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Abstract
The fronto-parietal attention networks have been extensively studied with functional magnetic resonance imaging (fMRI),
but spatiotemporal dynamics of these networks are not well understood. We measured event-related potentials (ERPs) with
electroencephalography (EEG) and collected fMRI data from identical experiments where participants performed visual and
auditory discrimination tasks separately or simultaneously and with or without distractors. To overcome the low temporal
resolution of fMRI, we used a novel ERP-based application of multivariate representational similarity analysis (RSA) to parse
time-averaged fMRI pattern activity into distinct spatial maps that each corresponded, in representational structure, to a
short temporal ERP segment. Discriminant analysis of ERP-fMRI correlations revealed 8 cortical networks—2 sensory, 3
attention, and 3 other—segregated by 4 orthogonal, temporally multifaceted and spatially distributed functions. We
interpret these functions as 4 spatiotemporal components of attention: modality-dependent and stimulus-driven orienting,
top-down control, mode transition, and response preparation, selection and execution.
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Introduction
Resolving the cerebral underpinnings of attention is one of the
key questions in cognitive neuroscience (Petersen and Posner
2012). However, the distributed nature of higher level cognition
poses challenges for research: attentional processes involve a
number of cortical (Corbetta and Shulman 2002) and subcortical
(Wimmer et al. 2015) structures, which could all have their own
temporal processing scales (Gonzalez-Castillo et al. 2012). In
addition, largely overlapping brain networks are activated by
different attentional functions (Duncan 2010). Functional mag-
netic resonance imaging (fMRI) during attention demanding
tasks has indicated that brain areas participating in these net-
works are located in the intra- and temporo-parietal, and
superior and inferior frontal cortices (Corbetta and Shulman

2002). Even individual differences in attention can be predicted
on the basis of connectivity in these networks (Rosenberg et al.
2016). Functional connections between these network areas
persist in spontaneous activity measured during resting state
without any designated task instructions given to the partici-
pants (Fox et al. 2006; Dosenbach et al. 2007; Yeo et al. 2011).
Thus, fMRI data during task performance and rest demonstrate
comparable spatial networks, but the relatively sluggish blood
oxygenation level-dependent signal (Logothetis 2008) is not suf-
ficient in unraveling the fine-grained temporal dynamics of
attentional processes within these networks.

The models of attention supported by fMRI and behavioral
studies have segregated attention-related bottom-up and top-
down processes (Corbetta and Shulman 2002; Petersen and
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Posner 2012). While attention modulates sensory processing of
both visual and auditory target objects (Petkov et al. 2004;
Johnson and Zatorre 2006; Pestilli et al. 2011), there may be inter-
modal differences in the networks guiding these modulations. In
the visual modality, separate but interacting fronto-parietal net-
works have been found for top-down controlled and bottom-up
triggered attention shifts (Corbetta and Shulman 2002; Petersen
and Posner 2012). Subsequently, in the auditory modality top-
down and bottom-up attention networks are presumably more
overlapping (Salmi et al. 2009; Alho et al. 2015). Moreover, some
areas of the top-down networks might be more related to divided
than selective attention (Johnson and Zatorre 2006) or shifting
attention between modalities (Shomstein and Yantis 2004; Salo
et al. 2015). In addition, some networks activated during attention
demanding tasks might be involved in task-related memory func-
tions (Petersen and Posner 2012; Wallis et al. 2015) rather than
attention. As compared with fMRI, more precise temporal infor-
mation on attentional processes is provided by event-related
potentials (ERPs) measured with electroencephalography (EEG).
ERP studies have demonstrated attention-related modulations of
sensory processing beginning already at 100ms from stimulus
onset (Hillyard et al. 1973; Näätänen et al. 1978; Woods et al. 1992;
Mangun 1995) as well as distraction (Squires et al. 1975; Knight
1997; Escera et al. 1998; Fogelson et al. 2009), orienting (Hopf and
Mangun 2000; Nobre et al. 2000; Salmi et al. 2007), or reorienting
(Schröger and Wolff 1998; Berti and Schröger 2001) related
responses between 200 and 600ms from stimulus onset.

Despite extensive research knowledge on the specific brain
areas and temporal components of attention, there is still a
lack of studies describing spatiotemporal dynamics of attention

networks and representational relations of the multiple
attention-related processes. Answering these questions calls for
specific methods that enable combining both spatially and tem-
porally accurate neuroimaging techniques and experimental set-
ups containing multiple conditions that are controlled for
features not directly linked to attention, such as task difficulty.
Integrating localization of cortical networks and their temporal
dynamics is possible by combining fMRI and EEG measurements
(Huster et al. 2012). EEG-based modeling of fMRI data has pro-
vided important knowledge, for example, by revealing brainstem
connections to cortical attention networks around 200 and 450
ms after stimulus onset (Walz et al. 2013) as well as task- and
response-related temporal dynamics in the frontal cortex and in
the so-called default mode areas (Greicius et al. 2003; Walz et al.
2014). The advances of data analysis methods and multivariate
pattern analysis (MVPA) have enabled separating distinct pro-
cesses within overlapping brain networks, for example, segregat-
ing spatial and feature-based attention shifts (Greenberg et al.
2010) in the medial superior parietal lobule (Esterman et al.
2009). In the present study, we utilized representational similar-
ity analysis (RSA) (Kriegeskorte et al. 2008; Kriegeskorte and
Kievit 2013) to investigate spatiotemporal dynamics of attention
networks. With RSA, we combined ERP and fMRI data from iden-
tical experiments by projecting both data sets into a common
representational space, and investigated representational simi-
larity of multiple attentional processes.

We collected ERP and fMRI data during a continuous 1-back
adaptive pitch and orientation discrimination tasks performed
separately or simultaneously by the participants at 70% thresh-
old (Fig. 1). The experiments contained 18 different event types

Figure 1. Experimental setup and behavioral results. (a) On each trial, both sinewave tone and sinewave grating were presented, and either tone pitch or grating

orientation changed in relation to the previous trial. On 1/3 trials, either a visual distractor (spectrally complex texture) or an auditory distractor (spectrally complex

sound) was presented. These distractors were intramodal (IM) or crossmodal (CM) with respect to the target event (pitch or orientation change). Error bars depict

standard errors of mean. (b) RTs to tones and gratings. RTs were shortest in the control condition (black diamond), longer in the selective attention condition

(squares, gray asterisk), and the longest in the divided attention condition (circles, black asterisk). (c) Distractor effect on discrimination of tones and gratings.

Relative prolongation of RTs and decrease in proportion of correct responses in relation to targets without distractors (black asterisk). IM distractors (green and blue

symbols) exhibited stronger effects than CM distractors (red and yellow symbols).
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based on 2 × 3 × 3 factorial design (Table 1): Target Modality
(auditory or visual), Attention Mode (selective or divided atten-
tion, or control task, i.e., a simple reaction time [RT] task), and
Distractor Type (intramodal, crossmodal, or no distractor). With
searchlight (Kriegeskorte et al. 2006) RSA we identified regional
voxel clusters in fMRI data that contained representational
structures similar to the representational structures calculated
from short temporal segments of ERPs (Fig. 2). This resulted in
a temporal ERP-fMRI correlation profile for each voxel and
region (Fig. 3). Discriminant analysis of temporal profiles
revealed 4 temporally multifaceted and spatially distributed
functional components: 1) modality-dependent and stimulus-
driven orienting of attention, 2) top-down guided attentional
control, 3) shifting between attention and default modes, and 4)
response selection, preparation, and execution (Fig. 4).

Materials and Methods
Participants

Thirteen healthy right-handed volunteers (7 females, mean ±
standard deviation [SD] age 26 ± 6 years) with normal or
corrected-to-normal vision and without known hearing deficits
participated in both EEG and fMRI experiments. The partici-
pants gave a written informed consent before participating in
the experiments approved by the Ethics Review Board in the
Humanities and Social and Behavioural Sciences of the
University of Helsinki.

Stimuli

The auditory stimuli were binaural sinewave tones and various
spectrally complex sounds occurring simultaneously with a tone
on some trials. The tones had an intensity of 80 dB sound pressure
level (SPL), and duration of 300ms including 10ms linear onsets
and offsets. The frequency of tones varied between 600 and
1800Hz, either randomly or according to participants’ correct/
incorrect responses in the staircase procedure. The maximum

change in pitch between consecutive trials was limited to 0.5
octaves. Complex synthetic sounds, such as clicks and ringtones,
were used as auditory distractors. Themaximum intensity of these
distractor sounds was 80dB SPL and they were low- and high-pass
filtered with cutoffs at 7000 and 200Hz, respectively. In addition,
the distractor sounds were notch-filtered at 1000Hz (filter width
2 octaves) to avoid acoustic masking of target tone frequencies.
Each auditory distractor occurred only once during the experiment.

Visual stimuli were grayscale sinewave gratings and various
colored textures occurring simultaneously with a grating on
some trials. Each high-contrast grating was shown for 300ms in
a Gaussian envelope (diameter 3°). The spatial frequency of grat-
ing was 2 c/deg and the phase was randomly set in each trial.
The orientation of grating was varied randomly (in conditions
with no visual task) or according to participants’ correct/incor-
rect responses in the staircase procedure. The lower part of the
grating was kept at the center of the screen and the grating was
rotated between 0 and 360°. However, the maximum change
between consecutive trials was limited to 90°. The textures (size
16 × 24°) were used as visual distractors. To avoid spatial mask-
ing and to keep gratings identical across conditions, a circular 6°
area was cut off from the center of distractor textures. The rms
(root-mean-squared) contrast (SD of luminance divided with
mean luminance) of the visual distractors was 0.3. Each visual
distractor occurred only once during the experiment.

Procedure

The experiment consisted of auditory and visual 1-back dis-
crimination tasks. The participants’ auditory task was to indi-
cate whether the pitch of the tone was higher or lower than the
pitch of the preceding tone by pressing a button up or down
with their right hand. The participants’ visual task was to indi-
cate whether the orientation of the grating rotated clock-wise
or counter clock-wise in comparison with the preceding grating
by pressing a button right or left with their right hand. A tone-
grating pair was presented on each trial. The pairs were

Table 1 Experimental setup

Event Block Task Target Change in Distractor Trials in block

1 1 Selective attention: 1-back discrimination in one modality Auditory Tone None 20
2 Auditory 5
3 Visual 5
4 2 Visual Grating None 20
5 Auditory 5
6 Visual 5

7 3 Divided attention: 1-back discrimination in both modalities Auditory Tone None 20
8 Auditory 5
9 Visual 5
10 Visual Grating None 20
11 Auditory 5
12 Visual 5

13 4 Control: Press button for any stimuli Both Tone None 20
14 Auditory 5
15 Visual 5
16 Grating None 20
17 Auditory 5
18 Visual 5

Note: Eighteen trial types/events occurred in 4 different blocks. The experiment contained 3 task conditions: selective auditory, selective visual, and divided

Attention Modes, as well as a control task. In the attention tasks, the target (to-be-discriminated change in tone pitch or grating orientation) was either auditory or

visual. Some trials included an auditory or visual distractor.
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presented sequentially with a constant onset-to-onset interval
of 1.8 s. The magnitude of attended pitch and orientation
change was determined using an adaptive staircase method
with a 2-1 rule: after an incorrect response, the pitch/orienta-
tion difference between successive trials was increased and
after 2 consecutive correct responses the pitch/orientation dif-
ference was decreased in steps of 3° and 0.01 octaves. This
method produced a 70.7% discrimination threshold. Only trials
without distractors were included in the staircase and the ini-
tial change was 15° and 0.1 octaves. Until the second reversal

point, the amount of change was 3-fold. The average of the
reversal points (the first 2 reversal points were excluded) was
used as the discrimination threshold. The tones and gratings
were created and their timing was controlled with Presentation
software (Neurobehavioral Systems, www.neurobs.com).

In every condition, both tones and gratings were presented,
but the participants’ task was varied. The tone and grating dis-
crimination tasks were performed separately (“selective atten-
tion” condition) or simultaneously (“divided attention”
condition). In the divided attention condition, the stimulus was

Figure 2. Results of the RSA of EEG and fMRI data at 5 time points from 110 to 860ms after stimulus onset. (a) ERPs were calculated from the EEG by averaging epochs

time-locked to stimulus events. Topographic maps of ERPs (the head viewed from above with the nose pointing upwards) averaged across participants. Aud = audi-

tory, Vis = visual. (b) Model RDMs showing the expected effects of Distractor Type and Attention Mode, and an RDM calculated from RTs. (c) ERP RDMs were calculated

by cross-correlating ERPs from all 64 channels across the 18 different experimental conditions within consecutive 10ms segments from −200 to 1000ms from stimu-

lus onset, resulting in 120 RDMs. (d) ERP-fMRI correlation maps. fMRI data were analyzed with General Linear Model (GLM) containing separate regressors for each

stimulus event and by calculating t values for each regressor in each voxel using statistical parametric mapping (SPM). First, fMRI RDMs were calculated by cross-

correlating regressor t values of the 18 experimental events across voxels within a spherical searchlight, and then correlated with each ERP RDM (permutation test,

P < 0.05). Supplementary Video 1 shows the full data from −200 to 1000ms from stimulus onset.
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changed in only one modality. Thus, in the divided attention
condition, the participant had to first detect the modality in
which the stimulus changed and then to decide to which direc-
tion the change had occurred. The selective attention condi-
tions also contained sham trials in which the stimulus changed
in the nonattended modality as well. These trials were dis-
carded from the analysis in order to keep selective attention
conditions similar to divided attention condition. In the control
condition, the participants were asked to press a button when-
ever the tone-grating pair occurred. During all tasks, on 1/6 of
the trials, a visual distractor and on another 1/6 of the trials an
auditory distractor was presented with this pair.

In total, there were 18 different trial types in 4 experimental
blocks (Table 1): 1) Auditory selective attention, 2) Visual select-
ive attention, 3) Divided attention, and 4) Control. Each condition
included in the present analysis (for excluded conditions, see
below) contained 6 different combinations of target and dis-
tractor stimuli: 1) Auditory target without distractor, 2) Auditory
target with auditory distractor, 3) Auditory target with visual dis-
tractor, 4) Visual target without distractor, 5) Visual target with
auditory distractor, and 6) Visual target with visual distractor.

Each task consisted of 60 trials occurring in a random order:
40 trials without distractors, 10 trials with auditory distractor,
and 10 trials with visual distractor. Different tasks were per-
formed in different blocks, and the order of blocks was rando-
mized in each run. Each run also contained single modality
trials, which included visual and auditory tasks without stimuli
in the other modality. These trials were excluded from all present
analyses. Each participant took first part in the EEG and then in
the fMRI experiment, and completed 3 runs in each experiment.

EEG Acquisition, Preprocessing, and ERP Analysis

The EEG data were acquired with Biosemi ActiveTwo system
(BioSemi, Netherlands) with 64 scalp electrodes and 6 add-
itional electrodes (at the right and left mastoids, at the canthi
for horizontal electro-oculography, and above and below the
left eye for vertical electro-oculography from the left eye). The
EEG data were analyzed with EEGLAB toolbox (Delorme and
Makeig 2004) and custom Matlab scripts. The EEG data were
high-pass filtered using a cutoff of 0.5 Hz and low-pass filtered
using a cutoff of 20 Hz. Bad channels were rejected manually
and using an EEGLAB automatic channel rejection tool based
on channel kurtosis. EEG data were sliced to 1200ms epochs
beginning 200ms before each stimulus pair onset. Mean volt-
age during the 200-ms prestimulus period was used as the
baseline. Independent components were calculated using
FastIca algorithm (Hyvärinen 1999) and artifact components
were removed using ADJUST toolbox (Mognon et al. 2011) after
which the epochs were averaged to obtain ERPs to different
events.

fMRI Acquisition, Preprocessing, and GLM Analysis

fMRI data were measured with a Siemens MAGNETOM Skyra
3T scanner (Siemens Healthcare) using 30-channel head coil.
Three functional runs were measured using a gradient-echo
echo planar imaging sequence (time repetition [TR] 1900ms,
time echo [TE] 32ms, flip angle 75°, voxel matrix 64 × 64, field
of view 20 cm, slice thickness 3.0mm, in-plane resolution
3.1mm × 3.1mm × 3.0mm). The functional measurements

Figure 3. ROI analysis for 8 regions in 4 networks (a). In both hemispheres, each of the 17 resting state-defined networks (Yeo et al. 2011) were divided into 1–4 subre-

gions according to lobes and anatomical structures (Destrieux et al. 2010). The resulting 44 ROIs were averaged across hemispheres. Temporal profiles (top row) from

ERP-fMRI RSA and model correlations (bottom row) averaged across voxels. Straight lines and asterisks indicate statistically significant correlations (t-test, P < 0.05).

Shaded area and error bars depict standard errors of mean. A = auditory, V = visual. Results are shown for (b) visual cortex, (c) auditory cortex, (d) dorsal attention net-

work, and (e) ventral attention network.
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consisted of 388 volumes. To reach stable magnetization, the
first 4 volumes were discarded from the analysis. A fast struc-
tural MR image with a 3D T1-weighted sequence (1mm slice
thickness) was acquired before the third functional run.

The fMRI data were analyzed with SPM12 Matlab toolbox
(Penny et al. 2006), Freesurfer (Dale et al. 1999) software pack-
age, RSA toolbox (Nili et al. 2014), and custom Matlab scripts. In
the preprocessing, the acquisition order of functional images
and the head motion were corrected. Then, a standard GLM
analysis was conducted using 35 regressors, one for each event
type (18 regressors), and nuisance regressors for instructions
(1), motion (6) and control conditions (10) that were excluded
from the data analysis (one modality and sham trials). The
resulting SPMT images for 18 trial types were then analyzed
using RSA.

Representational Similarity Analysis

For both ERP and fMRI data, we conducted an RSA (Kriegeskorte
et al. 2008; Kriegeskorte and Kievit 2013). In the analysis, a rep-
resentational dissimilarity matrix (RDM) was calculated by
cross-correlating the measured data across 18 different trial
types. For ERP data, the RDMs were calculated from all chan-
nels with consecutive 10ms time windows. For fMRI data, a
searchlight method (Kriegeskorte et al. 2006) was used and the
RDMs were calculated from voxels within spherical search-
lights (radius 3 voxels; volume ca. 100 voxels). The ERP and

fMRI RDMs were then compared with each other, and with
model RDMs based on the classification of experimental condi-
tions according to Attention Mode and Distractor Type as well
as on RTs and correct responses. For each model, we obtained a
temporal activity profile based on the ERP data and a spatial
correlation map based on the fMRI data. The statistical infer-
ence was calculated using t-tests and permutation tests. In per-
mutations tests, data labels were shuffled and a distribution of
correlations was calculated based on 5000 (ERP) or 1000 (fMRI)
permutations to find correlation values that correspond to the
top 5% of the simulated distributions.

Region of Interest and Discriminant Analyses

The correlations between ERPs and fMRI obtained in RSA were
further analyzed with region of interest (ROI) analysis. A total
of 44 ROIs were selected by first intersecting 17 networks found
in resting-state analysis (Yeo et al. 2011) and 74 anatomical
regions (Destrieux et al. 2010) that contained at least 100 com-
mon vertices, and then averaging some of the nearby regions
in order to keep the number of ROIs reasonable. For each ROI,
we averaged fMRI RDM correlations with ERP and model RDMs
across voxels. RSA was applied to the temporal profiles of ROIs,
and then multidimensional scaling was applied to the obtained
RDM. The multidimensional scaling revealed 8 clusters, and
this classification was then used in a step-wise discriminant
analysis to find discriminant functions that maximized

Figure 4. Spatiotemporal attention components. The data for the right and left hemispheres were averaged in the analysis. (a) Multidimensional scaling of temporal

RDM of ROIs. Numbers and colors indicate resting state-based networks (Yeo et al. 2011) and letters A–D subregions of networks. Dashed black lines indicate cluster

boundaries: Visual (Networks 1–2, blue), auditory (Network 4, orange), dorsal attention (Networks 5–6, green), ventral attention I (Network 7, pink), and ventral atten-

tion II (Network 8, red). (b) Correlation of discriminant functions and time points, and distribution of discriminant function coefficients. (c) Spatial maps of discrimin-

ant function coefficients (results based on data combined across the hemispheres projected on the lateral surface of the right hemisphere).
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Mahalanobis distances between the clusters. The resulting dis-
criminant functions were evaluated by finding the highest/lowest
correlations between the functions and the analyzed time points,
as well as comparing the function coefficients across ROIs.

Results
Behavioral Performance

The effect of experimental manipulations on behavioral mea-
sures was tested with a repeated measures analysis of variance
(ANOVA). The Imaging Modality (EEG vs. fMRI experiment) did
not affect discrimination thresholds (F1,12 = 1.31, P = 0.274), RTs
(F1,12 = 1.160, P = 0.303), or correct responses (F1,12 = 0.739, P =
0.407), and there were no significant interaction effects of the
Imaging Modality and the other variables on thresholds or cor-
rect responses. However, for RTs, 2 significant interactions
were found. In fMRI, but not in EEG, the RTs were longer to
tones than gratings (Imaging Modality × Target Modality: F1,12 =
17.19, P = 0.001), especially in selective attention condition
(Imaging Modality × Target Modality × Attention Mode: F2,24 =
9.10, P = 0.007). Since there were no main effects on Imaging
Modality, the behavioral data from the EEG and fMRI experi-
ments were combined for further analysis.

For both pitch and orientation discrimination (Fig. 1a), the
thresholds increased to approximately 2-fold (F1,12 = 14.96, P <
0.01) during divided attention (pitch: 0.06 oct; orientation 9.5°) in
relation to selective attention (pitch: 0.03 oct; orientation 5.4°).
In the divided attention condition, the thresholds correlated
positively between the modalities (r = 0.53, P = 0.064) showing
that the participants did not pay more attention to one modality
at the expense of another.

RTs increased as the task demands increased from the con-
trol task to the selective and divided Attention Modes (Fig. 1b;
F2,24 = 23.10, P < 0.001). Adding a distractor to the tone-grating
pair increased RTs significantly (F2,24 = 31.09, P < 0.001), espe-
cially when the distractor was within the same modality as the
target stimulus (Fig. 1b, green symbols; Target Modality ×
Distractor Type interaction F2,24 = 9.58, P < 0.01). There was
also a significant Attention Mode × Target Modality interaction
(F2,24 = 6.49, P < 0.01) and Attention Mode × Target Modality ×
Distractor Type interaction (F4,48 = 2.58, P < 0.05), due to different
effects of distractors on discriminating the tones and gratings in
the selective and divided attention conditions. Specifically, cross-
modal distractors did not prolong RTs to gratings in the selective
attention condition (Fig. 1b), and the difference between effects
of intramodal and crossmodal distractors was larger for the grat-
ings than tones (Fig. 1c), while overall RTs were shorter for the
gratings than tones (F1,12 = 21.05, P < 0.01).

There were no significant differences in the proportions of
correct responses between the tones and gratings (F1,12 = 1.17,
P = 0.30), but performance was less accurate during divided
than selective attention (F1,12 = 10.55, P < 0.01). The distractors
decreased the amount of correct responses (Fig. 1c; F2,24 = 5.85,
P < 0.01), especially distractors in the target modality (F2,24 =
6.22, P < 0.01). The distractors tended to have a smaller effect
on discrimination accuracy for gratings than tones (Fig. 1c), but
this interaction was not statistically significant.

Event-related Potentials

The topographic ERP maps for all 18 events at 5 different time
points are shown in Figure 2a. The ERPs within 110ms after
stimulus onset were highly similar (first row). At 220ms (second
row), comparison of trials without a distractor and with an

auditory or visual distractor showed differing anterior–posterior
distributions of activity (Fig. 2a). In comparison to distribution
without distractors (“No” columns), the activity distribution was
shifted to anterior regions during auditory distractors (“Aud” col-
umns) and to posterior regions during visual distractors (“Vis”
columns). Beginning at 380ms (rows 3–5), differences related to
the Attention Mode were found. Higher amplitudes were found
in the selective (the 6 leftmost columns) and divided (6 columns
in the middle) attention conditions than in the control condition
(the 6 rightmost columns). Further, at 630 and 860ms, the
divided attention condition showed stronger responses than the
selective attention conditions.

ERP-fMRI Correlations

The RSA is based on RDMs calculated by cross-correlating vari-
ables of interest. A specific RDM shows rank order of dissimilar-
ities that can be compared with RDMs based on models or RDMs
derived from data collected with another method. Example model
RDMs corresponding to the effects of Distractor Type and
Attention Mode are shown in Figure 2b, as well as an RDM calcu-
lated from the present RT data. Dissimilarities of ERP amplitude
distributions (Fig. 2a) were quantified with RDMs (Fig. 2c). From
these RDMs, dissimilarities related to Distractor Type can be seen
as a grid in the matrix (e.g., visual distractors: rows and columns
3, 6, 9. in the matrix) and dissimilarities related to Attention Mode
as blocks, that is, differences between rows/columns 1–6 (select-
ive attention) versus rows/columns 7–12 (divided attention) ver-
sus rows/columns 13–18 (control condition).

A searchlight RSA was conducted by calculating correlations
between each ERP RDM and fMRI RDM within the spherical
searchlights (radius 3 voxels). The fMRI RDMs were calculated
from SPMT images, regressor t values based on statistical para-
metric mapping that did not contain any temporal information
as such. The analysis revealed distinct spatial correlation maps
for different time points showing spreading of activity from
sensory to parietal regions and further to frontal regions and
propagation of activity back to the parietal and sensory regions
(Fig. 2d). The highest correlations for ERP RDMs calculated at
110ms were found in a voxel cluster located in the visual cor-
tex (first row). At 220ms (second row), the most prominent cor-
relations spread to the parietal regions, auditory cortex, and to
the medial visual cortex. At 380ms (third row), the correlations
in the visual cortex were diminished and both parietal and
frontal regions showed correlation maxima. At 630 and 860ms
(rows 4 and 5), high correlations were found in frontal voxel
clusters, mainly in motor and supplementary motor areas at
860ms, as well as in some clusters in the visual temporo-
occipito-parietal areas.

In order to further confirm that the ERP-fMRI activity pattern
correlations were related to attentional processes, we con-
ducted a model based RSA (Supplementary Fig. 1a) separately
for the ERP and fMRI data. Distractor Type model correlations
showed transient correlation peaks at 185, 220, and 290ms
after stimulus onset in ERPs (Supplementary Fig. 1b) and indi-
cated significant voxel clusters in the visual and auditory corti-
ces in fMRI (Supplementary Fig. 1c). In contrast, classification of
trials on the basis of Attention Mode or RTs revealed sustained
correlations at longer latencies in ERPs, starting around 400ms
(Supplementary Fig. 1b) and in fMRI correlations were localized
to parietal and frontal regions, and to the temporo-parietal
junction (Supplementary Fig. 1c). Model based on correct
responses did not reveal any significant ERP correlations or
voxel clusters in fMRI.
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We used all 64 measured EEG channels in our analysis. To
ensure that this did not influence the results and to test
whether selecting a subset of electrodes could be used in inves-
tigating specific responses, we conducted similar analysis with
6 subsets of electrodes: 1) 34 anterior electrodes, 2) 29 posterior
electrodes, 3) 13 frontal electrodes, 4) 10 parietal electrodes, 5)
11 occipital electrodes, and 6) sparse set of 16 electrodes across
the scalp (Supplementary Fig. 2b). With the electrode subsets,
reduced correlations with model RDMs were found, with only a
few statistically significant differences to the original data
(Supplementary Fig. 2c). Importantly, reducing the number of
EEG channels removed some of the effects found with the full
electrode set, but did not produce any new effects or correlation
peaks. With the standard 16 channel setup, the results were
virtually identical (Supplementary Fig. 2c) to the original ana-
lysis. Similarly to the ERP and model RDM correlations, no add-
itional voxel clusters were found in ERP-fMRI correlations, and
the subsets revealed only some of the voxels found with the
full 64 channels set (Supplementary Video 2). Taken together,
these results suggest that the number of EEG electrodes used in
the ERP-fMRI RSA is not critical as long as the electrodes are
sparsely distributed and little is gained by reducing the number
of electrodes.

Temporal Similarity

To fully characterize the spatiotemporal dynamics of attention-
related cortical areas, we conducted region of interest (ROI)
analyses based on networks defined by resting-state analysis
(Yeo et al. 2011) and cortical anatomy (Destrieux et al. 2010). For
each of the 44 ROIs, we calculated average correlation with ERP
RDMs, to reveal the time course of activity in the given ROI, as
well as average correlation with model RDMs, to reveal the
ROIs function in relation to Distractor Type (auditory, visual, or
no distractor), Attention Modes, Distractor Type × Attention
Mode interaction, and Behavior (RTs). No systematic differ-
ences between the hemispheres were found and therefore
results for the left and right hemispheres were averaged. Our
main interest was to find temporal dissimilarities in auditory
and visual network as well as attention networks. Thus, we
focused on 8 ROIs (Fig. 3a), 2 in each of these networks:
Networks 1 (visual), 4 (auditory), 5–6 (dorsal attention), and 7–8
(ventral attention).

In the visual areas of Network 1 (Fig. 3a, blue) the ERP-fMRI
correlations rose steeply, starting at 100–120ms, and reached
peak values between 110 and 310ms (Fig. 3b). After the transi-
ent peak, the correlations gradually decreased. In these areas,
the highest correlation was found for the Visual Distractor
model, suggesting that the dissimilarities within these areas
were mainly related to distractor processing, but significant
correlations were also found for Attention Mode and Distractor
Type × Attention Mode interaction. A quite different pattern of
results was found in the auditory areas of Network 4 (Fig. 3a,
orange): in Heschl’s gyrus and the planum temporale, 2 sharp
correlation peaks were found at 220–230ms and 600–650ms,
and after both peaks the correlations decreased sharply
(Fig. 3c). The model correlations suggested that these areas
were involved in processing of Auditory Distractors and also
showed Distractor Type × Attention Mode interaction.

In the parietal areas of dorsal attention Networks 5 and 6
(Fig. 3a, green), the correlations started to increase at 140–
160ms and 2 peaks were found at 160–240 and 530–680ms
(Fig. 3d). These areas were related to processing of Visual
Distractors and to Attention Mode, and especially to interaction

of Distractor Type and Attention Mode. In the frontal areas of
the ventral attention Networks, that is, Networks 7 and 8
(Fig. 3a, pink/red), the correlations increased gradually and 3/4
correlation peaks were found at 220–230, 380–400, 580–690, and
870–880ms (Fig. 3e). Within these areas, no correlation with dis-
tractor models was found, but instead the areas correlated with
Attention Mode, Distractor Type × Attention Mode interaction
and RT models, suggesting a role of these frontal regions in
attentional control.

Spatiotemporal Attention Components

To test temporal similarities between all ROIs, we conducted
RSA for their temporal profiles (some shown in Fig. 3b–e) and
applied multidimensional scaling of the resulting RDM (Fig. 4a).
Temporal similarity across analyzed ROIs suggested 8 cortical
clusters (Fig. 4a, dashed lines): 1) visual Networks 1–2, 2) auditory
regions of Network 4, 3) dorsal attention Network 5 (and area in
Network 6), 4) ventral attention Network 7 (and areas in
Networks 3, 4, 9, 14), 5) ventral attention Network 8 (and areas in
Networks 6, 10, 12, 13, 16, 17), 6) Networks 11, 13, 16, and 7–8) 2
clusters from Network 15. The temporal profile of each ROI was
then subjected to discriminant analysis based on the 8 clusters.

The discriminant analysis revealed 7 statistically significant,
orthogonal functions. The first 4 functions explained 95% of the
variance across areas (57%, 26%, 9%, and 3% for the Functions
1–4, respectively). Discriminant Function 1 correlated positively
with time points between 130 and 300ms (Fig. 4b, blue line),
and Function 2 correlated negatively with an early time point
of 130ms and positively with late time points between 370 and
620ms (Fig. 4b, red line). Function 3 also had 2 phases, and cor-
related positively with early (130–270ms) and late (620–680ms)
time points (Fig. 4b, yellow line). Function 4 had 3 phases: a
negative correlation with earlier (130–300ms) and later (550–
680ms) time points, as well as a positive correlation with very
late (740–970ms) time points (Fig. 4b, purple line). Spatially,
Function 1 separated sensory cortical regions from fronto-
parietal areas, as well as the auditory and visual regions from
each other, and Function 2 segregated the sensory from frontal
regions (Fig. 4b). The variance explained by Functions 3 and 4
was smaller and consequently, these functions did not segre-
gate areas as clearly as the first 2 functions when plotted on
the same scale (Fig. 4b). Overall, the 4 determined discriminant
functions essentially capture dissimilarity between the tem-
poral profiles of ROIs (Fig. 3) and explain the observed spatial
similarity structure (Fig. 4a).

To further visualize the differences in spatial and temporal
activation characteristics, the discriminant function coeffi-
cients on each ROI were plotted on the cortical surface (Fig. 4c).
The early time scale and sensory-frontal division of Function 1
suggests that it is related to stimulus-driven processing, which
depended on the modality. The later time course of Function 2
and the high coefficient for it in frontal areas indicates that this
function relates to top-down guided attentional control. The
time course of Function 3 appears to represent shifting from
the default mode (Greicius et al. 2003) to the Attention Mode
and back to the default mode, since the highest coefficients
were found in the default mode areas. The 3 phases of
Function 4 and the high coefficients in the sensory-motor areas
might indicate that it is associated with response preparation,
selection and execution after target occurrence, and perhaps
with preparation for the next trial. Since each experimental
condition had a motor response, purely motor processes should
not show up in the analysis.
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Discussion
We combined ERP and fMRI data with a novel application of
RSA in order to resolve spatiotemporal dynamics of cortical
networks related to multiple attentional processes. The ERP
RDMs revealed topographic dissimilarities across all experi-
mental conditions and these were compared with RDMs within
the fMRI searchlight voxel clusters. We were able to parse the
fMRI data into several spatial maps corresponding to short
temporal segments of ERPs. The present results reveal complex
temporal dynamics of attentional processes with a few separ-
able processing phases. Distractor-related pattern correlations
were found in the sensory areas at early time window of 200
ms from audiovisual stimulus onset. Early peaks were also
found from parietal and frontal areas, and our model analysis
indicated that these were related to interaction of the Attention
Mode and Distractor Type, but not to distractor processing as
such. In addition to the early peak, dorsal parietal areas
showed elevated correlations also at a later time point of 600
ms, related to distractor processing as well as to the interaction
of Attention Mode and Distractor Type. Elevated pattern corre-
lations in the ventral parietal regions and frontal areas were
found at 4 distinct time points, around 200, 400, 600, and
800ms, showing the role of these areas in attentional control
during all phases of the cognitive tasks. The results suggest
that the spatial activity patterns in fMRI data contain informa-
tion from several time points, and that this information can be
recovered using external temporal ERP markers. Furthermore,
multidimensional scaling of temporal profiles suggested 8 spa-
tial networks: 2 sensory, 3 attention, and 3 other networks.
Discriminant analysis of these 8 networks revealed 4 orthog-
onal components that each had separate temporal profiles and
spatial distributions. Our results suggest 4 distinct spatio-
temporal components for attention: modality-dependent and
stimulus-driven orienting, top-down guided control of atten-
tion, brain state transitions, and response selection, planning
and execution.

Temporal resolution of fMRI has fundamental limitations and
it probably will not reach a millisecond scale of ERPs even in the
future although it has improved considerably in the past decades
(Logothetis 2008). We resolved the lack of high temporal reso-
lution by combing the temporal ERP and spatial fMRI data with
RSA. Previously, RSA has been used to combine fMRI and magne-
toencephalography (MEG) for studying spatiotemporal process-
ing of tones (Su et al. 2014) and visual objects (Cichy et al. 2014).
We guided our searchlight (Kriegeskorte et al. 2006) fMRI analysis
with ERP-based RDMs and investigated spatiotemporal dynamics
of attention across the entire cortex. Thus, our analysis revealed
spatial maps of representational relationships that correlated
with certain time points in electrophysiological brain activity,
and hence inform us about the time course of attentional pro-
cessing. The success in our endeavor might be partly due to the
fact that ERPs are quite specific with regard to stimulus process-
ing and attention functions examined in the present study. This
would have not been the case with nonaveraged EEG signal.
Similarly, instead of raw time series we used regressors derived
from the fMRI data. Thus, the event-related averaging ensured
high quality signals for the RSA.

In our experimental setup, we calculated discrimination
thresholds, RTs, and correct responses. All these behavioral
measures confirmed that the present attention and distractor
manipulations were as effective as expected and that the parti-
cipants’ task performance was similar in the ERP and fMRI
experiments. The EEG experiment was always conducted

before the fMRI experiment. Nevertheless, there were no differ-
ences in task performance that could reflect, for instance,
learning. Perhaps, the less comfortable and acoustically noisy
environment of fMRI canceled any learning-related improve-
ments in performance. Our behavioral tasks consisted of low-
level (perceptual) components of pitch and orientation discrim-
ination as well as higher level (cognitive) components of
response selection, focusing and dividing attention. The low-
level component of the task was adaptively varied in order to
control for the task difficulty. In the model RSA, no significant
voxel clusters were found for model RDM calculated from cor-
rect responses, suggesting that the adaptive method was effect-
ive. However, for model RDM calculated from RTs, significant
clusters were found in locations comparable with the Attention
Mode model. This suggests that the RTs reflect, in addition to
perceptual discriminability, cognitive processes related to deci-
sion making, attention and response preparation. The decision
making cascade involves several brain areas and components
with different temporal dynamics (Philiastides et al. 2014;
Muraskin et al. 2016). The top-down attention and response
control components found in our discrimination analysis likely
involve processes related also to decision making.

Separate model correlations confirmed that the temporal
and spatial patterns in ERPs and fMRI, respectively, were
indeed related to Distractor Types, Attention Modes, and their
interaction. Overall, we found stronger correlations between
fMRI and model RDMs than between fMRI and ERP RDMs.
However, spatial distribution for some of the models was more
limited; Attention Mode and Distractor models mainly segre-
gated frontal areas from auditory and visual areas. We also
tried other models, such as separating auditory and visual tar-
gets in addition to separating Attention Modes, but the correla-
tions were not significantly affected. In contrast, the spatial
distributions of ERP correlations varied markedly and revealed
several distinct spatial clusters at different time points.
Correlation map most comparable to ERP-fMRI correlations was
found for model depicting interaction of Attention Mode and
Distractors, thus confirming that our ERP-fMRI correlations
were genuinely related to attention and distractor processing.

We parsed time-averaged fMRI data into several distinct
spatial maps depicting spatiotemporal dynamics of attentional
processing. The resolution of our regional temporal correlation
profiles calculated from fMRI data was comparable to ERPs,
even though we used time-averaged SPMT images. Since these
images integrate activation over a few seconds, the information
from different time points within the spatial patterns could
have been significantly blurred or smoothed. However, our
results suggest that the fMRI activation patterns at different
time points add up, and hence the spatial information at differ-
ent times is recoverable. Therefore, we propose that spatio-
temporal dynamics of whole brain fMRI activity patterns can be
investigated with spatiotemporal models that include separate
components for each time point of interest.

Overall, stronger ERP-fMRI correlations were found in the
visual than in auditory cortex, and the early part of correla-
tions showed visual cortex activity first, followed by parietal
and auditory cortex activity. These could be due to visual
dominance during multisensory stimuli, for example, ventrilo-
quism effect (Driver 1996). Another possibility is that our vis-
ual stimuli just elicited stronger effects than auditory stimuli,
or that the auditory stimuli and responses were partly masked
more by the scanner noise and responses to it, respectively. A
third possibility is that spatial activation patterns are more
persistent in the visual than in auditory cortex, for example,
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due to differences in functional organization between the vis-
ual and auditory cortices. Furthermore, the observed temporal
profiles for visual and auditory areas were also different. In
the visual areas, only one early peak was found and the correl-
ation decreased gradually, whereas in the auditory areas,
2 separate transient peaks were found, suggesting that att-
ention modulates visual and auditory regions differently.
Behaviorally, crossmodal distractors had a smaller effect
on grating than tone discrimination. This suggests that the
difference around 600ms between the visual and auditory
cortices might be related to modality switching or reorien-
ting. Furthermore, there was an asymmetry of behavioral
responses between the modalities: the distractors prolonged
the RTs to gratings relatively more than the RTs to tones, and
reduced the amount of correct responses relatively more for
the tones than gratings. This asymmetry might reflect the pre-
viously reported distractor-related differences between the
modalities (Boll and Berti 2009; Bendixen et al. 2010), and
especially the biases toward top-down and bottom-up atten-
tion systems in the visual and auditory modalities, respect-
ively (Braga et al. 2016). After the sensory-parietal responses,
complex dynamics emerged involving response-related pro-
cessing, fronto-parietal, and default mode networks.
Interestingly, the peaks in ERP-fMRI correlations occurred
roughly at the same time points in separate areas of cortical
networks. Thus instead of the classical serial and hierarchical
processing account, our results are consistent with previous
research suggesting dynamic attentional control involving dis-
tinct components, which have several phases and are distrib-
uted to multiple cortical areas.

The present multidimensional scaling and discriminant
analysis suggested 4 spatiotemporal components. In addition
to the components related to cognitive processing, we also
found components related to shifting between brain states and
response control. The first component, modality-dependent
and stimulus-driven orienting, corresponding to the early
peaks around 200–300ms of ERP-fMRI correlations, is likely
related to the components of the P3a ERP response associated
with novelty detection and involuntary attention (Yago et al.
2003) and to ERP modulations due to attentional selection of
the target events for further processing (Bengson et al. 2015).
The second component, top-down guided control, correspond-
ing to the later peaks of ERP-fMRI correlations at 400–600ms is
likely to be associated with ERP responses related to reorienting
of attention (Schröger and Wolff 1998; Berti and Schröger 2001)
and other late attentional processes (Hopf and Mangun 2000;
Nobre et al. 2000; Bengson et al. 2015). The first and second
components are roughly consistent with the dorsal and ventral
attention networks (Corbetta and Shulman 2002), but they were
not limited only to the areas of these networks. Although the
determined spatiotemporal components were orthogonal, they
still occasionally recruited overlapping cortical areas, in agree-
ment with previous reports showing parallel, partly overlap-
ping attention networks (Stoppel et al. 2013). The time scales of
these correlations are consistent with attention-related con-
nections found in a study with a simultaneous EEG-fMRI
recording (Walz et al. 2013). The third and fourth components,
apparently corresponding to brain state transitions and
response control, respectively, are consistent with previous
EEG-based modeling of fMRI task and response-related effects
in the frontal cortex and default mode areas (Walz et al. 2014)
as well as the opposing effects of attention and default mode
networks (Anderson et al. 2011; Hellyer et al. 2014).

Instead of sustained brain activity on the time scale of seconds
or tens of seconds during different tasks, we used an event-
related design to study attentional functions occurring within 1 s
from stimulus onset. Furthermore, we used MVPA to find dissimi-
larities in local activity distributions, not in the mean activity,
during multiple attentional processes. In our MVPA, we found
similar networks in both hemispheres, and observed larger atten-
tional modulations to distractors than targets. Inclusion of both
auditory and visual attention conditions may have emphasized
supramodal attention networks. Moreover, previous studies sug-
gest that attention effects spread between synchronously stimu-
lated modalities (Degerman et al. 2007) perhaps explaining the
present similarity of target responses across different attention
instructions. We also found robust pattern correlations in the pre-
frontal areas. MVPAs are more sensitive than univariate analyses
(Kriegeskorte and Kievit 2013), which might explain the lack of
prefrontal activation during some attention tasks in previous
studies. In our experiment, we used an adaptive task to individu-
ally control for task difficulty. Specific attentional functions may
have different effects on brain responses: task difficulty or
required effort is observed as an increase in total activity, whereas
the task type, such as focused or divided attention, would be spe-
cifically reflected in the activation patterns. Thus, due to the
adaptive task our results likely emphasize task type-related activ-
ity changes.

Our results show that the spatial patterns of time-averaged
fMRI data contain information at a subsecond time scale and
that this information can be recovered using temporal informa-
tion from ERPs. This suggests that the fMRI activity patterns
could be modeled with spatiotemporal models that include dif-
ferent pattern predictions for different time points, that is, the
activity patterns within each searchlight or ROI could be mod-
eled as a sum of multiple predicted patterns. Developing a
quantitative spatiotemporal model would be a significant
future step in understanding the complex dynamics of supra-
modal attention. In the present study, the spatiotemporal
dynamics of attention suggested 4 multifaceted and spatially
distributed components related to stimulus-driven and top-
down controlled attention, shifting between brain states and
response control.
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