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1Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland
2European Synchrotron Radiation Source, 71 Avenue des Martyrs, 38000 Grenoble, France

AV, 0000-0003-1770-8139

We explore the sensitivity of several core-level spectroscopic
methods to the underlying atomistic structure by using the
water molecule as our test system. We first define a metric that
measures the magnitude of spectral change as a function of the
structure, which allows for identifying structural regions with
high spectral sensitivity. We then apply machine-learning-
emulator-based decomposition of the structural parameter
space for maximal explained spectral variance, first on overall
spectral profile and then on chosen integrated regions of
interest therein. The presented method recovers more spectral
variance than partial least-squares fitting and the observed
behaviour is well in line with the aforementioned metric for
spectral sensitivity. The analysis method is able to
independently identify spectroscopically dominant degrees of
freedom, and to quantify their effect and significance.
1. Introduction
Owing to orbital localization, core-level spectroscopies are sensitive
to structure in the neighbourhood of the excited atomic site.
However, the dependence between the atomistic arrangement and
the resulting spectra is not straightforward, which complicates the
analysis of these spectra [1–4]. A satisfactory solution to this
complexity calls for new methods, such as machine learning
(ML), that may relieve the computational burden of repeated
function evaluations [5]. Here, the inherent lightness of evaluation
may, for example, help with problems involving predictions of
statistical averages or prediction of spectra for new structures
instead of their explicit simulation. Several ML approaches have
recently been applied to spectroscopy [6–11], typically to emulate
the relations between known molecular/atomic structures and
corresponding spectra [8,9]. The possibility to predict structural
variations in the crystals using extended X-ray absorption fine
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structure has also been demonstrated [7]. Moreover, prediction of X-ray absorption near-edge structure
based on descriptors of the molecular structure has been recently shown with a high accuracy [10].

In this work, we turn to the question of how to apply an accurate ML emulator to the interpretation of
core-level spectra in terms of the underlying atomistic structure. We develop an ML-based
dimensionality reduction of the structural parameter space based on most covered spectral variance,
and apply the method to simulations for three types: X-ray photoelectron spectra (XPS), X-ray
emission spectra (XES), and X-ray absorption spectra (XAS). To interpret the findings, we present a
metric to measure spectral sensitivity to structural change, and as a result we consistently identify
regions of higher and lower spectroscopic structural sensitivity with the different methods.
/journal/rsos
R.Soc.Open

Sci.9:220093
2. Methods
2.1. Data and emulators
The number of electrons and the nuclear configuration, given by the set of all structural parameters p,
define the electronic Hamiltonian and its spectra. We obtain transition energies and intensities for
numerous structures p from electronic structure simulations. The transition intensities are
approximated as squared lengths of the transition dipole vectors of the velocity form. To account for
physical (lifetime, vibrational substructure) and instrumental lineshapes, the resulting ‘stick spectrum’
is convoluted. This procedure results in a continuous spectrum S(p), which on a predefined grid
presents a vector. The procedure is repeated for a set of points p obtained from structural simulations.
This work is based on applying ML to the simulated structure–spectrum pairs to create an emulator
that approximates the function S(p) at any p.

As our data we use 10 000 snapshots from ab initio molecular dynamics (AIMD) trajectories for the
H2O molecule, with initial kinetic energy equivalent to 10 000 K temperature and spectra simulated for
these structures. The structural data and the related XAS spectra have been published previously [11].
For the calculation of XAS and XES spectra, we apply transition-potential density functional theory
(TP-DFT). For evaluation of the XPS core-level binding energies, and for correction of the onset of
XAS spectra, we carry out respective Δ-DFT calculations for the core-hole state energy with respect to
the ground state. Here, we assume a high-enough photon energy to result in a constant O 1s
ionization cross-section regardless of the structure. All spectra are convoluted with a 1.0 eV Gaussian
and are presented on a 0.1-eV-spaced grid (100 points for all cases). The calculations are carried out
using CP2K software [12]. For easier comparison with the experiment, the spectra are shifted by
−6.0 eV, 2.25 eV, and 1.5 eV for XES, XAS, and XPS, respectively.

Our analysis relies on ML and the ability to predict spectra at new points in the configurational space,
here defined by three degrees of freedom: H–O–H bond angle α, and the shorter and longer O–H bond
lengths bs and bl, respectively. We select the ML spectroscopic emulators in a fashion similar to that of
Niskanen et al. [11]. In brief, we examine polynomial models with the orders from 2 to 9, and
multilayered perceptrons (MLP) with 2–5 hidden layers and 5–500 neurons in each layer, and use
mean-squared error as a metric of the training quality for a set of 8000 data points. The scikit-

learn [13] Python package is used. Based on cross-validation performance scores, we use an MLP
emulator for XES, and polynomial emulators for XAS and XPS in the later stages of the analysis,
carried out with a completely separate test set of 2000 samples. However, due to the wiggly
behaviour of the MLP isosurfaces for XES spectra, we use the smoother-behaving polynomial
emulators to produce all the plots in figure 1.

2.2. Spectral sensitivity metric
We measure structural sensitivity as the rate of change of spectrum S(p) at structural parameter point p.
For vector-valued function S, we define the metric

MgradðpÞ : ¼ kJSðpÞk2
kSðpcenÞk2

, ð2:1Þ

where

½JSðp0Þ�ij ¼
@Si
@pj

����
p¼p0:

ð2:2Þ
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Figure 1. Spectra of the H2O molecule in the training dataset: (a–c) the mean spectrum is shown in black and the shaded area
depicts ±1 s.d. from the mean; dashed lines indicate the regions of interest (ROIs I, II and III) for the coarsened spectra; digitized
experimental spectra from [14–17] are shown for comparison; and simulated spectra have been shifted for the best match with the
experiments. Structural sensitivity of these spectra: (d–f ) Cartesian distance difference Mdiff and (g–i) Jacobian norm Mgrad. Since
polynomial approaches behave smoother, they were used also for the plots of XES. The ranges of the parameters shown are ±σ
from the mean of the training set. For details, see text.
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Each channel in the spectrum S is defined by the structural parameters p. Thus, each row in the Jacobian
gives the gradient of the particular energy channel with respect to structure. Spectral sensitivity with
respect to a given structural parameter is given by the length of the according column vector. To
classify points in the configuration space, we focus on the square norm of the whole Jacobian matrix.
Since we compare different spectroscopies, normalization with the spectrum at the centre of the data
pcen set is applied.

An alternative metric is spectral deviation from that at the centre of the training set

MdiffðpÞ : ¼ kSðpÞ � SðpcenÞk2
kSðpcenÞk2

ð2:3Þ

Numerical calculations on a grid rely on evaluation of the ML predictor.
2.3. Emulator-based component analysis
The algorithm carries out a step-wise component vector (CV) search for dimensionality reduction in the
structural parameter space, with the criterion to maximize the explained spectral variance together with
the components of the previous steps. For a set of N parameter points fpigNi¼1, this is achieved by
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projection on CVs optimized for the purpose. For each step k (k = 1, 2,…), a unit vector v̂k is searched so
that generalized covered variance

r ¼ 1� trð~AT ~AÞ
trðATAÞ ð2:4Þ

is maximized. Here, matrix A contains the true spectra of the original data points as its row vectors Ai.
The corresponding predicted spectra for projected data points are given as row vectors of matrix

AðpredÞ
i ¼ SðpredÞ Xk

j¼1

ðv̂j � piÞ v̂j
0
@

1
A ð2:5Þ

where function SðpredÞ is an ML-based emulator capable of predicting spectra for previously unseen
structures and

~A ¼ A�AðpredÞ: ð2:6Þ
We apply the orthonormality constraint v̂k � v̂j ¼ dkj to the CVs, and as the result of the procedure, a set of
orthonormal projection vectors is obtained so that they always maximize the generalized covered spectral
variance ρ up to the given order k. We apply an overall factor ±1 for the CVs to point towards increasing
intensity.

The generalized covered variance ρ accounts for the goodness score in the spectrum space and is
necessitated by the nonlinearity of spectrum prediction operation SðpredÞ. When applied to a data
matrix from a projection in the same linear space, the definition reduces to that of covered variance
used, for example, in principal component analysis. Due to its definition, ρ may obtain negative
values for notably bad predictions as the value zero corresponds to errors with the magnitude of the
variance of the known data. We see no problem in alternatively using the remaining unexplained
spectral variance 1− ρ as an error metric in a minimization problem for vectors v̂k.

2.4. Partial least-squares fits using SVD
We adapt an approach based on singular value decomposition (PLSSVD) [18] owing to its straightforward
simplicity and to orthogonality of the CVs. Here, the partial least-squares fit is applied to data in matrices X
and Y that contain standardized structural parameters and the corresponding standardized spectra in their
row vectors. A linear fit is applied between the component scores of left and right eigenvectors for each order
of the decomposition. As a result, an approximation of data

Y � X
Xk
j¼1

UðjÞcjVðjÞT ð2:7Þ

is obtained. In the equation, U( j ) and V( j ) denote the left and right eigenvectors (column vectors)
corresponding to the eigenvalue λj ordered in descending fashion. As the data are standardized in each of
their dimensions, the covariance matrix reads directly

covðX, YÞ ¼ XTY ¼ Udiagðl1, . . . , lkÞVT ð2:8Þ
from which the matrices U,V and diag(λ1,…, λk) are obtained by singular value decomposition. The
procedure thus gives basis vectors on which to project the data X and Y.

The coefficients cj are obtained from a linear least-squares fit between projected data points XU( j ) and
YV( j ) for each order j = 1, 2,…. The constant term in the fits is negligible and the first-order coefficient is
assigned cj. As an example, the results of the fits for the overall spectrum case are depicted in the
electronic supplementary material. For comparison of the PLSSVD fit results, generalized explained
variance metrics are evaluated for decompositions cumulatively incremented up to order k, as given
by equation (2.7). An overall factor ±1 is applied for the PLSSVD structural space basis vectors to
point towards increasing intensity.
3. Results and discussion
Although a static classical nuclei model is used, the appearance of the studied spectra of the H2O
molecule in figure 1a–c are in agreement with the respective experiments [14–17]. The emulators
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trained on the sampled AIMD structures and corresponding spectra allow for easy and computationally
light evaluation of the data on a mesh grid. We applied this capability to calculate the square norms of
spectral deviation from that of the mean structure, as depicted in figure 1d–f. In addition, numerical
differentiation of an emulator for the spectrum S(r) is a computationally light task on a mesh
grid. Here, each partial derivative gives the rate of change for each channel in a spectrum S(r) at
point r with respect to each structural parameter. The square norms of the Jacobian matrices
[JS(r0)]ij = ∂Si/∂rj|r=r0 presented in figure 1g–i indicate strongest spectral changes in specific directions
for each method. Normalization by the spectrum at the mean structure rcen is applied in both cases to
allow for a direct comparison.

The spectra show differing structural behaviour, with more variation in XES and XAS than XPS, also
indicated by the channel-wise one standard deviation drawn together with the spectra. Figure 1e,h
reveals that XAS is most sensitive to the symmetric stretch. This is seen as the largest isovalue surface
being located at large bl and bs values, with little variation along the bond angle α. On the other hand,
the XPS spectrum changes most at high bond angles, as seen in figure 1f,i: isosurfaces are oriented
parallel to the bl–bs plane. From this view, XES is expected to be most sensitive to all structural
parameters in the system, being least affected by the asymmetric stretch as seen in figure 1d,g. Here,
the cartesian distance difference has a low-value isosurface region intersecting the plot of figure 1d,
but the overall rate of change still has high isosurface values throughout the plot of figure 1g.

Spectroscopicdatacanbe seen as twocorrelateddatasets: one for structures andone for the corresponding
spectra. One way to analyse the interdependencies in such data is provided by partial least-squares (PLS)
fitting [19,20], and a variant of this family of methods has already been applied to binding energies in XPS
in aqueous solution [1]. In PLS algorithms, latent variables connecting the two datasets are searched for
using only existing data points. However, we show that the relation of structure and spectra may be
investigated more deeply with the help of an ML-based emulator that is capable of making accurate and
computationally light predictions of new data. Indeed, for a set of parameters defining the Hamiltonian,
the spectra are defined as a function. We use the aforementioned capabilities of a good emulator and make
a step-wise parameter-space decomposition, where the search for structural space CVs is guided by
covering of maximal variance in the spectrum space. Because the search for each CV consists of an
iterative solution of an optimization problem, the lightness of evaluation of the emulator is essential.
Moreover, this emulator-based component analysis (ECA) routine relies on prediction of spectra on new
data, i.e. projected data points in the standardized structural parameter space.

When compared with the results of PLS implemented on eigenvectors from singular value
decomposition of the covariance matrix (PLSSVD) [18], the ECA algorithm is able to explain more
spectral variance with a decomposition to a given order (table 1). Consequently, explained structural
variance for ECA may be less than for the PLSSVD. We understand this by the design principle of ECA to
search for directions that matter the most for spectra, with no emphasis on covered structural variance.
Moreover, the nonlinearity of ECA allows for a tighter match with the data than linear methods. The first
CVs of the methods agree in interplay of all structural parameters, in opposing directions for angle and
bond lengths for XES. Likewise, the overall shape of XAS is agreed to be dominantly affected by the bond
lengths, and the XPS is virtually completely explained by the H–O–H angle. The results are also depicted
in figure 2 and these findings are consistent with the spectral sensitivity metrics presented in figure 1.

Interpretation of experimental core-level spectra is complicated by unavoidable inaccuracy of the
spectrum simulations. As a solution to the problem, we have previously proposed an analysis of spectral
regions of interest (ROI) that are identifiable in both experimentation and theory [2,3,11,21,22]. In such a
line of thought, it is argued that the risk of overanalysis is reduced, as the procedure would naturally
focus on confirmedly reproduced spectral features. An alternative approach to assess uncertainties in
simulated X-ray spectra has been presented by Bergmann et al. [23]. By studying the spectral response to
slight structural distortions, their method results in error bars for calculated spectra for more reliable
interpretation of the experiment.

We analysed the behaviour of ROIs marked in figure 1a–c with two approaches: simultaneous and
independent for each ROI. A joint treatment of ROIs revealed that some regions dominated the
component analysis at the cost of the others. This occurred due to different overall variances in the
ROI intensities seen in figure 1a–c. For example, the optimization of the first CV became dictated by
XES ROI I, which resulted in highly sub-optimal description of ROI III intensity. Therefore, we
conclude that interpretation of ROIs is best done by individual fitting, i.e. analysing each ROI separately.

The results of individual analyses for each ROI are presented in figure 3 and in table 2. When
performed this way, the first CVs explain on average ð87+ 14Þ% of ROI intensity variance with the
mean structural covered variance of ð38+ 7Þ%, as indicated by figure 3b–c. The first PLSSVD CVs
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show a weaker ð68+ 27Þ% performance for covered spectral variance but cover ð42+ 9Þ% of the
structural variance. Standard deviations are given as the uncertainties above.

The CVs were oriented along the increase of corresponding ROI intensity. Whereas this is a trivial
task for linear models, defining the positive direction is more complicated for ECA, because of
nonlinear and possibly oscillatory behaviour of intensity along the component (see electronic
supplementary material). Our analysis reports dominant dependence on the H–O–H angle of all ROIs
in XES spectra: based on the first CVs intensity transfer to ROI II is expected with inward bending.
The ROIs in XAS are mostly affected by the bond lengths, and, for example, ROI I intensity is found
to be increased with further elongation of the longer bond. Last, the sensitivity of XPS to the H–O–H
bond angle only is recovered, as intensity is shifted to lower binding energies with increasing bend
angles.

In the H2O molecule that we use as the pilot system, there are only three nuclear degrees of freedom.
It is therefore relevant to ask what would change if a problem with more degrees of freedom, such as a
liquid, was to be studied. We turn to this question next.

All other things being equal, a more complicated system can be expected to require a more complicated
emulator architecture. This naturally will require larger training (and test) datasets that should cover the
whole region of prediction [11], i.e. accessible structural space. The field of ML provides measures how
to evaluate the model and the number of required training points, by, for example, studying the
learning curves. For the water molecule alone, a simple three-dimensional grid evaluation would have
been feasible. However, for more complicated systems, the number of dimensions would prohibit such
a raw approach. We see (AI)MD and Monte Carlo simulations as feasible ways to generate structures, as
the achieved sampling cuts out a large portion of the inaccessible structural space by design. These
considerations are complicated by the note that the complexity of an emulator architecture depends also
on how well behaving a function the spectral response is. Last, it remains a case-dependent question of
how much precision loss is tolerated in the process.
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The idea of using decomposition is to provide interpretation of spectroscopic data learned by an
emulator. The aim is to identify dominant trends in a complicated structure–spectrum relation, with
inherent loss of information. In this work, we used a linear transformation around a well-identifiable
centre to identify relevant directions of spectral sensitivity. For more complicated data such as liquids,
these centres may be numerous or a continuous valley of regions may appear—possibly with varying
local spectral behaviour. As one potential way to solve the problem, a manifold approach might be
used. In such an approach, locally linear variations would be studied together with additional
parameters defining the local neighbourhood, e.g. particular molecular isomer. Such parametrizations
could be made by energy criteria, by abundance of points in an MD trajectory, or by principal
component or clustering analysis of the structural data. However, for spectral data that is severely
wiggly or heavily scattered over the accessible structural space, it is hard to see any interpretation
method to be able to draw correct universal trends from, as inverting the structure–spectrum function
becomes impossible. It seems that a structural-information bottleneck can be reached in at least two
ways: first, due to insensitivity of the probe to certain structural variation and, second, due to the
back-and-forth wiggle of the spectra in the structural parameter space.
c.Open
Sci.9:220093
4. Conclusion
Spectroscopically relevant structural variability can be captured by decomposition techniques. Using
ML-based emulators allows for decomposition of structural space based on explained spectral
variance; this is an approach that outperforms partial least-squares fitting both in spectral coverage
and structural selectivity. The presented ECA method relies on accurate and computationally light
prediction of spectra for new structures enabled by ML emulators, the development of which is
currently an active field of research. Application of this analysis on ROIs in the spectrum may provide
a direct interpretation of experimentally observed and theoretically reproduced spectral change. Our
results manifest X-ray spectra forming a bottleneck for structural information, some of which is not
recoverable from them. Whereas high sensitivity might be beneficial for a detailed analysis of
structure, sensitivity to only a few structural parameters may be used for identification of the related
structural classes by their spectroscopic fingerprints. On the other hand, spectroscopic methods that
are heavily sensitive to many parameters may require a statistical approach.
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