimate cell type proportions or abundances in sam-
ples, or estimate how strongly each present cell type
expresses different genes, or both tasks simultane-
ously. Among the two separate goals, the estima-
tion of cell type proportions/abundances is widely
studied, but less attention has been paid on defin-
ing the cell type-specific expression profiles. Here,
we address this gap by introducing a novel method
Rodeo and empirically evaluating it and the other
available tools from multiple perspectives utilizing
diverse datasets.

INTRODUCTION

Several popular clinical samples that are easy to obtain, like
blood and different tissue samples, include multiple differ-
ent cell types. When comparing groups of such samples, the
mixture of different cell types can mask differences that ap-
pear in only one or few cell types. As a solution, the sample
groups can be compared in cell type-specific manner. How-
ever, obtaining such cell type-specific data from a mixture
of cells is a challenge.

There are three main approaches to obtain cell type-
specific data: purified cell populations, single-cell analysis
and computational deconvolution. While the first two em-
pirical approaches are likely to provide more accurate re-
sults than computational deconvolution, deconvolution has
several advantages: i) open source deconvolution methods
are mostly available free of charge, ii) their usage is fast un-
like designing and conducting new experiments in cell type-
specific manner, iii) they are applicable to old datasets and
iv) not all tissue and cell types can be analysed in cell type-
specific manner with the empirical approaches. Related to
the first argument, lack of direct cost is not the only finan-

cial motivation for deconvolution, but also the relative af-
fordability of bulk analyses as compared to single cell exper-
iments favors it. As bulk analyses are cheaper than single-
cell analyses, they are expected to be utilized also in the fu-
ture despite the advantages of single cell data, and, there-
fore, computational deconvolution is needed to analyze the
resulting bulk data in cell type-specific manner. The possi-
bility to re-analyze old bulk data in cell type-specific manner
is especially beneficial when applied on datasets that would
be difficult to re-collect for e.g. single-cell analysis. Some
examples of such unique datasets are related to rare dis-
ease, long follow-up time in longitudinal studies and sam-
ples that are physically difficult to extract without ethical
violations (e.g. pancreatic samples from healthy human in-
dividuals). Also, some samples and tissues are difficult to ex-
tract and purify into cell populations/single cells (1), leaving
computational deconvolution the only possible approach.
This is the case for e.g. fibrous and minute tissues, and for
cells that tend to either die or stick together during process-
ing, which makes them difficult to separate for single cell
analysis (2).

In computational deconvolution, a bulk expression ma-
trix E is modeled as a product of cell type proportions C
and a matrix S, which indicates how strongly each cell type
(column) expresses different genes (rows): E = S · C. We
call methods that aim to detect cell type proportions (or
non-scaled cell type abundances) from E and S composi-
tion deconvolution methods (e.g. (3–7)), and methods that
aim to extract cell type-specific expression profiles from E
and C expression deconvolution methods (e.g. (8–11)). No-
tably, typically the input matrix for composition deconvo-
lution is only a subset of S including the genes that differ-
entiate the cell types from each other, not all genes present
in the bulk matrix E. Composition and expression decon-
volution approaches are called partial deconvolution in the
literature (12–15). Also several methods that aim to do both
tasks are available (12,16). They are called complete decon-
volution methods. Methods that require no other user input
but the bulk gene expression to be deconvolved and possibly
the number of cell types are called unsupervised and meth-
ods that require also some other input, like cell type propor-
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tions, expression profiles of pure cell types, or marker gene
lists, are called supervised.

Expression deconvolution provides cell type-specific gene
expression profiles (csGEP) that can be further used for dif-
ferent types of analyses. They can be compared either to
each other, or to csGEP of the same cell type extracted from
different samples. The first approach has been a popular
topic in different single cell studies (e.g. comparing differ-
ent dendritic cell populations (17), human pancreatic islet
cell types (18) or tumor and healthy tissue (19)). Comparing
the same cell type’s csGEPs over distinct sample groups cor-
responds to cell type-specific case-control analysis with its
classic goals and approaches. In studies requiring csGEPs, it
is important to use those extracted from the dataset under
the study rather than using purified cell populations from
other studies as it has been shown that different data sets
from similar tissues are surprisingly inconsistent and even
marker genes of different cell types vary from a database
to another (20). This is particularly true when the samples
in the dataset of interest are somehow unique (e.g. specific
treatment, disease or environmental condition) and not di-
rectly comparable to other available datasets, which is fre-
quently the case with novel studies. The main benefits of
composition deconvolution are related to tracking changes
over samples and investigating if observations from bulk
data (such as changes in gene expression or pathway activ-
ity) correlate with changes of cell type abundances. Some-
times a biological question can be addressed with either
type of partial deconvolution. For example, presence of ac-
tivated and resting cells can be seen as different proportions
of the two subpopulations (composition deconvolution), or
as a difference in cell type expression S (expression decon-
volution) of that particular cell type.

Composition deconvolution methods are more numer-
ous than expression deconvolution and complete deconvo-
lution methods. Composition deconvolution methods have
been reviewed (21–23) and compared empirically (24–26),
but no such summary studies are available for expression
deconvolution methods. In this study we evaluate available
implementations of expression deconvolution methods and
demonstrate their strengths and weaknesses. Also few com-
plete deconvolution methods are included in the compari-
son. We utilize four datasets with known ground truths that
differ from each other in the number and diversity of in-
volved cell types, the origin (microarray, RNAseq and sim-
ulated) and heterogeneity of samples (Table 2).

Besides evaluating the available tools, we introduce a new
approach based on robust linear regression, called Rodeo
for RObust DEcOnvolution, which enables simple, yet ro-
bust expression deconvolution. Robustness against outlier
samples is important as there are both technical and biolog-
ical reasons for such samples appearing in the data. Some
example causes are mistakes in sample preparation, mea-
surement errors, a sample donor having unknown condi-
tion (e.g. getting sick) and a sample donor having differ-
ent feature (e.g. age or ethnicity) from the rest of the sam-
ples, which affects the behavior of some cell types or genes.
The outlier samples could be manually removed before de-
convolution analysis and then utilize a method sensitive to
outliers, but this approach is inferior to robust deconvolu-
tion for two reasons: i) in robust deconvolution, samples

Table 1. Summary of the tested deconvolution methods

Method Input Type Availability

Rodeo C expression R/Rodeo
cs-lsfit C expression R/CellMix
cs-qprog C expression R/CellMix
LRCDE C expression R/LRCDE
csSAM C expression R/csSAM
Deblender C complete Matlab
CDSeq #T complete Matlab, Octave, R
LinSeed #T complete R/linseed
Deconf #T complete R/CellMix

Column ’Input’ describes required input data from the user and C refers
to cell type proportion matrix and #T to number of cell types. Notably, De-
blender is a complete method, but the partial deconvolution can be done
separately and in the context of this study, it is used as expression decon-
volution method.

are evaluated for each gene separately, which avoids unnec-
essary sample size reduction (mostly outlier samples that
are fine for that particular gene) and, on the other hand,
allows excluding samples that are mostly fine, but outliers
only for that gene and ii) identifying samples with altered S
for exclusion is non-trivial especially if the cell type propor-
tions C vary a lot between samples causing heterogeneous
bulk expression. The first benefit of robust deconvolution
applies only when the genes are analysed independently as
in Rodeo. An R package implementing Rodeo is freely avail-
able from GitHub https://github.com/elolab/Rodeo.

MATERIALS AND METHODS

Tested methods for expression deconvolution

As briefly mentioned in the introduction, expression decon-
volution aims to solve matrix S from E = S · C, i.e.

egn =
∑
t∈T

sgt · ctn (1)

where egn is the measured bulk expression of gene g in sam-
ple n, sgt is how strongly pure cell type t expresses gene g, ctn
is the cell type proportion of cell type t in sample n, and T is
a set of present cell types. Thus, the bulk expression is writ-
ten as a linear combination of expression from the different
cell types weighted by the their proportions. We tested ex-
pression and complete deconvolution methods that fulfilled
following criteria: i) a working implementation is available
with sufficient instructions to use it, ii) there are no other
input requirements than C and possibly number of present
cell types and iii) the method does not restrict the number
of present cell types or genes. These criteria left us with nine
methods; six expression deconvolution methods and three
complete deconvolution methods. Table 1 summarizes the
evaluated methods.

Rodeo. Our novel expression deconvolution method
Rodeo (version 1.0) utilizes robust linear regression pro-
vided by R package MASS (version 7.3-51.5 used in this
study). The regression line is fitted for each gene at time
using initially all samples and cell types. In case some cell
types get negative coefficients, those cell types are excluded
(they will get expression rate 0) and the linear model is

https://github.com/elolab/Rodeo
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re-fitted without them. This is iterated until all cell types
still left in the model have non-negative coefficients. The
benefit of excluding cell types with negative coefficient is
that as no cell type expresses genes negatively, those false
effects will not cause the estimates for other cell types to
be too high for compensation. The effect of this step is
demonstrated in Section 1 of the Supplementary Text.

Robust linear model fitting means that different samples
are weighted and outliers will therefore cause less bias in the
final estimates. The utilized function rlm in MASS package
uses Huber M-estimator and the objective function to be
minimized is

∑
n∈N

f (egn − c.n · βT), f (x) =
{

1/2 · x2 |x| ≤ k
k · |x| − 1/2 · k2 |x| > k

(2)

where parameter k is a constant (MASS default 1.345 used
in Rodeo), N is the set of samples, egn is the measured bulk
expression for sample n of the gene g being estimated, vec-
tor c.n contains the known cell type proportions for sample
n, and vector βT is the unknown transposed vector to be
optimized. Thus, vector β represents a row from matrix S
telling how strongly the gene is expressed in each cell type
and it has the same length as c.n (i.e. number of cell types).
The optimization is done for all genes independently from
each other.

Other expression deconvolution methods. The five tested
expression deconvolution methods besides Rodeo are cs-
lsfit, cs-qrog, LRCDE, csSAM and Deblender.

R package CellMix (version 1.6.2) (3) implements mul-
tiple deconvolution methods including expression methods
cs-lsfit and cs-qprog. These approaches utilize least squares
and quadratic programming, respectively. Original meth-
ods by Abbas et al. (27) and Gong et al. (28) estimated cell
type proportions C based on S, and CellMix authors im-
plemented the algorithms also for the opposite task utilized
here.

Matlab tool Deblender (13) is a complete deconvolution
method, but as composition and expression deconvolution
can be run separately, we focus on estimating S using the
known input matrix C. Three different solvers are imple-
mented: least square optimization, quadratic programming
and Unified Particle Swarm Optimization (UPSO) (29).
Here, we used the UPSO solver.

Two of the tested expression deconvolution meth-
ods, csSAM (version 1.2.4) (30) and LRCDE (version
1.0.1.0000) (31), focus on estimating cell type-specific dif-
ferentially expressed genes, but provide also estimates for S.
LRCDE requires sample groups as a mandatory input and
it returns estimated S for both sample groups separately. To
extract one S that represents full data regardless of sample
groups, we calculated a weighted mean (weights according
to number of samples in the two sample groups) of the sam-
ple group matrices S. Estimated S from csSAM and LR-
CDE can contain negative values, unlike the estimates from
the other tested methods (either expression or complete de-
convolution). Here the estimates were used as is, but the ef-
fect of disallowing negative values and setting them to 0 is
evaluated in Section 2 of the Supplementary Text.

Complete deconvolution methods. All the three complete
deconvolution methods evaluated here, CDSeq, LinSeed
and Deconf, are unsupervised. Unsupervised methods re-
quire no other input from the user, but the mandatory bulk
matrix E to be deconvolved and the number of cell types.
We used the known number of present cell types as an in-
put, but the effect of variation in this parameter is evaluated
in Section 3 of the Supplementary Text. Also supervised (i.e.
more input required) complete deconvolution methods ex-
ist (16), but they did not fulfil our selection criteria for this
study.

CDSeq (15) utilizes a probabilistic model latent Dirichlet
allocation. The implementation offers a possibility to uti-
lize additional input of expression profiles of pure cell types
to improve the accuracy for e.g. related cell types. As such
input would not meet our selection criteria for this compar-
ison, this option was not utilized here despite its potential
benefits. We used the provided octave implementation in our
analyses.

The focus of LinSeed (version 0.99.2) (12) is on estimat-
ing cell type proportions C, but we extracted estimated ma-
trix S by using all genes without any further filtering and
allocating equally many genes to simplex corners represent-
ing cell types so that we got whole S instead of only cell
type-specific genes.

In Deconf (32), estimates of unknown matrices S and C
are updated iteratively using the Least squares non-negative
matrix factorization algorithm. The method was originally
designed for microarray data, which might put it into disad-
vantage with most of our test data. We used the implemen-
tation available in R package CellMix.

While unsupervised methods are straightforward to use
due to minimal inputs, the challenge for the user is to as-
sign the output expression profiles to different cell types cor-
rectly. We did this by investigating how well different rows in
estimated C correlate with the cell types in known C. If each
row had the highest correlation with different cell type, the
assignment was clear. In case there was ambiguity between
few rows/cell types, we assigned the uncertain rows so that
median gene correlation between known and estimated S
was maximized. However, if the correlations in known and
estimated C were overall low for multiple cell types and the
mapping was not doable, we claimed that the method had
identified some other source of variation over samples than
cell type and it did not manage to perform the given task.

Datasets

We utilized four data sets with different characteristics in
this study. In three of them we have constructed the bulk
mixture (E) by combining known pure cell type expressions
(S) in known proportions (C). In one of them the cell types
were mixed in known proportions already before analyz-
ing the samples. This ensures that we have known answers
for validation purposes. Importantly, in the three mixtures
we constructed the pure cell type expressions are measured
from each sample separately so that our bulk mixtures con-
tain realistic variation not originating only from differences
in cell type proportions. Three of the data sets are real bi-
ological data (two RNA sequencing data sets and one mi-
croarray data), and one is computationally simulated. These
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Table 2. Summary of the test datasets

ID Type Sample size # cell types

GSE60424 RNAseq 4+4+3+3+3+3 6
GSE118829 RNAseq 10+10+10+10+10 6
SimBulk simulated 20+20 5
GSE19830 microarray 11 3

Column ‘ID’ is the data identifier used in this study (same as the Gene
Expression Omnibus (43) accession id of the original data, if applicable),
‘Type’ indicates how the data was produced, ‘Sample size’ provides the
numbers of samples in sample groups, and ‘# cell types’ indicates number
of cell types utilized in this study.

data sets are summarized in Table 2 and described in more
detail below. Known cell type proportions used as input for
tested methods are available in Supplementary Table S1.

Data GSE60424 (33) was downloaded from GEO and in-
cluded trimmed mean of M-values (TMM) normalized (34)
RNA-seq data. Several cell types from blood were mea-
sured from 20 individuals with different disease statuses.
In this study, we used measurements from cell populations
of neutrophils (Neutro), monocytes (Mono), CD4 T cells
(CD4), CD8 T cells (CD8), B cells (B) and natural killer cells
(NK) measured from each individual, except for NK pop-
ulation which was missing from six individuals. The origi-
nal data provided also the proportions of different types of
cells in each sample. Therefore, dataset GSE60424 includes
blood cell types in realistic proportions, neutrophils being
the most dominating cell type. Individuals with sepsis in the
original data were utilized only when evaluating methods’
sensitivity to few outlier samples.

Dataset GSE118829 is based on TPM normalized RNA-
seq data from rheumatoid study (35) available in GEO and
it contains different T-cell subpopulations measured from
50 individuals. The utilized T-cell subpopulations are CD4
central memory T cells (CD4Tcm), CD4 effector memory T
cells (CD4Tem), naive CD4 T cells (CD4Tn), CD8 central
memory T cells (CD8Tcm), CD8 effector memory T cells
(CD8Tem) and naive CD8 T cells (CD8Tn). Measurements
from cell type CD8 TEMRA were excluded from this study
as they were missing from many samples. Ten of the donors
were healthy controls, 10 were untreated rheumatoid pa-
tients and the rest were from rheumatoid patients with dif-
ferent treatments. In this data, the weights, i.e. proportions
of different cell types in mixture samples, were unknown so
we defined them randomly. Unlike in dataset GSE60424,
there was no dominating cell type, but all cell type had sim-
ilar mean proportion over samples. In GSE118829 all cell
types are very similar to each other as they are different T-
cell subsets (see Supplementary Table S2), which gives us an
opportunity to investigate if the tested methods can handle
closely related cell types.

In addition to data sets formed by summing expression
profiles from purified cell populations, we computationally
constructed simulated data referred to as SimBulk. The sim-
ulated data included five artificial cell types A, B, C, D and E
with different proportions in 40 samples. For 200 genes out
of 10 000 in each cell type, we used different means for half
of the samples in order to simulate samples batches (such as
age, gender or treatment) often present in real data. Average
proportions of cell types A-E in different samples were 0.5,

0.2, 0.15, 0.09 and 0.06, respectively. SimBulk is available as
Supplementary Data 1.

Data GSE19830 (30) was downloaded from GEO and in-
cluded RMA normalized microarray data from rats lung,
brain and liver tissues in different proportions as well as
pure cell types. This is the only data set that we did not con-
struct the mixture, but different tissues were mixed in known
proportions already before measuring the gene expression.
Three technical replicates are available from all 11 mixture
samples and we used mean expressions over them to rep-
resent the samples. As opposed to dataset GSE118829, the
cell types of this data set are very different from each other
as they are from entirely different tissues.

Test design

We tested and validated the methods from several perspec-
tives including

i. Accuracy of estimated S
ii. Sensitivity to outlier samples

iii. Effect of sample size
iv. Effect of noise in C

In test 1, we used Pearson correlation between the esti-
mated and known cell type-specific expression profiles (cs-
GEPs), i.e. columns in known and estimated S, as a mea-
sure for accuracy. Ideally, the estimated csGEP of a cell
type should have high correlation with the corresponding
known csGEP, and the correlations with known csGEPs of
the other cell types should be lower than that, but not nec-
essarily low. Because correlations between related cell types
(e.g. different T-cell subpopulations) are high also between
the known csGEPs of those cell types (see Supplementary
Table S2 for correlations between known csGEPs), high cor-
relations between them are expected and not a sign of a
method prone to provide biased estimates. The effect of uti-
lizing Euclidian distance or root mean squared error as a
measure of accuracy instead of Pearson correlation is eval-
uated in Section 4 of the Supplementary Text. Besides accu-
racy of expression profiles of cell types, we calculated how
well known and estimated genes, i.e. rows in known and es-
timated S, correlated. The median correlation over all genes
is used as an additional measure of accuracy.

In test 2 we evaluated how the accuracy of the results
changed when the bulk matrix E included few drastically
different samples. These outlier samples are represented by
samples from donors with sepsis in GSE60424 and three
simulated outliers in SimBulk. The difference between sep-
sis samples and the other samples in GSE60424 is demon-
strated in Section 5 of the Supplementary Text. Accuracy
measures similar to test 1 were used.

In test 3, we investigated how the sample size affects
the accuracy of estimated S by reducing the sample size
in dataset SimBulk. We randomly selected a subset of 5–
35 samples, 50 times for each sample size (20 times for De-
blender and CDSeq for the sake of running time). Then we
reported the median accuracy over the 50 random selections
for each sample size. Correlation between known and esti-
mated csGEPs and median correlation over genes were used
as a measure of accuracy as defined in test 1. To investigate
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methods’ performance with a large dataset, we also simu-
lated more (up to 500) samples to SimBulk and did the same
analysis for sample sizes 40–500.

In test 4, we tested how noise in cell type proportion ma-
trix C affects the correlations between known and estimated
csGEPs. Instead of known C of dataset SimBulk, we used C
estimated by CIBERSORTx and then added further noise
to it to simulate less accurate estimates. The added noise
was randomly selected from uniform distribution [0, maxi-
mum], where maximum varied from 0.05 to 0.5. As C should
include proportions, the noisy values were scaled to sum
to 1 within each sample. Adding random noise was done
50 times for each maximum noise and median accuracies
over these 50 randomizations are reported (again, 20 in-
stead of 50 for Deblender). This test can be done only for
methods that utilize input matrix C, i.e. results are available
for supervised methods Rodeo, cs-lsfit, cs-qprog, LRCDE,
csSAM and Deblender. This test is important because a
method that provides accurate results with the known C,
but is sensitive to minor error in it, is not useful in real ap-
plications, where only estimate of C is available.

Besides these tests, in Section 6 of the Supplementary
Text we evaluate how changes in randomly generated C
(and therefore in a bulk matrix constructed based on it) in
dataset GSE118829 affect the cell type accuracies defined as
in Test 1. A robust expression deconvolution method should
not be sensitive to the underlying cell type proportions as
long as the gold standard S remain the same.

RESULTS

We evaluated the performance of nine methods (Table 1) to
estimate S: Rodeo, cs-lsfit (27), cs-qprog (28), csSAM (30),
LRCDE (31), Deblender(13), CDSeq (15), LinSeed (12) and
Deconf (32) described in more detail in ‘Materials and
Methods’ section. Three of these (CDSeq, Linseed and De-
conf) are unsupervised complete methods and the rest are
supervised expression deconvolution methods that require
cell type proportion matrix C as an input. To assess the per-
formance of the methods, we considered correlations be-
tween the estimated and known csGEPs of each cell type
over genes (i.e. columns in known and estimated S), as well
as correlations between the estimated and known expres-
sion profile of each gene over cell types (i.e. rows in known
and estimated S). These measures were used when estimat-
ing the accuracy of the results, their sensitivity to noise and
the effect of sample size. Four datasets were used for testing:
GSE60424, GSE118829 and GSE19830 were constructed
using purified cell populations, and SimBulk contained sim-
ulated data (Table 2). Method LRCDE was run only for
GSE118829 and SimBulk as it requires two sample groups
not present in datasets GSE60424 and GSE19830. In addi-
tion, for GSE60424 and GSE118829 we could not map the
known cell types to columns in S estimated by unsupervised
methods CDSeq, LinSeed and Deconf, so only results from
datasets SimBulk and GSE19830 were presented for those
three methods.

Test 1: Accuracy of estimated S

First we evaluated the accuracy of estimated S by in-
vestigating correlation between known and estimated cs-

GEPs of different cell types. The exact obtained correlations
are available as Supplementary Data 2. Overall, Rodeo,
csSAM, cs-lsfit and cs-qprog provided the most accurate es-
timates, though csSAM failed on dataset GSE60424 (Fig-
ure 1). The performances of LRCDE and Deblender were
less robust, but better than the unsupervised methods’ CD-
Seq, LinSeed and Deconf. The estimates for csGEPs were
typically more accurate for highly abundant or clearly dis-
tinct cell types, as compared to rare or closely related cell
types.

In dataset GSE60424 all supervised methods estimated
dominating cell type neutrophils’ csGEP accurately. While
Rodeo, cs-lsfit and cs-qprog estimated also several other cs-
GEPs accurately (correlation > 0.6), those estimates cor-
related well also with known csGEPs of some other cell
types (Figure 1). Notably, disallowing negative values would
improve the accuracy of csSAM result in this dataset as
demonstrated in Section 2 of the Supplementary Text. In
dataset GSE118829 with closely related cell types Rodeo,
csSAM, cs-lsfit and cs-qprog had similar performance and
correlations between known and estimated csGEPs were
very high (>0.9) for all cell types, but so were correlations
between known and estimated csGEPs of any two cell types.
In simulated data SimBulk the proportion of a cell type af-
fected the accuracy of the estimated csGEP for all meth-
ods. Supervised methods performed equally well and in this
data each estimated csGEP correlated better with the cor-
responding known csGEP as compared to the known cs-
GEPs of other cell types. Also unsupervised methods Lin-
Seed and Deconf performed well on this data, excluding the
rarest cell type E. With dataset GSE19830 including three
very distinct cell types all methods performed very well
(Figure 1).

The second measure of accuracy was correlation between
known and estimated S when calculated over cell types for
each gene separately. Methods Rodeo, cs-lsfit, cs-qprog and
Deblender provided the highest and most robust gene cor-
relations (Figure 2), and there was no major differences be-
tween the accuracy of those four methods (maximum differ-
ence between median correlations < 0.014). In GSE60424
the median gene correlations led to the same conclusion as
correlations between known and estimated csGEPs: accu-
racies were similar for all the tested supervised methods, ex-
cluding csSAM, which had lower accuracy. In GSE118829,
LRCDE provided gene correlations similar to the other su-
pervised methods (median around 0.4), which is surpris-
ing as its correlations between known and estimated cs-
GEPs of cell types CD4Tn and CD8Tem were clearly lower
than those of the other supervised methods (Figure 1). Also
median gene correlations of Deblender were similar to the
other supervised methods in GSE60424 and GSE118829
despite its lower cell type correlations in those two datasets.
Datasets SimBulk and GSE19830 contained distinct unre-
lated cell types and median gene correlations obtained from
them were clearly higher than those from GSE60424 and
GSE118829 for all methods, excluding CDSeq in dataset
SimBulk (Figure 2). In fact, the median gene correlations
from GSE19830 were close to 1 for all methods, includ-
ing unsupervised ones. However, this might be partly due
to the low number of present cell types (three) in dataset
GSE19830.
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Figure 1. Correlations between estimated and known cell type-specific expression profiles. In each heatmap, rows and columns correspond to known and
estimated csGEPs, respectively. For an ideal method, the diagonal would have higher correlations than the rest of the heatmap. The known csGEP (row)
with the highest correlation with each estimated csGEP (column) is marked with a star.
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Figure 2. Correlations between known and estimated gene profiles in datasets (A) GSE60424, (B) GSE118829, (C) SimBulk and (D) GSE19830. Violin
plots for tested methods (x-axis) show the distribution of genes’ correlations (y-axis).

Test 2: Sensitivity to outlier samples

To evaluate if the methods are sensitive to few drastically
different samples in a dataset, we added sepsis samples
(available in the original GEO data used to build our test
dataset GSE60424) to dataset GSE60424 and simulated
three outlier samples into dataset SimBulk. Figure 3 visu-
alizes the accuracies after adding these additional outlier
samples.

Overall, Rodeo results were the most robust against few
outlier samples in estimating the S and, importantly, it had
the most stable gene correlations in both datasets (Figure
3). In GSE60424, Rodeo and Deblender results were overall
less affected than the cs-lsfit and cs-qprog results, especially
for monocytes. The performance of csSAM was the least af-
fected by these additional samples, but it failed on this par-
ticular dataset already without outlier samples. The accu-
racy of csGEP for the dominating cell type neutrophils was
not heavily affected for any of the methods. On the other
hand, correlations between known and estimated csGEPs
for the related cell types CD4 and CD8 changed the most.
In SimBulk, the accuracy of Rodeo was the least affected by
the outlier samples across the cell types, followed by cs-lsfit,
cs-qprog, csSAM and Deblender, which had rather similar
robustness with each other. The accuracies of the methods
Deconf, and LRCDE were the most affected by outlier sam-
ples in dataset SimBulk. In dataset SimBulk, LinSeed was
otherwise robust, but the accuracy of its estimate for cell
type D decreased from 0.56 to 0.17, which affected nega-
tively the median gene correlation as well. To our surprise,
the accuracy of CDSeq improved with the outlier samples in
SimBulk, making its performance similar to the other unsu-

pervised methods. In SimBulk the abundance of a cell type
did not affect the robustness of the method to outlier sam-
ples when estimating its csGEP.

Test 3: Effect of sample size

To explore the effect of sample size on the accuracy of
the estimated S, we investigated how the cell type and me-
dian gene correlations between the known and estimated S
changed when simulating up to 500 samples to SimBulk.
LRCDE requires more samples than cell types and it threw
errors also with sample size 10, so only results from sample
sizes above 10 were available for it. LinSeed was excluded
from analyses with more than 35 samples due to memory
errors and CDSeq due to infeasible total running time of
several months.

The accuracy of all methods benefited from large sam-
ple sizes and started to decrease rapidly especially when
the sample size decreased below 30 (Figure 4). The only
exception was Deconf, which performed overall worst in
the tested datasets. With sample sizes below 30 LRCDE
was especially sensitive to further decrease in it. Otherwise
the performance of all the supervised methods (Rodeo, cs-
lsfit, cs-qprog, csSAM, LRCDE and Deblender) was sim-
ilar and their accuracies were very high especially with
large sample sizes. The accuracy of most cell types and
the gene correlations improved considerably when the sam-
ple size grew up to around 200. However, the accura-
cies improved also when the sample size exceeded 200
and especially for the rarest cell type E the accuracy did
not plateau despite the correlation with known csGEP
approaching 0.9.
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A

B

Figure 3. The accuracy of estimated S when the input data contains few outlier samples. The correlation between known and estimated csGEPs and gene
profiles (median gene correlation reported here) are visualized for (A) GSE60424 and (B) SimBulk including outlier samples. If a correlation between
known and estimated csGEP of the same cell type or gene profile (i.e. diagonal of a heatmap) changed <0.05 as compared to the correlation obtained
without outliers, the correlation is emphasized with a black frame.

Test 4: Effect of noise in C

As cell type proportion matrix C is often not known, but
estimated with composition deconvolution methods, we
tested how noise in C affected the accuracy of results from
SimBulk. Noise from uniform distribution with varying
maximum was added to the estimated matrix C (see ‘Ma-
terials and Methods’ section). Adding random noise was
done 50 times for each maximum noise level. For Deblender
only the first 20 were analyzed due to running time. Only
methods that utilize cell type proportions C as an input, i.e.
Rodeo, cs-lsfit, cs-qprog, csSAM, LRCDE and Deblender,
were included in this test.

Deblender was the most sensitive to the noise in the in-
put, but all the other tested methods lost accuracy similarly
to each other when noise level increased ( Figure 5). Using
estimated C instead of the known one did not decrease the
median correlations much (decrease in correlation < 0.01 in
all cell types/median gene), but adding noise to it reduced
the performance. The rare cell types were more prone to the
noise in C, likely due to lower signal-to-noise ratio. Notably,
however, the most dominant cell type A tolerated noise well
in all methods (median correlation remained above 0.85
with all tested noise levels).

DISCUSSION AND CONCLUSION

In this study the validation data is either simulated (Sim-
Bulk), mixtures of RNA from different tissues of the same
donor (GSE19830), or transcriptomic data from different
cell types and donors combined in silico (GSE60424 and
GSE118829). All of these validation approaches have their
own caveats. As the results from datasets SimBulk and
GSE19830 were clearly better than those from GSE60424
and GSE118829, we can conclude that either donor based
variation of csGEPs or more closely related known ex-
pression profiles (Supplementary Table S2) caused realis-
tic challenge to the bulk mixture not present in SimBulk
and GSE19830. While constructing bulk data by compu-
tationally combining donor-specific csGEPs in known pro-
portions (GSE60424 and GSE118829) is a good approach
to build a gold standard for deconvolution, it could be fur-
ther improved. Even more realistic gold standard could be
achieved by combining either donor-specific cells or RNA
in known proportions and measuring the mixture as bulk
data. In this case part of the cells/RNA need to be analysed
as pure cell populations to obtain known S. However, even
that approach is not perfect as limitations of the selected
method to separate the cell types still apply. For example,
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Figure 4. Effect of sample size to the correlation between known and estimated csGEPs (subfigures A–E) and to median gene correlation (subfigure F).
Pearson correlation (y-axis) is shown at different sample sizes (x-axis). The left-hand side of each subfigure provides an overview of large sample sizes
40–500, and the right-hand side illustrates smaller sample sizes 5–35 in a more targeted manner. At each sample size, 50, or 20 for Deblender and CDSeq,
random subsets of samples were generated and median accuracies are shown here.

it is not possible to address very rare cell populations that
contribute a little to the bulk expression but are not well
enough represented to form a cell type-specific expression
profile. Another challenge is unidentified cells and issues re-
lated to defining a cell type. Among the common methods
to separate cells, FACS is prone to both of these challenges
and single cell analysis to the second one.

Dataset GSE19830 was the easiest among the four uti-
lized test data, likely due to its very distinct cell types from
totally different tissue, lack of individual variation in S, and
smaller number of present cell types (3 as compared to 5–
6 in other datasets). All methods performed well on it and
good results from that dataset did not necessarily indicate

good results from more realistic datasets GSE60424 and
GSE118829. The data has been popular for validating new
methods (9,12,28,36–39), but we suggest using also more
challenging datasets with cell types naturally occurring to-
gether to evaluate the accuracy of a method in a real appli-
cation.

We evaluated 9 methods to estimate S using four diverse
datasets. Several of the methods provided accurate cell type-
specific expression profiles for cell types clearly distinct from
other present types and for cell types with large proportion
in samples. None of the tested methods provided very high
median gene correlation (maximum 0.5) in realistic datasets
GSE60424 and GSE118829, which highlights the difficulty
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Figure 5. Effect of noise in the cell type proportion matrix C on the correlation between known and estimated csGEPs (subfigures A–E) and on the median
gene correlation (subfigure F) in dataset SimBulk. Pearson correlation (y-axis) is shown at different noise levels (x-axis) added to the estimated cell type
proportions C. The horizontal lines illustrate the accuracies obtained with known C.

of the task of estimating S and suggests utilizing such esti-
mates with care.

Besides the methods tested here, there are several meth-
ods not comparable with the ones tested here due to rea-
sons like different input requirements or limitations with
the number of present cell types or genes, such as CIBER-
SORTx (16), DSection (40), UNDO (8), TEMT (11),
PSEA (41), ISOpure (10), DSA (36) and DeMixT (37). Mat-
lab tool MMAD (42) is similar to the methods tested in this
study, but it was excluded from the comparison due to tech-
nical issues. These methods are summarized in Supplemen-
tary Table S3 together with the methods evaluated in this
study.

We evaluated methods’ sensitivity to sample size and
noise in input matrix C and these tests did not indi-
cate marked differences between Rodeo, cs-lsfit, cs-qprog
and csSAM. All methods excluding Deconf benefited from
greater sample size and with small sample sizes LRCDE was
especially sensitive to further decrease in it. All the tested
supervised methods reached very high accuracy (correla-
tion with known csGEP > 0.95 for most cell types and
>0.85 even for the rarest cell type) when the sample size
approached 500. However, such large sample size is not al-
ways available, especially when deconvolving old datasets.
LRCDE’s sensitivity to small sample size is likely due to
its focus on sample group comparison; it splits the data
into sample groups further reducing the sample size. On the

other hand, its sensitivity to noise in C was very similar to
the other supervised methods. While the increase of noise
in C decreased the overall accuracy of results, the methods
tolerated minor noise well and, importantly, using the well
estimated C without additional noise instead of the known
C did not decrease the accuracy much.

Estimating S is not the main focus for all the tested meth-
ods, but for example LRCDE is designed specifically for
detecting differentially expressed genes and unsupervised
methods CDSeq, LinSeed and Deconf provide S including
values magnitudes smaller than the actual expression val-
ues indicating that they do not aim to estimate directly S
from model E = S · C. Especially the original publication
of LinSeed focuses on estimating C and only subset of S that
distinguishes the cell types from each other. This, combined
with several memory errors we got from LinSeed, indicates
that the method is not intended for full expression deconvo-
lution. CDSeq, on the other hand, prefers raw count data
as an input, which is not available for the datasets SimBulk
and GSE19830. This might have negative impact on the ac-
curacy of CDSeq results, whereas Deblender could be used
also as an unsupervised method or semi-supervised utiliz-
ing marker genes as input. Therefore, it is important to re-
member that we have tested only methods’ ability to detect
S given cell type proportions C and these results do not nec-
essarily reflect the usefulness of the tested methods on other
applications. However, among the tested methods, super-
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vised methods outperformed unsupervised methods and es-
pecially with datasets including realistic challenges, like rare
cell types and related cell types, unsupervised methods CD-
Seq, LinSeed and Deconf did not perform well. This is not
surprising as supervised methods have more information to
build on.

Notably, in the context of this study, an outlier sample is
defined based on altered S instead of altered bulk expression
E (though it likely follows from altered S). This is an impor-
tant detail because outliers in E can appear also because of
atypical cell type composition, which does not cause dif-
ficulties in expression deconvolution. As mentioned in the
Introduction section, a robust deconvolution method has
several advantages over first excluding outlier samples and
then using a method sensitive to outliers. In case of Rodeo,
the argument about avoiding unnecessary reduce in sample
size is even stronger as samples are not strictly kept or ex-
cluded, but continuous weights are calculated for them. Our
results demonstrated that this robustness can be achieved
without compromising on accuracy with data without out-
liers or introducing further inputs or otherwise making the
method more complex to use.

To conclude, supervised methods outperformed the un-
supervised ones and Rodeo, cs-lsfit and cs-qprog had the
highest accuracy. They were also tolerant against noise and
changes in the underlying cell type proportions (Section 6 of
the Supplementary Text). Those three methods were other-
wise rather equal, but Rodeo was more robust to few outlier
samples in the data. Sample size had a great impact on the
accuracy of results and the median gene profile correlation
reached 0.9 when the data included >100 samples. There-
fore, we state that with a large (>100) sample size accurate
results can be obtained, but in case of a smaller dataset, the
results should be interpreted with care.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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